【考研数学】概率论与数理统计 —— 第七章 | 参数估计(2,参数估计量的评价、正态总体的区间估计)

news2024/11/30 10:29:46

文章目录

  • 一、参数估计量的评价标准
    • 1.1 无偏性
    • 1.2 有效性
    • 1.3 一致性
  • 二、一个正态总体参数的双侧区间估计
  • 三、一个正态总体的单侧置信区间
  • 四、两个正态总体的双侧置信区间
  • 写在最后


一、参数估计量的评价标准

1.1 无偏性

X X X 为总体, ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots ,X_n) (X1,X2,,Xn) 为来自总体 X X X 的简单随机样本, θ \theta θ 为未知参数,设 θ ^ = φ ( X 1 , X 2 , ⋯   , X n ) \widehat{\theta}=\varphi(X_1,X_2,\cdots,X_n) θ =φ(X1,X2,,Xn) 为参数 θ \theta θ 的一个点估计量,若 E ( θ ^ ) = θ E(\widehat{\theta})=\theta E(θ )=θ ,称 θ ^ \widehat{\theta} θ 为参数 θ \theta θ 的无偏估计量。

【例】 设总体 X X X 的密度函数为 f ( x ) = { 2 x / θ 2 0 < x < θ 0 e l s e f(x)=\begin{cases} 2x/\theta^2 & 0<x<\theta \\ 0 &else\end{cases} f(x)={2x/θ200<x<θelse ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,,Xn) 为来自总体 X X X 的简单随机样本。

(1)求参数 θ \theta θ 的矩估计量;(2)求参数 θ \theta θ 的最大似然估计量;(3)矩估计量是否为无偏估计。

解: (1) E ( X ) = ∫ − ∞ ∞ x f ( x ) d x = 2 θ / 3 E(X)=\int_{-\infty}^\infty xf(x)dx=2\theta/3 E(X)=xf(x)dx=2θ/3 ,令 2 θ / 3 = X ‾ 2\theta/3=\overline{X} 2θ/3=X ,则可得矩估计量 θ ^ = 3 X ‾ 2 . \widehat{\theta}=\frac{3\overline{X}}{2}. θ =23X. (2)构造似然函数 L ( θ ) = f ( x 1 ) f ( x 2 ) ⋯ f ( x n ) = 2 n θ 2 n x 1 x 2 ⋯ x n ( 0 < x i < θ , i = 1 , 2 , ⋯   , n ) . d ln ⁡ L d θ = − 2 n θ < 0. L(\theta)=f(x_1)f(x_2)\cdots f(x_n)=\frac{2^n}{\theta^{2n}}x_1x_2\cdots x_n(0<x_i<\theta,i=1,2,\cdots,n).\\ \frac{d\ln L}{d\theta}=-\frac{2n}{\theta}<0. L(θ)=f(x1)f(x2)f(xn)=θ2n2nx1x2xn(0<xi<θ,i=1,2,,n).dθdlnL=θ2n<0. 可知 L ( θ ) L(\theta) L(θ) θ \theta θ 的减函数,因此最大似然估计量 θ ^ = max ⁡ { X 1 , X 2 , ⋯   , X n } \widehat{\theta}=\max\{X_1,X_2,\cdots,X_n\} θ =max{X1,X2,,Xn}

(3) E ( θ ^ ) = 3 / 2 ⋅ E ( X ‾ ) = 3 / 2 ⋅ 2 θ / 3 = θ E(\widehat{\theta})=3/2\cdot E(\overline{X})=3/2\cdot2\theta/3=\theta E(θ )=3/2E(X)=3/22θ/3=θ ,故是无偏估计量。

1.2 有效性

X X X 为总体, ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots ,X_n) (X1,X2,,Xn) 为来自总体 X X X 的简单随机样本, θ \theta θ 为未知参数,设 θ ^ 1 , θ ^ 2 \widehat{\theta}_1,\widehat{\theta}_2 θ 1,θ 2 都是参数 θ \theta θ 的无偏估计量,若 D ( θ ^ 1 ) < D ( θ ^ 2 ) D(\widehat{\theta}_1)<D(\widehat{\theta}_2) D(θ 1)<D(θ 2) ,称 θ ^ 1 \widehat{\theta}_1 θ 1 为更有效的参数估计量。

