BSTree二叉树讲解

news2024/10/6 18:20:33

二叉搜索树的概念:

        二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树:

  •                 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值
  •                 若它的右子树不为空,则右子树上所有节点的值都大于根节点的值
  •                 它的左右子树也分别为二叉搜索树

二叉树的运用:(改代码就是KV模型的二叉搜索树)

1. K模型K模型即只有key作为关键码,结构中只需要存储Key即可,关键码即为需要搜索到
的值。
        比如:给一个单词word,判断该单词是否拼写正确,具体方式如下:
以词库中所有单词集合中的每个单词作为key,构建一棵二叉搜索树


在二叉搜索树中检索该单词是否存在,存在则拼写正确,不存在则拼写错误。
2. KV模型每一个关键码key,都有与之对应的值Value,即<Key, Value>的键值对。该种方
式在现实生活中非常常见:
        比如英汉词典就是英文与中文的对应关系,通过英文可以快速找到与其对应的中文,英
文单词与其对应的中文<word, chinese>就构成一种键值对;
        再比如统计单词次数,统计成功后,给定单词就可快速找到其出现的次数,单词与其出
现次数就是<word, count>就构成一种键值对。

二叉树的查找:

        a、从根开始比较,查找,比根大则往右边走查找,比根小则往左边走查找。
        b、最多查找高度次,走到到空,还没找到,这个值不存在。

	Node* _Find(Node* root,const K& key)
	{
		if (root == nullptr)//遇到空节点就返回
		{
			return nullptr;
		}
		if (root->_kv.first == key)
		{
			return root;
		}
		else if (root->_kv.first > key)
		{
			_Find(root->_left, key);
		}
		else
		{
			_Find(root->_right, key);
		}
	}

 二叉搜索树的插入:

插入的具体过程如下:
        a. 树为空,则直接新增节点,赋值给root指针
        b. 树不空,按二叉搜索树性质查找插入位置,插入新节点

	bool _Insert(const pair<K, V>& kv)//这里使用pair——key,value模型 如字典
	{
		if (_root == nullptr)//如果该二叉树的树为空 就给个节点然后返回
		{
			_root = new Node(kv);
			return true;
		}
        //不为空就进行寻找 找到太该呆的位置 
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else
			{
				return false;
			}
		}
        //判断该节点在父节点的左边还是右边
		if (parent->_kv.first > kv.first)
		{
			parent->_left = new Node(kv);
		}
		else
		{
			parent->_right = new Node(kv);
		}
	}
	Node* _root = nullptr;
};

二叉搜索树的删除:

首先查找元素是否在二叉搜索树中,如果不存在,则返回, 否则要删除的结点可能分下面四种情
况:
        a. 要删除的结点无孩子结点
        b. 要删除的结点只有左孩子结点
        c. 要删除的结点只有右孩子结点
        d. 要删除的结点有左、右孩子结点
看起来有待删除节点有4中情况,实际情况a可以与情况b或者c合并起来,因此真正的删除过程
如下:
        情况b:删除该结点且使被删除节点的双亲结点指向被删除节点的左孩子结点--直接删除
        情况c:删除该结点且使被删除节点的双亲结点指向被删除结点的右孩子结点--直接删除
        情况d:在它的右子树中寻找中序下的第一个结点(关键码最小),用它的值填补到被删除节点
        中,再来处理该结点的删除问题--替换法删除

	bool _Erase(Node* root, const K& key)
	{
		Node* parent = nullptr;
		Node* cur = root;
		while (cur)
		{
			if (cur->_kv.first == key)//如果key与要搜索的值相等 就进行删除
			{
				if (cur->_left == nullptr)//左子树为空 右子树不为空
				{//再考虑要删除的节点是他父节点的左子树还是右子树 将该节点接到其父节点上
					if (cur == parent->_left)
					{
						parent->_left = cur->_right;
					}
					else
					{
						parent->_right = cur->_right;
					}
					delete cur;//将该节点进行释放
				}
				else if (cur->_right == nullptr)//右子树不存在 左子树存在 同上
				{
					if (cur == parent->_left)
					{
						parent->_left = cur->_left;
					}
					else
					{
						parent->_right = cur->_left;
					}
					delete cur;
				}
				else//左右子树都存在 需要寻找一个可以代替该节点值的值 
				{//在左子树中找最小的值 (就是左子树最左边的那个节点)右节点就找右子树中最大的节点 (就是右子树最右边的那个节点)
					Node* parent1 = nullptr;
					Node* tmp = cur;
					while (tmp->_left)//寻找左节点
					{
						parent1 = tmp;
						tmp = tmp->_left;
					}
					swap(&cur->_kv, &tmp->_kv);//找到进行值的交换
					parent1->_left = tmp->_right;//如果最小的左节点的左子树为空右子树不为空 将右子树接到该节点的父亲上 但是如果右子树为空 也可以将空节点接到其父节点上 不产生影响
					delete tmp;//释放节点
				}
			}
			else
			{
				if (root->_kv.first > key)
				{
					parent = cur;
					cur = cur->_left;
				}
				else
				{
					parent = cur;
					cur = cur->_right;
				}
			}
		}
	}

