学习笔记|正态分布|图形法|偏度和峰度|非参数检验法|《小白爱上SPSS》课程:SPSS第三讲 | 正态分布怎么检验?看这篇文章就够了

news2025/1/11 16:44:02

目录

  • 学习目的
  • 软件版本
  • 原始文档
  • 为什么要假设它服从正态分布呢?
  • t检验
  • 一、图形法
  • 1、频数分布直方图
    • 解读
  • 2、正态Q-Q图
    • 操作
    • 解读
  • 3、正态P-P图
    • SPSS实战操作
    • 解读
  • 二、偏度和峰度
    • 解读:
  • 三、非参数检验法
    • 注意事项
  • 四、规范表达
  • 五、小结
  • 划重点

学习目的

SPSS第三讲 | 正态分布怎么检验?看这篇文章就够了

软件版本

IBM SPSS Statistics 26。

原始文档

《小白爱上SPSS》课程
#统计原理

为什么要假设它服从正态分布呢?

一方面,是由于正态分布非常普通平凡,所以假设一个随机事件服从正态分布,比假设其他分布的成功率更高。
另一方面,是因为正态分布能够指明探索的方向。比如,如果我们验证后发现,这个随机事件不服从正态分布,那它就一定不满足正态分布背后的中心极限定理。而不满足中心极限定理,我们就能知道——要么是它的影响因素不够多,要么是各种影响因素不相互独立,要么是某种影响因素的影响力太大等等…这时候,接下来的研究也就有了明确的方向。

t检验

正态分布是很多连续型数据比较分析的大前提,比如t检验、方差分析、相关分析以及线性回归等,均要求数据服从正态分布或近似正态分布。
但大多数人进行统计时容易忽略这一重要前提,导致统计效能下降和假阴性风险增加。
为此,在系统讲解推断性统计方法之前,本课程将呈现三种正态分布的检验方法,让我们一次性掌握正态分布的检验方法。

一、图形法

一提到正态分布,我们自然会想到一个钟型形状。如下图。特点是“中间多,两端少”。
在这里插入图片描述
那么,怎么检验一组数据是否服从正态分布呢?先呈现个案例。
案例:25名青少年数据如下表,请判断该组数据的身高是否服从正态?
导入数据,命令行:

GET 
  FILE='E:\E盘备份\recent\小白爱上SPSS\小白数据\第三讲 正态分布.sav'. 

在这里插入图片描述
案例分析:身高数据明显属于连续型变量,可进行正态检验。

1、频数分布直方图

SPSS实战操作
第一步:【图形】→【旧对话框】→【直方图】
第二步:弹出直方图,将待分析变量移入【变量】框内,勾选显示正态曲线,本次我们考察“身高”数据,其他参数不用设置,直接【确定】命令执行。确定后,呈现如下直方图。
在这里插入图片描述
命令行:

GRAPH 			/*绘图*/
  /HISTOGRAM(NORMAL)=身高.	/*直方图(正态)*/

解读

观察直方图的分布形状是否为一个倒扣“钟”型的对称形状,如果接近或相似,则可认为数据服从正态分布。
本例中,“身高”数据频数分布直方图的形状比较接近于倒扣的“钟形”,左右两边具有对称性,可认为该数据为正态分布数据。
执行:GRAPH /HISTOGRAM(NORMAL)=年龄. 显示“年龄”变量的直方图:
在这里插入图片描述
明显与正态曲线不重合。

2、正态Q-Q图

简介:Q-Q图反映了变量的实际分布与理论分布的符合程度,可以用来考察数据是否服从某种分布类型。若数据服从正态分布,则数据点应与理论直线基本重合。

操作

第一步:【分析】→【描述统计】→【QQ图】
第二步:将待分析的连续数据变量,如:身高,移入【变量】框内,软件默认是检验【正态分布】,其他参数不用设置,直接【确定】命令执行。
在这里插入图片描述
确定后,呈现如下Q-Q图。
在这里插入图片描述
命令行:
···
PPLOT
/VARIABLES=身高 /核心变量,其他行为可选参数,有默认或初始值/
/NOLOG
/NOSTANDARDIZE
/TYPE=Q-Q
/FRACTION=BLOM
/TIES=MEAN
/DIST=NORMAL.
···

解读

观察Q-Q图上的点能否分布在一条直线上,分布在一条直线上则说明近似或服从正态分布。
本例中,身高绝大多数的点能分布在一条直线上,直线趋势明显,可认为该连续数据服从正态分布。

