基于旗鱼算法的无人机航迹规划-附代码

news2024/9/25 11:15:11

基于旗鱼算法的无人机航迹规划

文章目录

  • 基于旗鱼算法的无人机航迹规划
    • 1.旗鱼搜索算法
    • 2.无人机飞行环境建模
    • 3.无人机航迹规划建模
    • 4.实验结果
      • 4.1地图创建
      • 4.2 航迹规划
    • 5.参考文献
    • 6.Matlab代码

摘要:本文主要介绍利用旗鱼算法来优化无人机航迹规划。

1.旗鱼搜索算法

旗鱼算法原理请参考:https://blog.csdn.net/u011835903/article/details/109256699

2.无人机飞行环境建模

? 环境模型的建立是考验无人机是否可以圆满完成人类所赋予各项任务的基
础和前提,其中第一步便是如何描述规划空间中的障碍物。首先我们将采取函数模拟法模拟地貌特征。其函数表达式为:
z ( x , y ) = s i n ( y + a ) + b s i n ( x ) + c c o s ( d y 2 + x 2 ) + e c o s ( y ) + f s i n ( f y 2 + x 2 ) + g c o s ( y ) (1) z(x,y)=sin(y+a)+bsin(x)+ccos(d\sqrt{y^2+x^2})+ecos(y)+fsin(f\sqrt{y^2+x^2})+gcos(y)\tag{1} z(x,y)=sin(y+a)+bsin(x)+ccos(dy2+x2 )+ecos(y)+fsin(fy2+x2 )+gcos(y)(1)
其中, ( x , y ) (x, y) (x,y) 为地形上某点投影在水平面上的点坐标, z z z 则为对应点坐标的高度。式中 a , b , c , d , e , f , g a, b, c, d, e, f , g a,b,c,d,e,f,g 是常系数,想要得到不同的地貌特征可以通过改变其常系数的大小,以上建模是作为环境模型的基准地形信息。但为了得到障碍区域我们还需要在这个基准地形上叠加山峰模型,这样就可以模拟像山峰、丘陵等障碍地理信息。山峰模型的数学表达式为:
h ( x , y ) = ∑ i h i e x p [ − ( x − x o i ) 2 a i 2 − ( y − y o i ) 2 b i 2 ] + h o (2) h(x,y)=\sum_ih_iexp[-\frac{(x-x_{oi})^2}{a_i^2}-\frac{(y-y_{oi})^2}{b_i^2}]+h_o \tag{2} h(x,y)=ihiexp[ai2(xxoi)2bi2(yyoi)2]+ho(2)
式 (2)中, h o h_o ho h i h_i hi 分别表示基准地形和第 i i i座山峰的高度, ( x o i , y o i ) (xoi , y oi ) (xoi,yoi)则表示第 i座山峰的中心坐标位置,a i 和 b i 分别是第 i 座山峰沿 x 轴和 y 轴方向的坡度。由式(1)和(2),我们可以得到如下表达式:
Z ( x , y ) = m a x [ z ( x , y ) , h ( x , y ) ] (3) Z(x,y)=max[z(x,y),h(x,y)]\tag{3} Z(x,y)=max[z(x,y),h(x,y)](3)
无人机在躲避障碍物的同时也会经常遇到具有威胁飞行安全的区域,我们称之为威胁区域。这些威胁区域可以是敌人的雷达和防空导弹系统的探测威胁区域也可以是一些其它的威胁,一旦无人机进入这些区域很有可能会被击落或者坠毁。为了简化模型,本文采用半径为 r 的圆柱形区域表示威胁区域,其半径的大小决定威胁区域的覆盖范围。每一个圆柱体的中心位置是对无人机构成最大威胁的地方并向外依次减弱。

3.无人机航迹规划建模

? 在环境建模的基础上,无人机航迹规划需要考虑到在执行复杂任务的过程中自身性能约束要求,合理的设计航迹评价函数才能使得旗鱼搜索算法得出的最后结果符合要求,并保证规划出的航迹是有效的。考虑到实际环境中,无人机需要不断适应变化的环境。所以在无人机路径规划过程中,最优路径会显得比较复杂,并包含许多不同的特征。基于实际的情况,本文采用较为复杂的航迹评价函数进行无人机路径规划。影响无人机性能的指标主要包括航迹长度、飞行高度、最小步长、转角代价、最大爬升角等。