二叉树的遍历:(中序遍历)(将二叉树中key的值按顺序打印)

	void _InOrder(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}
		_InOrder(root->_left);
		cout << root->_kv.first << " " << root->_kv.second << endl;
		_InOrder(root->_right);
	}

以下就是二叉搜索树的完整代码 以及对应的测试用例,可以自行去调用测试。

#include<iostream>
#include<string>
using namespace std;

template<class K,class V>
struct BSTreeNode
{
	typedef BSTreeNode<K, V> Node;

	BSTreeNode(const pair<K, V>& x)
		:_kv(x)
		, _left(nullptr)
		, _right(nullptr)
	{

	}
	pair<K, V> _kv;
	Node* _left;
	Node* _right;
};

template<class K, class V>
class BSTree
{
	typedef BSTreeNode<K, V> Node;
public:
	bool Insert(const K& key, const V& value)
	{
		pair<K, V> kv(key, value);
		return _Insert(kv);
	}
	Node* Find(const K& key)
	{
		return _Find(_root,key);
	}
	bool Erase(const K& key)
	{
		return _Erase(_root, key);
	}
	void InOrder()
	{
		_InOrder(_root);
	}
private:
	bool _Erase(Node* root, const K& key)
	{
		Node* parent = nullptr;
		Node* cur = root;
		while (cur)
		{
			if (cur->_kv.first == key)
			{
				if (cur->_left == nullptr)
				{
					if (cur == parent->_left)
					{
						parent->_left = cur->_right;
					}
					else
					{
						parent->_right = cur->_right;
					}
					delete cur;
				}
				else if (cur->_right == nullptr)
				{
					if (cur == parent->_left)
					{
						parent->_left = cur->_left;
					}
					else
					{
						parent->_right = cur->_left;
					}
					delete cur;
				}
				else
				{
					Node* parent1 = nullptr;
					Node* tmp = cur;
					while (tmp->_left)
					{
						parent1 = tmp;
						tmp = tmp->_left;
					}
					swap(&cur->_kv, &tmp->_kv);
					parent1->_left = tmp->_right;
					delete tmp;
				}
			}
			else
			{
				if (root->_kv.first > key)
				{
					parent = cur;
					cur = cur->_left;
				}
				else
				{
					parent = cur;
					cur = cur->_right;
				}
			}
		}
	}
	void _InOrder(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}
		_InOrder(root->_left);
		cout << root->_kv.first << " " << root->_kv.second << endl;
		_InOrder(root->_right);
	}
	Node* _Find(Node* root,const K& key)
	{
		if (root == nullptr)
		{
			return nullptr;
		}
		if (root->_kv.first == key)
		{
			return root;
		}
		else if (root->_kv.first > key)
		{
			_Find(root->_left, key);
		}
		else
		{
			_Find(root->_right, key);
		}
	}
	bool _Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			return true;
		}
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else
			{
				return false;
			}
		}
		if (parent->_kv.first > kv.first)
		{
			parent->_left = new Node(kv);
		}
		else
		{
			parent->_right = new Node(kv);
		}
	}
	Node* _root = nullptr;
};

void TestBSTree()
{
	BSTree<string, string> dict;
	dict.Insert("insert", "插入");
	dict.Insert("erase", "删除");
	dict.Insert("left", "左边");
	dict.Insert("string", "字符串");

	string str;
	while (cin >> str)
	{
		auto ret = dict.Find(str);
		if (ret)
		{
			cout << str << ":" << ret->_kv.second << endl;
		}
		else
		{
			cout << "单词拼写错误" << endl;
		}
	}

	string strs[] = { "苹果", "西瓜", "苹果", "樱桃", "苹果", "樱桃", "苹果", "樱桃", "苹果" };
	// 统计水果出现的次
	BSTree<string, int> countTree;
	for (auto str : strs)
	{
		auto ret = countTree.Find(str);
		if (ret == NULL)
		{
			countTree.Insert(str, 1);
		}
		else
		{
			ret->_kv.second++;
		}
	}
	countTree.InOrder();
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1148626.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