1.3 一致性

X X X 为总体, ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots ,X_n) (X1,X2,,Xn) 为来自总体 X X X 的简单随机样本, θ \theta θ 为未知参数,设 θ ^ = φ ( X 1 , X 2 , ⋯   , X n ) \widehat{\theta}=\varphi(X_1,X_2,\cdots,X_n) θ =φ(X1,X2,,Xn) 为参数 θ \theta θ 的一个估计量,若对任意 ϵ > 0 \epsilon>0 ϵ>0 ,有 lim ⁡ n → ∞ P { ∣ θ ^ − θ ∣ < ϵ } = 1 \lim_{n\to\infty}P\{|\widehat{\theta}-\theta|<\epsilon\}=1 nlimP{θ θ<ϵ}=1 θ ^ \widehat{\theta} θ 作为 θ \theta θ 的估计量具有一致性(或相合性)。


二、一个正态总体参数的双侧区间估计

前面我们所学的两种方法为点估计法,即只能得到一个值,但实际上我们并非需要那么精确,况且点估计出来也不一定好,因此我们最好是估计一个区间范围。

2.1 对参数 μ \mu μ 的双侧区间估计

X ∼ N ( μ , σ 2 ) X \sim N(\mu,\sigma^2) XN(μ,σ2) 为总体, ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots ,X_n) (X1,X2,,Xn) 为来自总体 X X X 的简单随机样本, 0 < α < 1 0<\alpha<1 0<α<1 ,求参数的置信度为 1 − α 1-\alpha 1α 的双侧置信区间。

1. 参数 σ 2 \sigma^2 σ2 已知

X ‾ \overline{X} X 标准化为标准正态分布,令其在 − z α 2 -z_{\alpha\over 2} z2α z α 2 z_{\alpha\over 2} z2α 内的概率为 1 − α 1-\alpha 1α,可求出置信区间为 ( X ‾ − σ n z α 2 , X ‾ + σ n z α 2 ) \bigg(\overline{X}-\frac{\sigma}{\sqrt{n}}z_{\alpha\over2},\overline{X}+\frac{\sigma}{\sqrt{n}}z_{\alpha\over2}\bigg) (Xn σz2α,X+n σz2α) 2. 参数 σ 2 \sigma^2 σ2 未知

则利用 t t t 分布,即取 X ‾ − μ S n ∼ t ( n − 1 ) \frac{\overline{X}-\mu}{\frac{S}{\sqrt{n}}}\sim t(n-1) n SXμt(n1) 令其在 ( − t α 2 ( n − 1 ) , t α 2 ( n − 1 ) ) (-t_{\frac{\alpha}{2}}(n-1),t_{\frac{\alpha}{2}}(n-1)) (t2α(n1),t2α(n1)) 的概率为 1 − α 1-\alpha 1α ,可计算出置信区间为 ( X ‾ − S n t α 2 ( n − 1 ) , X ‾ + S n t α 2 ( n − 1 ) ) \bigg(\overline{X}-\frac{S}{\sqrt{n}}t_{\alpha\over2}(n-1),\overline{X}+\frac{S}{\sqrt{n}}t_{\alpha\over2}(n-1)\bigg) (Xn St2α(n1),X+n St2α(n1)) 此外还有对 σ 2 \sigma^2 σ2 的区间估计,汇总成下表:

在这里插入图片描述

三、一个正态总体的单侧置信区间

其实单侧也就是双侧的区间取一端,如估计 μ \mu μ σ 2 \sigma^2 σ2 已知,单侧置信区间为: ( X ‾ − σ n z α 2 , + ∞ ) , ( − ∞ , X ‾ + σ n z α 2 ) \bigg(\overline{X}-\frac{\sigma}{\sqrt{n}}z_{\alpha\over2},+\infty\bigg),\bigg(-\infty,\overline{X}+\frac{\sigma}{\sqrt{n}}z_{\alpha\over2}\bigg) (Xn σz2α,+),(,X+n σz2α) 其余以此类推。

四、两个正态总体的双侧置信区间

汇总成表:

在这里插入图片描述
其中 S w = ( m − 1 ) S 1 2 + ( n − 1 ) S 2 2 m + n − 2 S_w=\frac{(m-1)S_1^2+(n-1)S_2^2}{m+n-2} Sw=m+n2(m1)S12+(n1)S22


写在最后

看了下大纲,对区间估计的概念和一个、两个正态总体的置信区间公式作了理解要求,后期抽时间记忆记忆。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1159521.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【银行测试】支付功能、支付平台、支持渠道如何测试?