? 搜索最佳路径通常与搜索最短路径是密不可分的。在无人机航迹规划过程中,航迹的长度对于大多数航迹规划任务来说也是非常重要的。众所周知,较短的路线可以节省更多的燃料和更多的时间并且发现未知威胁的几率会更低。我们一般把路径定义为无人机从起始点到终点所飞行路程的值,设一条完整的航线有 n n n个节点,其中第 i i i个航路点和第 i + 1 i+1 i+1个航路点之间的距离表示为 l i l_i li ,这两个航路点的坐标分别表示为 ( x i , y i , z i ) (x_i,y_i,z_i ) (xi,yi,zi) ( x i + 1 , y i + 1 , z i + 1 ) (x_{i+1}, y_{i+1},z_{i+1}) (xi+1,yi+1,zi+1)并分别记作 g ( i ) g(i) g(i) g ( i + 1 ) g(i+1) g(i+1)。航迹需要满足如下条件:
{ l i = ∣ ∣ g ( i + 1 ) − g ( i ) ∣ ∣ 2 L p a t h = ∑ i = 1 n − 1 l i (4) \begin{cases} l_i = ||g(i+1)-g(i)||_2\\ L_{path}=\sum_{i=1}^{n-1}l_i \end{cases}\tag{4} {li=∣∣g(i+1)g(i)2Lpath=i=1n1li(4)
在飞行的过程中会遇到障碍物或者进入威胁区域,如果无人机无法躲避障碍物或者飞入了威胁区域将面临被击落或坠毁的危险以至于无法到达终点,记为 L p a t h = ∞ L_{path}=\infty Lpath=,但是无穷函数在实际问题中很难表示,我们采用惩罚的方式进行处理。一般情况下,为了利用地形覆盖自身位置,无人机应尽可能降低高度这可以帮助自身避免一些未知雷达等威胁。但是太低的飞行高度同样会加大无人机同山体和地面的撞击几率,因此设定稳定的飞行高度是非常重要的。飞行高度不应该有太大的变化,稳定的飞行高度可以减少控制系统的负担,节省更多的燃料 。为了使无人机飞行更加安全,给出的飞行高度模型:
{ h h e i g h t = 1 n ∑ i = 0 n − 1 ( z ( i ) − z ‾ ) 2 z ‾ = 1 n ∑ i = 0 n − 1 z ( i ) (5) \begin{cases} h_{height}=\sqrt{\frac{1}{n}\sum_{i=0}^{n-1}(z(i)-\overline{z})^2}\\ \overline{z}=\frac{1}{n}\sum_{i=0}^{n-1}z(i) \end{cases}\tag{5} {hheight=n1i=0n1(z(i)z)2 z=n1i=0n1z(i)(5)
无人机的可操作性也受到其转角代价函数的限制。,在飞行过程中无人机的转角应不大于其预先设定的最大转角,转角的大小会影响其飞行的稳定性。本文的研究中,设定最大转角为 Φ Φ Φ,当前转角为 θ \theta θ并且 a i a_i ai是第 i i i段航路段向量。
{ c o s θ = a i T a i + 1 ∣ a i ∣ ∣ a i + 1 ∣ J t u r n = ∑ i = 1 n ( c o s ( Φ − c o s θ ) ) (6) \begin{cases} cos\theta =\frac{a_i^Ta_{i+1}}{|a_i||a_{i+1}|}\\ J_{turn}=\sum_{i=1}^n(cos(\Phi-cos\theta)) \end{cases}\tag{6} {cosθ=ai∣∣ai+1aiTai+1Jturn=i=1n(cos(Φcosθ))(6)
其中, ∣ a ∣ |a| a代表矢量 a a a的长度。

