分类预测 | Matlab实现KOA-CNN-BiGRU-selfAttention多特征分类预测(自注意力机制)

news2024/11/24 17:33:20

分类预测 | Matlab实现KOA-CNN-BiGRU-selfAttention多特征分类预测(自注意力机制)

目录

    • 分类预测 | Matlab实现KOA-CNN-BiGRU-selfAttention多特征分类预测(自注意力机制)
      • 分类效果
      • 基本描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.Matlab实现KOA-CNN-BiGRU-selfAttention开普勒算法优化卷积双向门控循环单元融合自注意力多特征分类预测,多特征输入模型,运行环境Matlab2023b及以上;
2.基于开普勒算法(KOA)优化卷积双向门控循环单元(CNN-BiGRU)结合自注意力机制(selfAttention)分类预测。2023年新算法KOA,MATLAB程序,多行变量特征输入,优化了学习率、卷积核大小及隐藏层单元数等。
3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。程序语言为matlab,程序可出分类效果图,迭代图,混淆矩阵图.
4.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行。
5.输出指标包括优化参数、精确度、召回率、精确率、F1分数。

程序设计

  • 完整程序和数据获取方式,私信博主回复Matlab实现KOA-CNN-BiGRU-selfAttention多特征分类预测(自注意力机制)
[Order] = sort(PL_Fit);  %% 对当前种群中的解的适应度值进行排序
 %% 函数评估t时的最差适应度值
 worstFitness = Order(SearchAgents_no);                  %% Eq.(11)
 M = M0 * (exp(-lambda * (t / Tmax)));                   %% Eq.(12)

 %% 计算表示太阳与第i个解之间的欧几里得距离R
 for i = 1:SearchAgents_no
    R(i) = 0;
    for j = 1:dim
       R(i) = R(i) + (Sun_Pos(j) - Positions(i, j))^2;   %% Eq.(7)
    end
    R(i) = sqrt(R(i));
 end
 %% 太阳和对象i在时间t的质量计算如下:
 for i = 1:SearchAgents_no
    sum = 0;
    for k = 1:SearchAgents_no
        sum = sum + (PL_Fit(k) - worstFitness);
    end
    MS(i) = rand * (Sun_Score - worstFitness) / (sum);   %% Eq.(8)
    m(i) = (PL_Fit(i) - worstFitness) / (sum);           %% Eq.(9)
 end
 
 %%2步:定义引力(F)
 % 计算太阳和第i个行星的引力,根据普遍的引力定律:
 for i = 1:SearchAgents_no
    Rnorm(i) = (R(i) - min(R)) / (max(R) - min(R));      %% 归一化的R(Eq.(24)MSnorm(i) = (MS(i) - min(MS)) / (max(MS) - min(MS)); %% 归一化的MS
    Mnorm(i) = (m(i) - min(m)) / (max(m) - min(m));      %% 归一化的m
    Fg(i) = orbital(i) * M * ((MSnorm(i) * Mnorm(i)) / (Rnorm(i) * Rnorm(i) + eps)) + (rand); %% Eq.(6)
 end
% a1表示第i个解在时间t的椭圆轨道的半长轴,
for i = 1:SearchAgents_no
    a1(i) = rand * (T(i)^2 * (M * (MS(i) + m(i)) / (4 * pi * pi)))^(1/3); %% Eq.(23)
end

for i = 1:SearchAgents_no
% a2是逐渐从-1-2的循环控制参数
a2 = -1 - 1 * (rem(t, Tmax / Tc) / (Tmax / Tc)); %% Eq.(29)

% ξ是从1-2的线性减少因子
n = (a2 - 1) * rand + 1;    %% Eq.(28)
a = randi(SearchAgents_no); %% 随机选择的解的索引
b = randi(SearchAgents_no); %% 随机选择的解的索引
rd = rand(1, dim);          %% 按照正态分布生成的向量
r = rand;                   %% r1是[0,1]范围内的随机数

%% 随机分配的二进制向量
U1 = rd < r;                %% Eq.(21)
O_P = Positions(i, :);      %% 存储第i个解的当前位置