有朋友提问&#xff1a;作为一个支付平台&#xff0c;接入了快钱、易宝或直连银行等多家的渠道&#xff0c;内在的产品流程是自己的。业内有什么比较好的测试办法&#xff0c;来测试各渠道及其支持的银行通道呢&#xff1f; 作为产品&#xff0c;我自己办了十几张银行卡方便测…

效率提升测试工具开发的思考

本文针对测试部效率提升测试工具开发、管理、维护暴露出来的问题的一些思考以及一些个人改进观点。 写在前面 本文提到的效率提升测试工具不是指的部门中固有的自动化测试工具&#xff0c;这里提到的测试工具统一指测试人员在工作之余自主开发用于期望替代重复、繁琐、耗时的手…

如何在MacOS使用homebrew安装Nginx

文章目录 Homebrew安装nginxbrew启动Nginxbrew关闭Nginx 参考文章地址 Homebrew安装nginx 在确保MacOS 安装Homebrew成功以后&#xff0c;执行如下命令 brew install nginx注意&#xff1a;Nginx安装成功后会提示目录位置&#xff1b;每个人的系统可能因为Homebrew的安装位置…

永宏(FATEK)PLC通讯协议

文章目录 背景说明通讯帧通讯数据地址16进制数据元和ASCII的转换永宏通讯协议举例命令码40&#xff08;PLC概略系统状态读取&#xff09;命令码41&#xff08;PLC的RUN/STOP控制&#xff09;命令码42&#xff08;单一个单点运作控制&#xff09;命令码43&#xff08;多个连续单…

【自用】vmware workstation建立主机window与虚拟机ubuntu之间的共享文件夹

1.在windows中建立1个文件夹 在vmware中设置为共享文件夹 参考博文&#xff1a; https://zhuanlan.zhihu.com/p/650638983 2.解决&#xff1a; &#xff08;1&#xff09;fuse: mountpoint is not empty &#xff08;2&#xff09;普通用户也能使用共享目录 参考博文&#x…

Unity Profiler 详细解析(二)

Profiler的主要参数详解 1. Memory Profiler Uesd Total : 当前帧的Unity内存&#xff0c;Mono内存&#xff0c;GfxDriver内存&#xff0c;Profiler内存以及额外内存的总和。 Reserved Total&#xff1a; 系统在当前帧申请的总体物理内存 Total System Memory Usage&#xff1…

ModStartCMS v7.5.0 内外网映射节流,安全使用增强

ModStart 是一个基于 Laravel 模块化极速开发框架。模块市场拥有丰富的功能应用&#xff0c;支持后台一键快速安装&#xff0c;让开发者能快的实现业务功能开发。 系统完全开源&#xff0c;基于 Apache 2.0 开源协议&#xff0c;免费且不限制商业使用。 功能特性 丰富的模块市…

8种按钮设计的常见类型分享

按钮是UI界面的元素之一&#xff0c;可以本能地吸引游客并将其转化为买家。界面中的UI按钮类型包括&#xff1a;CTA按钮、幽灵按钮、下拉按钮、浮动操作按钮、汉堡包按钮、加号按钮、消耗品按钮、共享按钮。 号召性用语按钮 CTA&#xff08;呼叫语言&#xff09;按钮是一种交…

八、ACL访问控制列表实验

拓扑图&#xff1a; 通过某些特定的条件&#xff0c;端口号&#xff0c;ip地址&#xff0c;来限定某些数据包的访问 在这张拓扑图中&#xff0c;使得1.0和2.0能够访问服务器&#xff0c;但是两个网段不能互通 首先根据拓扑图把ip分配完毕&#xff0c; 高级acl命令可以用设置源…

算法学习打卡day40|343. 整数拆分、96.不同的二叉搜索树

343. 整数拆分 力扣题目链接 题目描述&#xff1a; 给定一个正整数 n &#xff0c;将其拆分为 k 个 正整数 的和&#xff08; k > 2 &#xff09;&#xff0c;并使这些整数的乘积最大化。 返回 你可以获得的最大乘积 。 示例 1&#xff1a; 输入: n 2 输出: 1 解释: 2 1 …