? 通过对以上三个方面建立了无人机航迹规划的代价函数,可以得出本文的航迹评价函数如下:
J c o s t = w 1 L p a t h + w 2 h h e i g h t + w 3 J t u r n (7) J_{cost}=w_1L_{path}+w_2h_{height}+w_3J_{turn} \tag{7} Jcost=w1Lpath+w2hheight+w3Jturn(7)
其中, J c o s t J_{cost} Jcost是总的代价函数,参数 w i w_i wi i = 1 , 2 , 3 i=1,2,3 i=1,2,3 表示每个代价函数的权值,且满足如下条件:
{ w i ≥ 0 ∑ i = 1 3 w i = 1 (8) \begin{cases} w_i\geq0 \\ \sum_{i=1}^3 w_i=1 \end{cases} \tag{8} {wi0i=13wi=1(8)
通过对总的代价函数进行有效地处理,我们可以得到由线段组成的航迹。不可否认的是得到的路径往往是仅在理论上可行,但为了实际可飞,有必要对航迹进行平滑处理。本文采用三次样条插值的方法对路径进行平滑。

4.实验结果

4.1地图创建

设置地图参数a, b, c, d, e, f , g=1。地图大小为:200*200。设置三个山峰,山峰信息如表1所示。威胁区域信息如表2所示

表1:山峰信息
信息山峰中心坐标山峰高度山峰X方向坡度山峰y方向坡度
山峰1[60,60]502020
山峰2[100,100]603030
山峰3[150,150]802020
表2 威胁区域信息
信息威胁区域中心坐标威胁区域半径
威胁区域1[150,50]30
威胁区域2[50,150]20

创建的地图如下:

在这里插入图片描述

4.2 航迹规划

设置起点坐标为[0,0,20],终点坐标为[200,200,20]。利用旗鱼算法对航迹评价函数式(7)进行优化。优化结果如下:
在这里插入图片描述
在这里插入图片描述

从结果来看,旗鱼算法规划出了一条比较好的路径,表明算法具有一定的优势。

5.参考文献

[1]薛建凯. 一种新型的群智能优化技术的研究与应用[D].东华大学,2020.DOI:10.27012/d.cnki.gdhuu.2020.000178.

6.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1151878.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C语言 每日一题 PTA 10.30 day8

1.高空坠球 皮球从某给定高度自由落下,触地后反弹到原高度的一半,再落下,再反弹,……,如此反复。问皮球在第n次落地时,在空中一共经过多少距离?第n次反弹的高度是多少? 输入格式 : …

excel求差公式怎么使用?

利用excel求差,可能有许多的小伙伴已经会了,不过还是存在一些不太熟悉的朋友们,所以这里有必要讲解一下。其实求差的实现主要就是一个公式,就是用一个单元格中的数字“减去”另一个单元格中的数字“等于”第三个单元格。此公式掌握…

854数据结构简答题---图

1.(2015期末)已知无环路有向图如图3.1,请在表2、表3中填写出各事件的最早发生时间、最迟发生时间、活动的最早、最迟开始时间,给出关键活动及关键路径。 从源点到汇点的有向路径可能有多条,所有路径中,具有最大路径长…

网络工程综合试题(三)

1. BGPMLS的作用是什么? BGPMLS(BGP Monitoring Protocol and Label Switching)是一种用于监控和管理BGP(Border Gateway Protocol)网络的协议和技术。它结合了BGP和MPLS(Multiprotocol Label Switching&am…

超级英雄的导航之旅:动态路由和嵌套路由

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云…

linux下backtrace函数获取函数调用堆栈信息用法

backtrace用途介绍: 使用backtrace可以查看函数的调用关系,也可以查看程序异常时的函数调用关系。配置生成coredump生成文件的方法也可以捕获异常,但产生的coredump文件内存较大,backtrace函数的方法占用的内存小。 需求&#x…

这个人工智能社区火爆了!手把手教你零代码搞定大模型应用开发

想给自己做个私人定制的旅行攻略,满足个性化的出游需求,还要细致关注到天气、穿衣、老人孩子的作息等等,但太耗时费力怎么办?让AI帮忙搞定。一位开发者在AI Studio星河大模型社区用短短数小时就做好了“旅行规划家”智能应用。像这…

ICS TRIPLEX T8311 控制器模块

掌握器模块是产业自动化和掌握体系中的症结组件,具备多种特征,以保证体系的稳定性、否靠性和高效性。以下是掌握器模块的一些主要特征: 多通道掌握: 掌握器模块通常否以或许掌握多个通道,许否同时治理多个装备或历程。…

