LCD驱动程序——Framebuffer应用编程

news2024/11/28 1:33:10

1.LCD 操作原理

在 Linux 系统中通过 Framebuffer 驱动程序来控制 LCD。Frame 是帧的意思buffer 是缓冲的意思,这意味着 Framebuffer 就是一块内存,里面保存着一帧图像。Framebuffer 中保存着一帧图像的每一个像素颜色值,假设 LCD 的分辨率是 1024x768,每一个像素的颜色用 32 位来表示,那么 Framebuffer 的大小就是:1024x768x32/8=3145728 字节。LCD的操作原理:

  1. 驱动程序设置好 LCD 控制器:
    根据 LCD 的参数设置 LCD 控制器的时序、信号极性;
    根据 LCD 分辨率、 BPP 分配 Framebuffer
  2. APP 使用 ioctl 获得 LCD 分辨率、 BPP
  3. APP 通过 mmap 映射 Framebuffer ,在 Framebuffer 中写入数据

        bpp:每个像素用多少位来表示它的颜色
        假设需要设置 LCD 中坐标 (x,y) 处像素的颜色,首要要找到这个像素对应的内存,然后根据它的 BPP 值设置颜色。假设 fb_base APP 执行 mmap 后得到的 Framebuffer 地址,如图
可以用以下公式算出 (x,y) 坐标处像素对应的 Framebuffer 地址:
(x,y)像素起始地址=fb_base+(xres*bpp/8)*y + x*bpp/8
最后一个要解决的问题就是像素的颜色怎么表示?它是用 RGB 三原色 ( 红、绿、 蓝) 来表示的,在不同的 BPP 格式中,用不同的位来分别表示 R G B ,如图 所示:
        对于 32BPP ,一般只设置其中的低 24 位,高 8 位表示透明度,一般的 LCD 都不支持。
        对于 24BPP ,硬件上为了方便处理,在 Framebuffer 中也是用 32 位来表 示,效果跟 32BPP 是一样的。
        对于 16BPP ,常用的是 RGB565 ;很少的场合会用到 RGB555 ,这可以通过 ioctl 读取驱动程序中的 RGB 位偏移来确定使用哪一种格式。

2.涉及的 API 函数

        open 打开 LCD 设备节点
        ioctl  获取LCD黑色版分辨率等参数
        mmap  映射 Framebuffer
        最后实现描点函数。

2.1 open 函数

        在 Ubuntu 中执行“ man 2 open ”,可以看到 open 函数的说明。
        头文件:
  
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

        函数原型:

int open(const char *pathname, int flags);
int open(const char *pathname, int flags, mode_t mode);

        函数说明:

  1. pathname 表示打开文件的路径;
  2. Flags 表示打开文件的方式,常用的有以下 6 种,
    O_RDWR 表示可读可写方式打开 ;
    O_RDONLY 表示只读方式打开 ;
    O_WRONLY 表示只写方式打开 ;
    O_APPEND 表示如果这个文件中本来是有内容的,则新写入的内容会接续到原来内容的后面;
    O_TRUNC 表示如果这个文件中本来是有内容的,则原来的内容会被丢弃,截断;
    O_CREAT 表示当前打开文件不存在,我们创建它并打开它,通常与 O_EXCL 结合使用,当没有文件时创建文件,有这个文件时会报错提醒我们;
  3. Mode 表示创建文件的权限,只有在 flags 中使用了 O_CREAT 时才有效,否则忽略。
  4. 返回值:打开成功返回文件描述符,失败将返回 -1

2.2 ioctl 函数

         Ubuntu 中执行“ man ioctl ”,可以看到 ioctl 函数的说明。
        头文件:
#include <sys/ioctl.h>

        函数原型:

int ioctl(int fd, unsigned long request, ...);

        函数说明:

  1. fd 表示文件描述符;
  2. request 表示与驱动程序交互的命令,用不同的命令控制驱动程序输出我们需要的数据;
  3. 表示可变参数 arg ,根据 request 命令,设备驱动程序返回输出的数据。
  4. 返回值:打开成功返回文件描述符,失败将返回 -1
        ioctl 的作用非常强大、灵活。不同的驱动程序内部会实现不同的 ioctl, APP 可以使用各种 ioctl 跟驱动程序交互:可以传数据给驱动程序,也可以从驱动程序中读出数据。