重置 VCSA 6.7 root密码和SSO密码

原贴地址&#xff1a;https://www.cnblogs.com/airoot/p/16059033.html 问题描述 1、用root用户登录 VMware vCenter Server Appliance虚拟机失败&#xff0c;无法登录 2、vCenter Server Appliance 6.7 U1的root帐户错误尝试次数超过3次已锁定或帐户已过期 官方说明 在VC…

【Spring Boot 源码学习】RedisAutoConfiguration 详解

Spring Boot 源码学习系列 RedisAutoConfiguration 详解 引言往期内容主要内容1. Spring Data Redis2. RedisAutoConfiguration2.1 加载自动配置组件2.2 过滤自动配置组件2.2.1 涉及注解2.2.2 redisTemplate 方法2.2.3 stringRedisTemplate 方法 总结 引言 上篇博文&#xff0…

【C++基础入门】44.C++中对象模型分析(上)

一、回归本质 class 是一种特殊的 struct 在内存中 class 依旧可以看作变量的集合class 与 struct 遵循相同的内存对齐规则class 中的成员函数与成员变量是分开存放的 每个对象有独立的成员变量所有对象共享类中的成员函数值得思考的问题 下面看一个对象内存布局的代码&#x…

Go学习第十七章——Gin中间件与路由

Go web框架——Gin中间件与路由 1 单独注册中间件1.1 入门案例1.2 多个中间件1.3 中间件拦截响应1.4 中间件放行 2 全局注册中间件3 自定义参数传递4 路由分组4.1 入门案例4.2 路由分组注册中间件4.3 综合使用 5 使用内置的中间件6 中间件案例权限验证耗时统计 1 单独注册中间件…

Java项目之网络考试系统

视频教程&#xff1a; 01-创建数据库_哔哩哔哩_bilibili 源码下载&#xff1a;百度网盘 请输入提取码 准备工作 创建数据库配置IDEA后端导入前端 前言&#xff1a; 把代码掰开写进博客里&#xff0c;主要是让自己在整理笔记的过程中&#xff0c;多去思考完成这个功能的核心…

基于深度学习的单图像人群计数研究:网络设计、损失函数和监控信号

摘要 https://arxiv.org/pdf/2012.15685v2.pdf 单图像人群计数是一个具有挑战性的计算机视觉问题,在公共安全、城市规划、交通管理等领域有着广泛的应用。近年来,随着深度学习技术的发展,人群计数引起了广泛的关注并取得了巨大的成功。通过系统地回顾和总结2015年以来基于深…

rust学习——智能指针Rc

文章目录 Rc 与 ArcRcRc::clone观察引用计数的变化不可变引用一个综合例子Rc 简单总结 多线程无力的 RcArcArc 的性能损耗 总结 Rc 与 Arc Rust 所有权机制要求一个值只能有一个所有者&#xff0c;在大多数情况下&#xff0c;都没有问题&#xff0c;但是考虑以下情况&#xff1…

二维码智慧门牌管理系统升级解决方案:采集要素为智慧城市建设提供精准数据支持

文章目录 前言一、二维码智慧门牌管理系统的升级需求二、采集要素在系统升级中的应用三、消防栓、井盖等采集要素的应用 前言 随着城市化进程的加速&#xff0c;智慧城市的建设已成为未来城市发展的必然趋势。其中&#xff0c;二维码智慧门牌管理系统作为智慧城市的重要组成部…

基于Spring Boot的大学课程排课系统设计与实现

摘 要 大学课程排课是现代教育管理中重要的一环。目前&#xff0c;传统的排课方式已经无法满足日益增长的课程需求和学生个性化的诉求。因此&#xff0c;研究一种基于遗传算法的大学课程排课系统是非常必要的。本研究旨在开发一种基于SpringBoot Vue的大学课程排课系统&#x…