3、正态P-P图

简介:P-P图反映了变量的实际累积概率与理论累积概率的符合程度,可以用来考察数据是否服从某种分布类型。若数据服从正态分布,则数据点应与理论直线基本重合。与Q-Q图意义相似。

SPSS实战操作

第一步:【分析】→【描述统计】→【P-P图】
第二步:将待分析的连续数据变量移入【变量】框内,本例检测“身高”数据的正态分布,软件默认是检验【正态分布】,其他参数不用设置,直接【确定】命令执行。
命令行:
···
PPLOT
/VARIABLES=身高 /核心变量,其他行为可选参数,有默认或初始值/
/TYPE=P-P
/DIST=NORMAL.
···
在这里插入图片描述

解读

观察P-P图上的点能否分布在理论分布的直线上,若基本分布在直线上则说明近似或服从正态分布。
本例中,“身高”的绝大多数的点能分布在一条直线上,直线趋势明显,可认为该连续数据服从正态分布。

二、偏度和峰度

简介:
[偏度]主要用于判定数据的对称性,整体数据偏左还是偏右,见下图。
在这里插入图片描述
当偏度S≈0时,可认为分布是对称的,服从正态分布;
当偏度S>0时,分布为右偏,即拖尾在右边,峰尖在左边,也称为正偏态;
当偏度S<0时,分布为左偏,即拖尾在左边,峰尖在右边,也称为负偏态;
注意:数据分布的左偏或右偏,指的是数值拖尾的方向,而不是峰的位置。
[峰度]是用于判定数据分布的陡缓程度,见下图。
在这里插入图片描述
当峰度K≈0时,可认为分布的峰态合适,服从正态分布(不胖不瘦);
当峰度K>0时,分布的峰态陡峭(高尖);
当峰度K<0时,分布的峰态平缓(矮胖);
了解偏度和峰度这两个统计量的含义很重要,是检验数据正态分布的重要指标。
实际上,我们收集到很难能满足S≈0,K≈0, 因此,可采用K与S系数来检验,检验公式如下。
在这里插入图片描述
其中,SS和SK均为S系数和K系数的标准误。在α=0.05的情况下,Z值的绝对值大于1.96时,可认为K系数或S系数显著不等于0,即样本数据非正态。
SPSS实战操作
第一步:【分析】→【描述统计】→【描述】
第二步:将“身高”选入【变量】框中,点击【选项】,勾选“平均值”、“标准差”、“峰度”和“偏度”。
在这里插入图片描述
第三步:点击“继续”、“确定”,得到计算结果。
命令行:
···
DESCRIPTIVES VARIABLES=身高
/STATISTICS=MEAN STDDEV KURTOSIS SKEWNESS. /统计指标=平均值 标准差 峰度 偏度/
···
在这里插入图片描述

解读:

①计算偏度系数:
手算:
在这里插入图片描述
②计算峰度系数:
手算:
在这里插入图片描述
由以上结果可知,偏度系数和峰度系数的绝对值均小于1.96,可以认为该组样本数据符合正态分布。
需注意:当样本量过大(超过100)时,采用峰度和偏度系数会对正态性的情况有所偏误,此时,可以直接尝试采用图示法(直方图、P-P、Q-Q)的方法进行检验会更直观。

三、非参数检验法

简介:正态性检验属于非参数检验,原假设为“样本来自的总体与正态分布无显著性差异”,只有P>0.05才能接受原假设,即数据符合正态分布。
常见的正态性检验有Kolmogorov-Smirnov检验(即柯尔莫戈洛夫-斯米诺夫检验,简称K-S检验)和Shapiro-Wilk检验(即夏皮-威尔克检验,简称S-W检验),K-S检验适用于大样本数据,S-W检验适用于小样本数据,当检验结果的p值小于0.05,则认为数据不满足正态性。
SPSS实战操作
第一步:【分析】-【描述统计】-【探索】 打开探索对话框。
第二步:本例我们想分别检验男女两组的身高是否服从正态分布,故将身高选入【因变量】列表,将性别选入【因子列表】
点击 【图】 --勾选“直方图”“含检验的正态图”
点击【继续】–【确定】,得到探索性分析结果。输出结果有很多图表,我们只解释正态性检验结果。
在这里插入图片描述
命令行:

EXAMINE VARIABLES=身高 BY 性别 
  /PLOT BOXPLOT NPPLOT /*若无此行,则不输出正态性检验表*/
  /COMPARE GROUPS 
  /STATISTICS DESCRIPTIVES 
  /CINTERVAL 95 
  /MISSING LISTWISE 
  /NOTOTAL.