2.3 mmap 函数

        在 Ubuntu 中执行“ man mmap ”,可以看到 mmap 函数的说明;
        头文件:
       
#include <sys/mman.h>

        函数原型:

void *mmap(void *addr, size_t length, int prot, int flags,int fd, off_t offset);

        函数说明:

  1. addr 表示指定映射的內存起始地址,通常设为 NULL 表示让系统自动选定地址,并在成功映射后返回该地址;
  2. length 表示将文件中多大的内容映射到内存中;
  3. prot 表示映射区域的保护方式,可以为以下 4 种方式的组合
    PROT_EXEC 映射区域可被执行
    PROT_READ 映射区域可被读出
    PROT_WRITE 映射区域可被写入
    PROT_NONE 映射区域不能存取
  4. Flags 表示影响映射区域的不同特性,常用的有以下两种
    MAP_SHARED 表示对映射区域写入的数据会复制回文件内,原来的文件会改变。
    MAP_PRIVATE 表示对映射区域的操作会产生一个映射文件的复制,对此区域的任何修改都不会写回原来的文件内容中。
  5. 返回值:若成功映射,将返回指向映射的区域的指针,失败将返回 -1

3.Framebuffer 程序分析

3.1 打开设备节点

fd_fb = open("/dev/fb0", O_RDWR);//打开设备节点
if (fd_fb < 0)
{
	printf("can't open /dev/fb0\n");
	return -1;
}

3.2 获取 LCD 参数

        LCD 驱动程序给 APP 提供 2 类参数:可变的参数 fb_var_screeninfo 、固定的参数 fb_fix_screeninfo 。编写应用程序时主要关心可变参数,它的结构体定义如下(#include <linux/fb.h>)

可以使用以下代码获取 fb_var_screeninfo
static struct fb_var_screeninfo var;	/* Current var */
if (ioctl(fd_fb, FBIOGET_VSCREENINFO, &var))
{
	printf("can't get var\n");
	return -1;
}
注意到 ioctl 里用的参数是: FBIOGET_VSCREENINFO ,它表示 get var screen info,获得屏幕的可变信息;当然也可以使用 FBIOPUT_VSCREENINFO 来调整这些参数,但是很少用到。
对于固定的参数 fb_fix_screeninfo,在应用编程中很少用到。它的结构体定义如下:
可以使用 ioctl FBIOGET_FSCREENINFO 来读出这些信息,但是很少用到。

3.3 映射 Framebuffer

        要映射一块内存,需要知道它的地址──这由驱动程序来设置,需要知道它的大小──这由应用程序决定。代码如下:
line_width  = var.xres * var.bits_per_pixel / 8;//屏幕宽度大小(多少个字节)
pixel_width = var.bits_per_pixel / 8;//一个像素大小(多少个字节)
screen_size = var.xres * var.yres * var.bits_per_pixel / 8; //屏幕大小(多少个字节)
fb_base = (unsigned char *)mmap(NULL , screen_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd_fb, 0);
if (fb_base == (unsigned char *)-1)
{
	printf("can't mmap\n");
	return -1;
}
        screen_size 是整个 Framebuffer 的大小; PROT_READ | PROT_WRITE 表示该区域可读、可写; MAP_SHARED 表示该区域是共享的, APP 写入数据时,会直达驱动程序,这个参数的更深刻理解可以参考后面驱动基础中讲到的 mmap 知识。

3.4 描点函数

能够在 LCD 上描绘指定像素后,就可以写字、画图,描点函数是基础。代码如下:
 //传入的 color 表示颜色,它的格式永远是 0x00RRGGBB,即 RGB888。当 LCD 是 16bpp 时,要把 color 变量中的 R、G、B 抽出来再合并成 RGB565 格式
void lcd_put_pixel(int x, int y, unsigned int color)
{
	unsigned char *pen_8 = fb_base+y*line_width+x*pixel_width;//计算要显示的坐标fb_base(原地址)y*line_width+x*pixel_width(偏移地址)
	unsigned short *pen_16;	
	unsigned int *pen_32;	

	unsigned int red, green, blue;	

	pen_16 = (unsigned short *)pen_8;
	pen_32 = (unsigned int *)pen_8;