【Java 进阶篇】在Java Web应用中获取ServletContext对象详解

在Java Web应用开发中&#xff0c;ServletContext对象扮演着重要的角色&#xff0c;它允许你在整个Web应用程序中存储和共享数据。ServletContext对象是Servlet容器提供的一种用于管理Web应用程序的全局信息的方式。本文将详细探讨ServletContext对象的概念、用途以及如何在Jav…

算法笔记【8】-合并排序算法

文章目录 一、前言二、合并排序算法基本原理三、实现步骤四、优缺点分析 一、前言 合并排序算法通过采用分治策略和递归思想&#xff0c;实现了高效、稳定的排序功能。本文将深入探讨合并排序算法的原理、实现步骤&#xff0c;并讨论其优缺点。 二、合并排序算法基本原理 合…

AntDB数据库荣获 “2023年信创物联网优秀服务商”

日前&#xff0c;在2023世界数字经济大会暨第十三届智博会 2023京甬信创物联网产融对接会上&#xff0c;AntDB数据库再获殊荣&#xff0c;获评“2023年信创物联网优秀服务商”。 图1&#xff1a;2023年信创物联网优秀服务商颁奖现场 信创物联网是信息技术应用创新与物联网的结…

网络爬虫入门导学

一、内容组织 2、常用的python IDE工具 比较推荐以下几种&#xff1a; 其中IDLE是python自带的/默认的/常用的/入门级编写工具&#xff0c;包含交互式和文件式 适用于&#xff1a;简单直接/入门级/代码不超过300行 Sublime Text是专为程序员开发的第三方专用编程工具&#xff…

OPNET <<< Program Abort >>> Standard function stack imbalance

OPNET <<< Program Abort >>> Standard function stack imbalance OPNET 问题原因及解决办法 OPNET 问题 OPNET仿真时遇到此问题&#xff1a; <<< Program Abort >>> Standard function stack imbalance 原因及解决办法 出现此问题是因…

【逗老师的无线电】艾德克斯ITECH电源电子负载网口适配器

艾德克斯的产品还是不错的&#xff0c;但是ITECH的大部分中低端设备都不带网口&#xff0c;只带了一个串口&#xff0c;并且这个串口还是个完全非标定义的5V TTL串口&#xff0c;原装的适配器300多还只能转接成RS-232。 那么&#xff0c;这回咱们来整个骚活&#xff0c;直接给艾…

Go-Python-Java-C-LeetCode高分解法-第十二周合集

前言 本题解Go语言部分基于 LeetCode-Go 其他部分基于本人实践学习 个人题解GitHub连接&#xff1a;LeetCode-Go-Python-Java-C 欢迎订阅CSDN专栏&#xff0c;每日一题&#xff0c;和博主一起进步 LeetCode专栏 我搜集到了50道精选题&#xff0c;适合速成概览大部分常用算法 突…

简单明了!网关Gateway路由配置filters实现路径重写及对应正则表达式的解析

问题背景&#xff1a; 前端需要发送一个这样的请求&#xff0c;但出现404 首先解析请求的变化&#xff1a; http://www.51xuecheng.cn/api/checkcode/pic 1.请求先打在nginx&#xff0c;www.51xuecheng.cn/api/checkcode/pic部分匹配到了之后会转发给网关进行处理变成localho…

人工智能-线性回归的从零开始实现

线性回归的从零开始实现 在了解线性回归的关键思想之后&#xff0c;我们可以开始通过代码来动手实现线性回归了。 在这一节中&#xff0c;我们将从零开始实现整个方法&#xff0c; 包括数据流水线、模型、损失函数和小批量随机梯度下降优化器。 虽然现代的深度学习框架几乎可以…

预安装win11的电脑怎么退回正版win10?

对于新购的笔记本 通常来讲预装的系统是全新安装的&#xff0c;是没有之前Windows10系统文件的&#xff0c;无法回退。 可以打开设置-----系统----恢复-----看下是否有该选项。 ------------------------------------------------------------------------------- 若是在上述…

[论文精读]How Powerful are Graph Neural Networks?

论文原文&#xff1a;[1810.00826] How Powerful are Graph Neural Networks? (arxiv.org) 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#x…