基于ADS的肖特基二极管整流电路仿真

文章目录 一、构建二极管模型二、构建封装寄生的二极管模型三、构建整流电路四、仿真及优化4.1HB仿真4.2 LSSP仿真4.3 仿真及调谐结束最近在仿真一个12级的整流电路,想利用ADS做一些原理级的仿真,验证可行性。这个事情对理解非线性电路还是有点帮助,所以把它记录下来。 先来…

C++中的std::cout与std::cerr、std::clog

本文用于记录C中std::cout与std::cerr、std::clog的异同 std::cerr 是C标准库中的标准错误输出流,用于向标准错误设备输出信息,通常用于报告程序的错误和异常情况。与之相对的,std::cout 是标准输出流,用于向标准输出设备输出一般…

springboot是如何工作的

一、前言 现在java后端开发框架比较多的使用springboot框架,springboot是在以前的springMVC进行封装和优化,最大的特点是简化了配置和内置Tomcat。本节通过阅读源码理解springboot是如何工作的。 二、springboot是如何工作的 1、从启动类开始 /***服务…

“探索Linux世界:从CentOS安装到常见命令使用“

目录 引言一、安装CentOS二、Linux的常见命令文件夹和目录操作命令文件编辑命令vi或vim编辑器命令模式编辑模式末行模式 总结 引言 在计算机领域,Linux作为一种强大而灵活的操作系统,在服务器、嵌入式设备和个人电脑等领域广泛应用。本文将引导您了解并…

如何将 ONLYOFFICE 桌面版编辑器 7.5 安装到 Red Hat、CentOS 及衍生产品上

使用桌面版的 ONLYOFFICE 在线编辑器,您可使用本地文件操作,无需保持互联网连接状态。 ONLYOFFICE 桌面编辑器是什么 ONLYOFFICE 桌面编辑器是一款全面的办公工具,提供了文本文档、电子表格、演示文稿、可填写表单和 PDF 查看和编辑功能。它…

六、【图像去水印】

文章目录 裁剪法移动复制法内容识别去水印色阶法去水印消失点法去水印反相混合法 裁剪法 处于边缘的水印,通过裁剪去除,如下图: 移动复制法 移动复制法适用于水印的背景这部分区域比较相似的情况下使用,如下图先使用矩形选区选中…

ICS TRIPLEX T9402数字输出模块

数字输入模块是产业自动化和掌握体系中的闭键组件,用于向外部装备发送数字输入旌旗灯号,通常用于掌握继电器、阀门、机电、灯光和其他数字装备。以下是数字输入模块的一些主要用处: 掌握履行器: 数字输入模块用于掌握履行器装备&a…

工作中的小tips:如何快速提取图片或者pdf上的文字,进行编辑?

工作中经常会碰到需要的材料是图片或者不能拷贝的pdf之类的情况,那么有没有办法快速从上面提取文字呢? 最近发现一个很好用的网站,百度翻译。首先说明一下,接下来的方法比较适合短一点的文字,像是大篇幅的那种不太适合…

0001net程序设计-net大学校园二手交易平台

文章目录 摘 要目 录系统设计开发环境 摘 要 随着信息技术和网络技术的飞速发展,人类已进入全新信息化时代,传统管理技术已无法高效,便捷地管理信息。为了迎合时代需求,优化管理效率,各种各样的管理系统应运而生&…

滑动窗口限流算法实现一

固定算法 原理:固定算法是将时间线分隔成固定大小的时间窗口,每个窗口都会有个计数器,用来记录窗口时间范围内的请求总数,如果窗口的请求总数达到最大限定值,会认定流量超限。比如将窗口大小设为1分钟,每分…

怎么搭建一个蛋糕店小程序?

在当今的移动互联网时代,很多企业纷纷选择了小程序作为推广和销售的利器。对于蛋糕店来说,创建一个小程序可以提高品牌知名度,增加销售渠道。下面,我们以【乔拓云】第三方平台为例,来介绍一个完整蛋糕店小程序的制作流…

Java学习 5.Java-逻辑控制

逻辑控制 逻辑控制分为:选择语句、循环语句 一、if和switch选择语句 顺序中夹杂着循环,伴随着一次次的选择不断地成长 1.if语句 选择语句 单分支 if() 表达式; int a60;if(a60){System.out.println("a60");} 双分支 if(){ 表达式1&…