Panda3d 相机控制

Panda3d 相机控制 文章目录 Panda3d 相机控制Panda3d中的透视镜头和垂直镜头透视镜头垂直镜头 Panda3d 中用代码控制相机的移动用键盘控制相机的移动用鼠标控制相机的移动 Panda3d 把相机也当做是一个 PandaNode&#xff0c;因此可以向操作其他节点对其进行操作。 真正的相机是…

stm32整理(三)ADC

1 ADC简介 1.1 ADC 简介 12 位 ADC 是逐次趋近型模数转换器。它具有多达 19 个复用通道&#xff0c;可测量来自 16 个外部 源、两个内部源和 VBAT 通道的信号。这些通道的 A/D 转换可在单次、连续、扫描或不连续 采样模式下进行。ADC 的结果存储在一个左对齐或右对齐的 16 位…

Azure 机器学习 - 使用 AutoML 和 Python 训练物体检测模型

目录 一、Azure环境准备二、计算目标设置三、试验设置四、直观呈现输入数据五、上传数据并创建 MLTable六、配置物体检测试验适用于图像任务的自动超参数扫描 (AutoMode)适用于图像任务的手动超参数扫描作业限制 七、注册和部署模型获取最佳试用版注册模型配置联机终结点创建终…

Flask——接口路由技术

接口路由技术 一、Flask 简介1、环境安装&#xff1a;2、一个最小的应用3、两种运行方式 二、定义路由1、普通路由2、动态路由3、限定类型4、地址尾部的“/” 三、请求与响应-请求方法四、请求与响应-处理请求数据1、request的常用属性/方法2、get 请求参数3、json 请求4、表单…

高效文件整理:按数量划分自动建立文件夹,轻松管理海量文件

在日常生活和工作中&#xff0c;我们经常需要处理大量的文件。然而&#xff0c;如何高效地整理这些文件却是一个棘手的问题。有时候&#xff0c;我们可能需要按照特定的规则来建立文件夹&#xff0c;以便更高效地整理文件。例如&#xff0c;您可以按照日期、时间或者特定的标签…

老杨说运维 | 历时180天,跟复旦大学共研的运维大模型终于来了!

写在前面 Q1&#xff1a;到处都在说的AI大模型到底是什么? ? ? A1&#xff1a;AI大模型是“人工智能预训练大模型"的简称&#xff0c;它包含了"预训练“和”大模型“两层含义&#xff0c;二者结合产生了一种新的人工智能模式即模型在大规模数据集上完成了预训练…

Azure 机器学习 - 使用无代码 AutoML 训练分类模型

了解如何在 Azure 机器学习工作室中使用 Azure 机器学习自动化 ML&#xff0c;通过无代码 AutoML 来训练分类模型。 此分类模型预测某个金融机构的客户是否会认购定期存款产品。 关注TechLead&#xff0c;分享AI全维度知识。作者拥有10年互联网服务架构、AI产品研发经验、团队管…

【C语法学习】5 - fputc()函数

文章目录 1 函数原型2 参数3 返回值4 示例4.1 示例14.2 示例24.3 示例3 1 函数原型 fputc()&#xff1a;将一个字符发送至指定流stream&#xff0c;函数原型如下&#xff1a; int fputc(int c, FILE *stream);2 参数 fputc()函数有两个参数c和stream&#xff1a; 参数c是待…

Proteus仿真--基于51单片机的按键控制LED仿真(仿真文件+程序)

本文主要介绍基于51单片机的按键控制LED仿真&#xff08;完整仿真源文件及代码见文末链接&#xff09; 本仿真文件主要涉及4个按键&#xff0c;其中&#xff1a; K1按键的逻辑是——逐个点亮 K2按键的逻辑是——上四个点亮 K3按键的逻辑是——下四个点亮 K4按键的逻辑是——关…

opencv复习(很乱)

2-高斯与中值滤波_哔哩哔哩_bilibili 1、均值滤波 2、高斯滤波 3、中值滤波 4、腐蚀操作 卷积核不都是255就腐蚀掉 5、膨胀操作 6、开运算 先腐蚀再膨胀 7、闭运算 先膨胀再腐蚀 8、礼帽 原始数据-开运算结果 9、黑帽 闭运算结果-原始数据 10、Sobel算子 左-右&#x…