结果解读:
当数据量≤50时,倾向于以夏皮洛-威尔克(S-W)检验结果为准;
当数据量>50时,倾向于以柯尔莫戈洛夫-斯米诺夫(K-S)检验结果为准;
当数据量>5000时,SPSS只会显示K-S检验结果。
本例中,我们比较25例男女中学生身高差异,需要分别看这两组的身高分布情况,上表显示,两组的样本量(可参考自由度那一列数值)均小于50,故以夏皮洛-威尔克(S-W)检验结果为准.
两组检验的p值(即显著性那一列)分别为0.690、0.771,均大于0.05,说明这两组身高均符合正态分布,故认为身高满足正态性。

注意事项

在使用S-W和K-S检验时需注意,当样本量较少的时候,检验结果不够敏感,即使数据分布有一定的偏离也不一定能检验出来;而当样本量较大的时候,检验结果又会太过敏感,只要数据稍微有一点偏离,P值就会<0.05,检验结果倾向于拒绝原假设,认为数据不服从正态分布。
所以,如果样本量足够多,即使检验结果P<0.05,数据来自的总体也可能是服从正态分布的。为此,我们要结合图直方图、P-P、Q-Q的图示法灵活使用。

四、规范表达

本次测量样本为25名,故采用夏皮洛-威尔克(S-W)检验,将SPSS输出结果整理为三线表,如下表1。
表1 身高的S-W正态性检验结果
在这里插入图片描述
从上表可知,男女生的正态性检验结果的统计分别为0.956和0.959,P值分别为0.690、0.771,均大于0.05。
同时结合直方图、P-P图和Q-Q图,可认为男生和女生的身高都服从正态分布。

五、小结

正态分布的检验方法包括图示法、偏度和峰度、非参数检验方法。
图形法检验正态分布往往是有效的,是实际应用中较为普遍的方式,是对正态分布显著性检验(如偏度和峰度的Z值、S-W及K-S检验)的有力辅助手段。
在实际的应用中,往往会出现明明直方图显示分布很对称,但参数检验的结果P值却<0.05,拒绝原假设认为不服从正态分布。
此时建议不要太刻意追求正态性检验的P值,一定要参考直方图、P-P图等图形工具来帮助判断。因此正态性检验三种方法均有重要实用意义。
很多统计学方法,如T检验、方差分析等,与其说要求数据严格服从正态分布,不如说“数据分布不要太偏态”更为合适。
小白学习完本节课内容之后,赶紧回去对40名大侠的数据进行正态性检验(第二讲数据),结果发现大侠们的身高、体重服从正态分布,而成绩不服从正态分布。
身高正态性检验(命令行):

EXAMINE VARIABLES=身高
  /PLOT BOXPLOT NPPLOT /*若无此行,则不输出正态性检验表*/
  /COMPARE GROUPS 
  /STATISTICS DESCRIPTIVES 
  /CINTERVAL 95 
  /MISSING LISTWISE 
  /NOTOTAL.

身高检验结果:
在这里插入图片描述
在这里插入图片描述
体重正态性检验(命令行):

EXAMINE VARIABLES=体重
  /PLOT BOXPLOT NPPLOT /*若无此行,则不输出正态性检验表*/
  /COMPARE GROUPS 
  /STATISTICS DESCRIPTIVES 
  /CINTERVAL 95 
  /MISSING LISTWISE 
  /NOTOTAL.

体重检验结果:
在这里插入图片描述
在这里插入图片描述
成绩正态性检验(命令行):

EXAMINE VARIABLES=成绩
  /PLOT BOXPLOT NPPLOT /*若无此行,则不输出正态性检验表*/
  /COMPARE GROUPS 
  /STATISTICS DESCRIPTIVES 
  /CINTERVAL 95 
  /MISSING LISTWISE 
  /NOTOTAL.

成绩检验结果:
在这里插入图片描述
在这里插入图片描述

于是,大侠们的身高和体重采用平均数、标准差来描述,而成绩采用中位数和四分位距来描述。
小白把上次的描述性结果呈送给主任,主任看后,满意地点点头。
然后,转过头对小白说:“小白,我想了解下今年这些大侠们的体重是否超标了?如果超标,就要加强训练,减脂减重,你能比较出来吗?”
小白这时比较淡定了,因为他非常清楚,《小白爱上SPSS》课程下一讲,将开启假设检验,讲解差异比较的T检验。
所以,搬好小板凳,等待开课就好了!