	switch (var.bits_per_pixel)
	{
		case 8:
		{
			*pen_8 = color;//对于 8bpp,color 就不再表示 RBG 三原色了,这涉及调色板的概念,color 是调色板的值。
			break;
		}
		case 16:
		{
			/* 565 */
			red   = (color >> 16) & 0xff; //32位red数据是:16~24  24~32没用
			green = (color >> 8) & 0xff;  //32位green数据是:8~16
			blue  = (color >> 0) & 0xff;  //32位blue数据是:0~8
			//总共16位:红保留高5位放在11~16,绿保留高6位放在5~11,蓝保留高5位放在0~5
			color = ((red >> 3) << 11) | ((green >> 2) << 5) | (blue >> 3);
			*pen_16 = color;//将计算的位置坐标显示该颜色
			break;
		}
		case 32:
		{
			*pen_32 = color;//对于 32bpp,颜色格式跟 color 参数一致,可以直接写入Framebuffer。
			break;
		}
		default:
		{
			printf("can't surport %dbpp\n", var.bits_per_pixel);
			break;
		}
	}
}

3.5 随便画几个点的完整程序

#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <linux/fb.h>
#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#include <sys/ioctl.h>

static int fd_fb;
static struct fb_var_screeninfo var;	/* Current var */
static int screen_size;
static unsigned char *fb_base;
static unsigned int line_width;
static unsigned int pixel_width;

 //传入的 color 表示颜色,它的格式永远是 0x00RRGGBB,即 RGB888。当 LCD 是 16bpp 时,要把 color 变量中的 R、G、B 抽出来再合并成 RGB565 格式
void lcd_put_pixel(int x, int y, unsigned int color)
{
	unsigned char *pen_8 = fb_base+y*line_width+x*pixel_width;//计算要显示的坐标fb_base(原地址)y*line_width+x*pixel_width(偏移地址)
	unsigned short *pen_16;	
	unsigned int *pen_32;	

	unsigned int red, green, blue;	

	pen_16 = (unsigned short *)pen_8;
	pen_32 = (unsigned int *)pen_8;

	switch (var.bits_per_pixel)
	{
		case 8:
		{
			*pen_8 = color;//对于 8bpp,color 就不再表示 RBG 三原色了,这涉及调色板的概念,color 是调色板的值。
			break;
		}
		case 16:
		{
			/* 565 */
			red   = (color >> 16) & 0xff; //32位red数据是:16~24  24~32没用
			green = (color >> 8) & 0xff;  //32位green数据是:8~16
			blue  = (color >> 0) & 0xff;  //32位blue数据是:0~8
			//总共16位:红保留高5位放在11~16,绿保留高6位放在5~11,蓝保留高5位放在0~5
			color = ((red >> 3) << 11) | ((green >> 2) << 5) | (blue >> 3);
			*pen_16 = color;//将计算的位置坐标显示该颜色
			break;
		}
		case 32:
		{
			*pen_32 = color;//对于 32bpp,颜色格式跟 color 参数一致,可以直接写入Framebuffer。
			break;
		}
		default:
		{
			printf("can't surport %dbpp\n", var.bits_per_pixel);
			break;
		}
	}
}

int main(int argc, char **argv)
{
	int i;
	
	fd_fb = open("/dev/fb0", O_RDWR);//打开设备节点
	if (fd_fb < 0)
	{
		printf("can't open /dev/fb0\n");
		return -1;
	}
	if (ioctl(fd_fb, FBIOGET_VSCREENINFO, &var))
	{
		printf("can't get var\n");
		return -1;
	}

	line_width  = var.xres * var.bits_per_pixel / 8;//屏幕宽度大小(多少个字节)
	pixel_width = var.bits_per_pixel / 8;//一个像素大小(多少个字节)
	screen_size = var.xres * var.yres * var.bits_per_pixel / 8; //屏幕大小(多少个字节)
	fb_base = (unsigned char *)mmap(NULL , screen_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd_fb, 0);
	if (fb_base == (unsigned char *)-1)
	{
		printf("can't mmap\n");
		return -1;
	}

	/* 清屏: 全部设为白色 */
	memset(fb_base, 0xff, screen_size);

	/* 随便设置出100个为红色 */
	for (i = 0; i < 100; i++)
		lcd_put_pixel(var.xres/2+i, var.yres/2, 0xFF0000);
	
	munmap(fb_base , screen_size);
	close(fd_fb);
	
	return 0;	
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1160370.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

怎样利用 AI 大模型,辅助研发管理与效能提升?