%%6步:更新与太阳的距离(第345在后面)
if rand < rand
    % h是一个自适应因子,用于控制时间t时太阳与当前行星之间的距离
    h = (1 / (exp(n * randn))); %% Eq.(27)
    % 基于三个解的平均向量:当前解、迄今为止的最优解和随机选择的解
    Xm = (Positions(b, :) + Sun_Pos + Positions(i, :)) / 3.0;
    Positions(i, :) = Positions(i, :) .* U1 + (Xm + h .* (Xm - Positions(a, :))) .* (1 - U1); %% Eq.(26)
else

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1147504.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于UDP/TCP的网络通信编程实现

小王学习录 今日鸡汤Socket套接字基于UDP来实现一个网络通信程序DatagramSocket类DatagramPacket类基于UDP的服务器端代码基于UDP的客户端代码基于TCP来实现一个网络通信程序ServerSocket类Socket类基于TCP的服务器端代码基于TCP的客户端代码优化之后的服务器端代码补充TCP长短…

RabbitMQ学习04

文章目录 发布确认1. 发布确认的原理2. 发布确认的策略2.1.开启发布确认的方法2.2.单个确认2.3.批量确认发布2.4.异步确认发布2.5.如何处理异步未确认消息2.6 总结&#xff1a; 发布确认 1. 发布确认的原理 生产者将信道设置成 confirm 模式&#xff0c;一旦信道进入 confirm …

Spring Cloud Alibaba 教程 Fegin 篇

Spring Cloud Alibaba 教程 | Feign 篇 写在前面的话&#xff1a; 本笔记在参考网上视频以及博客的基础上&#xff0c;只作为个人学习笔记&#xff0c;如有侵权联系删除&#xff0c;谢谢&#xff01; 1、Feign替代RestTemplate ​ 1.1 引入依赖 <!-- Feign 客户端依赖 --&…

StringBuffer类提供针对字符的操作方法

StringBuffer类是Java中用于操作字符串的一个类&#xff0c;提供了许多针对字符的操作方法&#xff0c;例如&#xff1a; append()&#xff1a;用于在字符串末尾添加字符或字符串。 insert()&#xff1a;用于在字符串的指定位置插入字符或字符串。 delete()&#xff1a;用于删…

Spring中简单的获取Bean对象(对象装配)

获取Bean对象也叫做对象装配&#xff0c;是把对象取出来放到某个类中&#xff0c;有时候也叫对象注入&#xff01; 对象装配&#xff08;对象注入&#xff09;更加简单的读取Bean&#xff08;是从Spring容器中读取某个对象放到当前类里面&#xff09;的实现方法有以下3种&…

06 MIT线性代数-线性无关,基和维数Independence, basis, and dimension

1. 线性无关 Independence Suppose A is m by n with m<n (more unknowns than equations) Then there are nonzero solutions to Ax0 Reason: there will be free variables! A中具有至少一个自由变量&#xff0c;那么Ax0一定具有非零解。A的列向量可以线性组合得到零向…

【AD9361 数字接口CMOS LVDSSPI】C 并行数据之LVDS

接上一部分&#xff0c;AD9361 数字接口CMOS &LVDS&SPI 目录 一、LVDS模式数据路径和时钟信号LVDS模式数据通路信号[1] DATA_CLK[2] FB_CLK[3] Rx_FRAME[4] Rx_D[5&#xff1a;0][5] Tx_FRAME[6]Tx_D[5&#xff1a;0][7] ENABLE[8] TXNRX系列 二、LVDS最大时钟速率和信…

附录B 其他第三方软件移植(FTP、OpenSSH、GDB)

目录 开发板 FTP 服务器移植与搭建vsftpd 源码下载vsftpd 移植vsftpd 服务器测试配置vsftpd添加新用户Filezilla 连接测试 开发板 OpenSSH 移植与使用OpenSSH 简介OpenSSH 移植OpenSSH 源码获取移植zlib 库移植openssl 库移植openssh 库 openssh 设置openssh 使用ssh 登录scp 命…

opencv4.x通过cmake编译带cuda

首选确定目标&#xff0c;需要编译的是opencv4.5.5带第三方库&#xff0c;带cuda的版本&#xff0c;使用vs编译器&#xff0c;编译releasedebug版本。 需要先安装好cmake cuda cudnn等基础依赖&#xff0c;并且确保安装好vs的编译器&#xff0c;并且大小版本都符合实际要求。 …