划重点

1、正态分布的检验方法包括图示法、偏度和峰度、非参数检验方法。
2、实际应用不必太刻意追求偏峰度的Z值和S-W及K-S检验的P值,需要结合直方图、P-P图和Q-Q图来判断。
3、对于统计方法,与其说要求数据严格服从正态分布,不如说“数据分布不要太偏态”更为合适。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1152026.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

线性代数 第三章 向量

一、运算 加法、数乘、内积 施密特正交化 二、线性表出 概念&#xff1a;如果&#xff0c;则称可由线性表出&#xff08;k不要求不全为0&#xff09; 判定&#xff1a; 非齐次线性方程组有解无关&#xff0c;相关 如果两个向量组可以互相线性表出&#xff0c;则称这两个…

基于STC系列单片机实现外部中断0控制按键调节定时器0产生PWM(脉宽调制)的功能

#define uchar unsigned char//自定义无符号字符型为uchar #define uint unsigned int//自定义无符号整数型为uint sbit PwmOut P1^0;//位定义脉宽调制输出为单片机P1.0脚 uchar PwmTimeCount;//声明脉宽调制时间计数变量 uchar PwmDutyCycle;//声明脉宽调制占空比变量 void Ti…

滴滴学生认证拉新上线了 地推网推百搭项目

滴滴学生认证可以通过“聚量推客”申请&#xff0c;是一手官签服务商 量级足够大 优势&#xff1a;实时数据T1结算 百分百数据 滴滴学生认证可搭配小红书签到拉新、美团私域校园版拉新、美团圈圈拉新一起做&#xff0c;这样能赚取更多佣金

分治法求解多项式乘法

目录 多项式乘法问题暴力求解背景展开1. 系数表示值计算复杂度2. 点值法表示多项式3. 点值表示值计算复杂度4. 系数法和点值法比较5. 系数法和点值法的转换 快速傅里叶变换 FFT1. 多项式乘法的分治2. 取值的直觉3. 离散傅里叶 DFT 和单位根FFT 多项式乘法问题 多项式乘法是将两…

PandaX : Go语言企业级 IoT 物联网平台快速开发框架

PandaX 是一个基于前后端分离架构开发的开源企业级物联网平台低代码开发基座&#xff0c;后端系统采用 Go 语言和前端基于 VUE3 开发&#xff0c;支持设备接入、设备管控&#xff0c;规则链引擎&#xff0c;云组态&#xff0c;可视化大屏&#xff0c;报表设计器&#xff0c;表单…

STM32智能小车—跟随小车和摇头避障小车

一、STM32跟随小车 1. 红外壁障模块分析 原理和循迹是一样的&#xff0c;循迹红外观朝下&#xff0c;跟随朝前 2. 跟随小车的原理 左边跟随模块能返回红外&#xff0c;输出低电平&#xff0c;右边不能返回&#xff0c;输出高电平&#xff0c;说明物体在左边&#xff0c;需要…

Python基础入门例程26-NP26 牛牛的反转列表(列表)

最近的博文&#xff1a; Python基础入门例程25-NP25 有序的列表&#xff08;列表&#xff09;-CSDN博客 Python基础入门例程24-NP24 淘汰排名最后的学生&#xff08;列表&#xff09;-CSDN博客 Python基础入门例程23-NP23 删除好友&#xff08;列表&#xff09;-CSDN博客 目录 …

随机链表的复制(C++解法)

题目 给你一个长度为 n 的链表&#xff0c;每个节点包含一个额外增加的随机指针 random &#xff0c;该指针可以指向链表中的任何节点或空节点。 构造这个链表的 深拷贝。 深拷贝应该正好由 n 个 全新 节点组成&#xff0c;其中每个新节点的值都设为其对应的原节点的值。新节…

Go Map底层实现简述

Go的map是一种高效的数据结构&#xff0c;用于存储键值对。其底层实现是一个哈希表&#xff08;hash table&#xff09;&#xff0c;下面是有关map底层实现的详细介绍&#xff1a; 哈希表&#xff1a; map的底层实现是一个哈希表&#xff0c;也称为散列表。哈希表是一个数组&a…

轻量封装WebGPU渲染系统示例<8>- 渲染器基本场景管理(源码)

当前示例源码github地址: https://github.com/vilyLei/voxwebgpu/blob/main/src/voxgpu/sample/RSceneTest.ts 此示例渲染系统实现的特性: 1. 用户态与系统态隔离。 2. 高频调用与低频调用隔离。 3. 面向用户的易用性封装。 4. 渲染数据和渲染机制分离。 5. 用户操作和渲…