AI 大模型已经逐渐渗透到各行各业的应用场景中&#xff0c;在软件研发领域也不例外。在软件研发领域&#xff0c;从需求分析到软件设计&#xff0c;从软件开发到测试&#xff0c;以及最后发布上线&#xff0c;AI 在各个环节都发挥着重要作用。10 月 21 日&#xff0c;思码逸首席…

react条件渲染

目录 前言 1. 使用if语句 2. 使用三元表达式 3. 使用逻辑与操作符 列表渲染 最佳实践和注意事项 1. 使用合适的条件判断 2. 提取重复的逻辑 3. 使用适当的key属性 总结 前言 在React中&#xff0c;条件渲染指的是根据某个条件来决定是否渲染特定的组件或元素。这在构…

图解刘润2023年度演讲--进化的力量思维导图精华

大家好&#xff0c;我是老原。 周末&#xff0c;商业顾问刘润发表了年度演讲&#xff1a;《进化的力量&#xff1a;寒武纪大爆发》。 这两天出差期间&#xff0c;陆陆续续看完了这个长达4小时的演讲&#xff0c;梳理了2023年到底发生了些什么&#xff0c;现在的环境如何…… …

技术阅读周刊第三期

技术阅读周刊&#xff0c;每周更新。 历史更新 20231013&#xff1a;第一期20231022&#xff1a;第二期 Understanding The Linux TTY Subsystem URL: https://ishuah.com/2021/02/04/understanding-the-linux-tty-subsystem/本文讲解了 Linux TTY 的历史故事和来源。 TTY 是 t…

HNU-算法设计与分析-讨论课1

第一次小班讨论 &#xff08;以组为单位&#xff0c;每组一题&#xff0c;每组人人参与、合理分工&#xff0c;ppt中标记分工&#xff0c;尽量都有代码演示&#xff09; 1.算法分析题 2-10、2-15(要求&#xff1a;有ppt&#xff08;可代码演示&#xff09;) 2.算法实现题 2-4、…

蓝桥杯(C++ 扫雷)

题目&#xff1a; 思想&#xff1a; 1、遍历每个点是否有地雷&#xff0c;有地雷则直接返回为9&#xff0c;无地雷则遍历该点的周围八个点&#xff0c;计数一共有多少个地雷&#xff0c;则返回该数。 代码&#xff1a; #include<iostream> using namespace std; int g[…

【Java 进阶篇】Java中的响应输出字节数据

在Java Web应用程序开发中&#xff0c;处理响应是一个常见的任务。有时&#xff0c;您可能需要向客户端发送字节数据&#xff0c;而不仅仅是文本或HTML内容。这可以用于传输各种内容&#xff0c;如图像、文件、视频等。本文将详细介绍如何在Java中使用Response对象输出字节数据…

sql语句性能进阶必须了解的知识点——索引失效分析

在前面的文章中讲解了sql语句的优化策略 sql语句性能进阶必须了解的知识点——sql语句的优化方案-CSDN博客 sql语句的优化重点还有一处&#xff0c;那就是—— 索引&#xff01;好多sql语句慢的本质原因就是设置的索引失效或者根本没有建立索引&#xff01;今天我们就来总结一…

160. 相交链表、Leetcode的Python实现

博客主页&#xff1a;&#x1f3c6;看看是李XX还是李歘歘 &#x1f3c6; &#x1f33a;每天分享一些包括但不限于计算机基础、算法等相关的知识点&#x1f33a; &#x1f497;点关注不迷路&#xff0c;总有一些&#x1f4d6;知识点&#x1f4d6;是你想要的&#x1f497; ⛽️今…

从零开始制作一个桶装水小程序

随着互联网的发展&#xff0c;越来越多的消费者通过线上购买桶装水。为了满足这一需求&#xff0c;我们需要制作一个专门的小程序商城&#xff0c;以便用户可以方便地购买桶装水。本文将通过乔拓云平台&#xff0c;从零开始制作一个桶装水小程序&#xff0c;并详细解析制作步骤…

二、类与对象(一)