【C++的OpenCV】第十四课-OpenCV基础强化(三):Mat元素的访问之data和step属性

&#x1f389;&#x1f389;&#x1f389; 欢迎来到小白 p i a o 的学习空间&#xff01; \color{red}{欢迎来到小白piao的学习空间&#xff01;} 欢迎来到小白piao的学习空间&#xff01;&#x1f389;&#x1f389;&#x1f389; &#x1f496; C\Python所有的入门技术皆在 我…

信息系统项目管理师教程 第四版【第4章-信息系统管理-思维导图】

信息系统项目管理师教程 第四版【第4章-信息系统管理-思维导图】

由一个单例模式引发的思考-holder类方式

前言&#xff1a; 最近在看《Java并发编程实践》&#xff0c;里面提到了一种实现单例模式的方式&#xff0c;并大致说明了机制&#xff0c;但仍不是很清晰&#xff0c;今日有空&#xff0c;查阅相关书籍&#xff0c;尝试解释其中道理。 单例模式&#xff1a; 单例模式是一种常…

队列(8.6)

目录 2.队列 2.1队列的概念及结构 2.2队列的实现 2.2.1初始化队列 2.2.2队尾入队列 2.2.3队头出队列 2.2.4获取队列头部元素 2.2.5 销毁队列 3.栈和队列面试题 225. 用队列实现栈 - 力扣&#xff08;LeetCode&#xff09; 232. 用栈实现队列 - 力扣&#xff08;LeetC…

【送书福利-第二十一期】《ChatGPT进阶:提示工程入门》

&#x1f60e; 作者介绍&#xff1a;我是程序员洲洲&#xff0c;一个热爱写作的非著名程序员。CSDN全栈优质领域创作者、华为云博客社区云享专家、阿里云博客社区专家博主、前后端开发、人工智能研究生。公粽号&#xff1a;程序员洲洲。 &#x1f388; 本文专栏&#xff1a;本文…

正点原子嵌入式linux驱动开发——Linux 多点电容触摸屏

随着智能手机的发展&#xff0c;电容触摸屏也得到了飞速的发展。相比电阻触摸屏&#xff0c;电容触摸屏有很多的优势&#xff0c;比如支持多点触控、不需要按压&#xff0c;只需要轻轻触摸就有反应。ALIENTEK的三款RGB LCD屏幕都支持多点电容触摸&#xff0c;本章就以ATK7016这…

Spring Cloud Alibaba Seata 实现 SAGA 事物

Seata 是一款开源的分布式事务解决方案&#xff0c;致力于提供高性能和简单易用的分布式事务服务。Seata 将为用户提供了 AT、TCC、SAGA 和 XA 事务模式&#xff0c;为用户打造一站式的分布式解决方案 Seata 官网&#xff1a;https://seata.io/zh-cn/ Spring Cloud Alibaba 官…

【Java网络原理】 六

本文主要介绍了网络层的IP协议/NAT机制/IPv6的由来以及在数据链路层涉及到的以太网协议和DNS域名解析系统 一.网络层 1.IP协议 各个字段所表示的含义 >4位版本号 用来表示IP协议的版本&#xff0c;现在只有两个版本IPv4 &#xff0c;IPv6 >4位首部长度 IP报头可变&…

【自然语言处理】【长文本处理】RMT:能处理长度超过一百万token的Transformer

相关博客 【自然语言处理】【长文本处理】RMT&#xff1a;能处理长度超过一百万token的Transformer 【自然语言处理】【大模型】MPT模型结构源码解析(单机版) 【自然语言处理】【大模型】ChatGLM-6B模型结构代码解析(单机版) 【自然语言处理】【大模型】BLOOM模型结构源码解析(…

AI直播换脸——DeepFaceLab 3.0模型训练与微调

前言 DeepFaceLab是一种基于深度学习的人脸合成和转换工具。它使用了深度神经网络来分析和修改图像中的人脸部分&#xff0c;可以实现将一个人的脸部特征应用到另一个人的照片上&#xff0c;或者进行面部表情、年龄、性别等特征的变换。 DeepFaceLab具备一系列核心功能&#x…

Matplotlib详解(plt 和ax分别是什么)

Matplotlib中的plt 和 ax 分别是什么&#xff1f; 概念引入两种绘图方式的区别subplot 绘制Matplotlib 常见组件设置整理4.1 设置显示中文字体4.2 设置标题4.3 边框的显示问题4.4 图例设置&#xff08;legend&#xff09;4.5 图形与边框之间的留白控制4.6 设置双坐标轴4.7 坐标…