【JavaSE专栏58】“Java构造函数:作用、类型、调用顺序和最佳实践“ ⚙️⏱️

解析Java构造函数&#xff1a;作用、类型、调用顺序和最佳实践" &#x1f680;&#x1f4da;&#x1f50d;&#x1f914;&#x1f4dd;&#x1f504;⚙️⏱️&#x1f4d6;&#x1f310; 摘要引言1. 什么是构造函数 &#x1f914;2. 构造函数的类型与用途 &#x1f4dd;1.…

nodejs+vue学生考勤综合平台的设计与实现-计算机毕业设计

在当今高度发达的信息中&#xff0c;信息管理改革已成为一种更加广泛和全面的趋势。 “学生考勤综合平台”是基于Mysql数据库&#xff0c;在 程序设计的基础上实现的。为确保中国经济的持续发展&#xff0c;信息时代日益更新&#xff0c;蓬勃发展。 因此&#xff0c;国内外技术…

骑行在路上,VELO Swan O带你感受生活真实的呼吸

过去&#xff0c;人们骑车是为了更快抵达更远的地方。如今&#xff0c;越来越多身处快节奏生活环境中的都市人&#xff0c;正在通过骑行“慢”下来。骑着车穿梭在城市间&#xff0c;暂时跳脱出两点一线的既定模式&#xff0c;在路途上感受人与环境一切微妙的变化&#xff0c;真…

python爬虫报错:This version of ChromeDriver only supports Chrome version 114

使用selenium爬取网页数据&#xff0c;一运行程序就报错&#xff1a; selenium.common.exceptions.SessionNotCreatedException: Message: session not created: This version of ChromeDriver only supports Chrome version 114 Current browser version is 117.0.5938.149 w…

zookeeper:简介及常用命令

目录 一、Zookeeper简介 二、Zookeeper服务端常用命令 1、启动ZooKeeper服务 2、查看ZooKeeper服务状态 3、停止ZooKeeper服务 4、重启ZooKeeper服务 三、Zookeeper客户端常用命令 1、连接ZooKeeper服务端 2、断开连接&#xff1a;quit 3、查看命令帮助&#xff1a;help…

【C++进阶】异常

&#x1f466;个人主页&#xff1a;Weraphael ✍&#x1f3fb;作者简介&#xff1a;目前学习C和算法 ✈️专栏&#xff1a;C航路 &#x1f40b; 希望大家多多支持&#xff0c;咱一起进步&#xff01;&#x1f601; 如果文章对你有帮助的话 欢迎 评论&#x1f4ac; 点赞&#x1…

MATLAB | 万圣节来画个简单的可爱鬼叭!

万圣节要到啦一起来画个可爱鬼吧~ 代码比较的短&#xff1a; 完整代码 figure(Units,normalized,Position,[.2,.1,.52,.72]); axgca;hold on;axis off; ax.DataAspectRatio[1,1,1]; ax.YDirreverse; ax.XLim[0,100]; ax.YLim[0,100]; [X,Y]meshgrid(linspace(0,1,200)); Zsq…

当任务数超过线程池的核心线程数时,如何让它不进入队列,而是直接启用最大线程数

线程池工作原理 当我们提交一个任务到线程池的时候&#xff0c;它的工作原理分为四步&#xff1a; 第一步&#xff0c;预热核心线程 第二步&#xff0c;把任务添加到阻塞队列 第三步&#xff0c;如果添加到阻塞队列失败&#xff0c;则创建非核心线程增加处理效率 第四步&#x…

nodejs+python+php+微信小程序-基于安卓android的健身服务应用APP-计算机毕业设计

考虑到实际生活中在健身服务应用方面的需要以及对该系统认真的分析&#xff0c;将系统权限按管理员和用户这两类涉及用户划分。  则对于进一步提高健身服务应用发展&#xff0c;丰富健身服务应用经验能起到不少的促进作用。 健身服务应用APP能够通过互联网得到广泛的、全面的宣…

轻量封装WebGPU渲染系统示例<10>- 容器(源码)

当前示例源码github地址: https://github.com/vilyLei/voxwebgpu/blob/main/src/voxgpu/sample/REntity3DContainerTest.ts 此示例渲染系统实现的特性: 1. 用户态与系统态隔离。 2. 高频调用与低频调用隔离。 3. 面向用户的易用性封装。 4. 渲染数据和渲染机制分离。 5.…