1 面向过程和面向对象初步认识 C语言是面向过程的&#xff0c;关注的是过程&#xff0c;分析出求解问题的步骤&#xff0c;通过函数调用逐步解决问题。以洗衣服为例&#xff0c;通常洗衣服会经历以下过程&#xff1a; 而C是基于面向对象的&#xff0c;关注的是对象&#xff0c…

云安全—K8s APi Server 6443 攻击面

0x00 前言 在未授权的一文中&#xff0c;详细描述了k8s api中的8080端口未授权的问题&#xff0c;那么本篇主要来说6443端口的利用。 0x01 API连接攻击面 1.匿名用户访问 匿名开放方式&#xff1a;kubectl create clusterrolebinding cluster-system-anonymous --clusterro…

信号、进程、线程、I/O介绍

文章目录 信号进程进程通信线程可/不可重入函数线程同步互斥锁条件变量自旋锁读写锁 I/O操作阻塞/非阻塞I/OI/O多路复用存储映射I/O 信号 信号是事件发生时对进程的通知机制&#xff0c;可以看做软件中断。信号与硬件中断的相似之处在于其能够打断程序当前执行的正常流程。大多…

paas配置及构建问题处理

目录 CI配置在前端中的作用 为什么生产环境需要付出额外的精力&#xff0c;进行构建&#xff1f; 服务 CI 通常分为两个主要部分&#xff1a; 构建环境&#xff1a; Dockerfile 镜像&#xff1a; CI配置在前端中的作用 开发分为三个环境&#xff1a;开发环境、测试环境和生…

QMI8658A_QMC5883L(9轴)-EVB 评估板——索引博文

0.前言 【初见姿态传感器】 在做一个4轴飞行器的时候了解到有这样一个可以控制飞行器姿态的传感器&#xff0c;而后在哔哩哔哩看到利用姿态传感做很多很好玩的作品。目前在自己的本职工作中广泛会用姿态传感器IMU的应用。 1.博文索引 【基础内容】 【QMI8658 - 姿态传感器学习…

一次性剪辑大量视频的教程,逻辑讲解,很实用

在短视频领域&#xff0c;视频剪辑的效率如何提升也成为了广大短视频创作者需要解决的问题之一。批量剪辑这个词汇也不断被提起。那么该如何自学批量视频剪辑呢&#xff1f; 想要进行批量视频剪辑&#xff0c;那就先需要一款好用的软件&#xff0c;小编这里给大家良心推荐超级…

“优等生”宁波银行公布三季报:营利齐升,风控抵补能力持续夯实

撰稿 | 多客 来源 | 贝多财经 10月30日晚&#xff0c;城商行“优等生”宁波银行披露2023年三季报&#xff0c;在效益与规模稳步提升的同时&#xff0c;资产质量也保持了优异水平。 前三季度&#xff0c;宁波银行实现归属于母公司股东的净利润193.49亿元&#xff0c;同比增长1…

【生物信息学】单细胞RNA测序数据分析:计算亲和力矩阵(基于距离、皮尔逊相关系数)及绘制热图(Heatmap)

文章目录 一、实验介绍二、实验环境1. 配置虚拟环境2. 库版本介绍 三、实验内容0. 导入必要的库1. 读取数据集2. 质量控制&#xff08;可选&#xff09;3. 基于距离的亲和力矩阵4. 绘制基因表达的Heatmap5. 基于皮尔逊相关系数的亲和力矩阵6. 代码整合 一、实验介绍 计算亲和力…

新加坡公司【Trident Digital】申请1688万美元纳斯达克IPO上市

来源&#xff1a;猛兽财经 作者&#xff1a;猛兽财经 猛兽财经获悉&#xff0c;总部位于新加坡的Trident Digital Tech Holdings Ltd&#xff08;简称&#xff1a;Trident Digital&#xff09;近期已向美国证券交易委员会&#xff08;SEC&#xff09;提交招股书&#xff0c;申…

oracle中关于connect by的语法及实现(前序遍历树)

语法 connect by是是结构化查询中用到的&#xff0c;其基本语法是&#xff1a; 1 select … from tablename 2 start with 条件1 3 connect by 条件2 4 where 条件3; 使用示例 例&#xff1a; create table tree(id int,parentid int); insert into tree values(120,184); …