最新|全新风格原创YOLOv7、YOLOv5和YOLOX网络结构解析图

news2024/12/24 0:17:10

💡本篇分享一下个人绘制的原创全新风格YOLOv7网络结构图YOLOv5网络结构图YOLOX网络结构图
个人感觉搭配还行,看着比较直观,所以开源分享一下。

文章目录

    • YOLOv5 网络结构图(最新 推荐🔥🔥🔥)
    • YOLOv7 网络结构图(最新 推荐🔥🔥🔥)
    • YOLOX 网络结构图(最新 推荐🔥🔥🔥)
    • 最新YOLOv5、YOLOv7创新点首发原创改进博客推荐
    • YOLOv7解析
        • 扩展的高效层聚合
        • 模型缩放技术
        • 重新参数化规划
        • 辅助头粗到细
    • YOLOv5 网络配置
    • YOLOv7 网络配置
    • YOLOX 网络配置

YOLOv5 网络结构图(最新 推荐🔥🔥🔥)

YOLOv5 结构:

Backbone: New CSP-Darknet53
Neck: SPPF, CSPPAN
Head: YOLOv3 Head

在这里插入图片描述

By YOLOAir CSDN芒果汁没有芒果

YOLOv7 网络结构图(最新 推荐🔥🔥🔥)

论文:YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors

YOLOv7 结构:

Backbone: New ELANCSP
Neck: SPPCSPC, ELANPAN
Head: YOLOv7 Head

在这里插入图片描述
By YOLOAir CSDN芒果汁没有芒果

YOLOX 网络结构图(最新 推荐🔥🔥🔥)

YOLOX 结构:

Backbone: New CSP-Darknet53
Neck: SPP, CSPPAN
Head: YOLOX Head
在这里插入图片描述
By YOLOAir CSDN芒果汁没有芒果

最新YOLOv5、YOLOv7创新点首发原创改进博客推荐

(🔥 博客内 附有多种模型改进方式,均适用于YOLOv5系列 以及 YOLOv7系列 改进!!!)

  • 💡🎈☁️:改进YOLOv7系列:首发最新结合多种X-Transformer结构新增小目标检测层,让YOLO目标检测任务中的小目标无处遁形

  • 💡🎈☁️:改进YOLOv7系列:结合Adaptively Spatial Feature Fusion自适应空间特征融合结构,提高特征尺度不变性

  • 💡🎈☁️:改进YOLOv5系列:首发结合最新Extended efficient Layer Aggregation Networks结构,高效的聚合网络设计,提升性能

  • 💡🎈☁️:改进YOLOv7系列:首发结合最新CSPNeXt主干结构(适用YOLOv7),高性能,低延时的单阶段目标检测器主干,通过COCO数据集验证高效涨点

  • 💡🎈☁️:改进YOLOv7系列:最新结合DO-DConv卷积、Slim范式提高性能涨点,打造高性能检测器

  • 💡🎈☁️:改进YOLOv7系列:结合最新即插即用的动态卷积ODConv

  • 💡🎈☁️:改进YOLOv7系列:首发结合最新Transformer视觉模型MOAT结构:交替移动卷积和注意力带来强大的Transformer视觉模型,超强的提升

  • 💡🎈☁️:改进YOLOv7系列:首发结合最新Centralized Feature Pyramid集中特征金字塔,通过COCO数据集验证强势涨点

  • 💡🎈☁️:改进YOLOv7系列:首发结合 RepLKNet 构建 最新 RepLKDeXt 结构|CVPR2022 超大卷积核, 越大越暴力,大到31x31, 涨点高效

  • 💡🎈☁️:改进YOLOv5系列:4.YOLOv5_最新MobileOne结构换Backbone修改,超轻量型架构,移动端仅需1ms推理!苹果最新移动端高效主干网络

  • 💡🎈☁️:改进YOLOv7系列:最新HorNet结合YOLOv7应用! | 新增 HorBc结构,多种搭配,即插即用 | Backbone主干、递归门控卷积的高效高阶空间交互


YOLOv7解析

扩展的高效层聚合

骨干网中 YOLO 网络卷积层的效率对于高效推理速度至关重要。WongKinYiu 通过 Cross Stage Partial Networks 开始了最高层效率的道路。

在 YOLOv7 中,作者建立在关于这个主题的研究的基础上,牢记将层保存在内存中所需的内存量以及梯度在层中反向传播所需的距离——梯度越短,他们的网络学习能力越强。他们选择的最后一层聚合是 E-ELAN,它是 ELAN 计算块的扩展版本。

模型缩放技术

对象检测模型通常以一系列模型的形式发布,大小按比例放大和缩小,因为不同的应用程序需要不同级别的准确度和推理速度。

通常,对象检测模型会考虑网络的深度、网络的宽度以及网络训练的分辨率。在 YOLOv7 中,作者在将层级联在一起的同时协同缩放网络深度和宽度。消融研究表明,这种技术在针对不同尺寸进行缩放的同时保持模型架构最佳。

重新参数化规划

重新参数化技术涉及对一组模型权重进行平均,以创建一个对其尝试建模的一般模式更稳健的模型。在研究中,最近关注模块级重新参数化,其中网络的一部分有自己的重新参数化策略。

YOLOv7 作者使用梯度流传播路径来查看网络中的哪些模块应该使用重新参数化策略,哪些不应该。

辅助头粗到细

YOLO 网络头对网络进行最终预测,但由于它位于网络的下游,因此向位于中间某处的网络添加辅助头可能是有利的。当你在训练时,你正在监督这个检测头以及实际要进行预测的头。

辅助头的训练效率不如最终头,因为它与预测之间的网络较少——因此 YOLOv7 作者对这个头进行了不同级别的监督试验,确定了通过监督的粗到细定义从不同粒度的铅头返回。

YOLOv5 网络配置

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

YOLOv7 网络配置

# parameters
nc: 80  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple

# anchors
anchors:
  - [12,16, 19,36, 40,28]  # P3/8
  - [36,75, 76,55, 72,146]  # P4/16
  - [142,110, 192,243, 459,401]  # P5/32

# yolov7 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [32, 3, 1]],  # 0
  
   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2      
   [-1, 1, Conv, [64, 3, 1]],
   
   [-1, 1, Conv, [128, 3, 2]],  # 3-P2/4  
   [-1, 1, Conv, [64, 1, 1]],
   [-2, 1, Conv, [64, 1, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1]],  # 11
         
   [-1, 1, MP, []],
   [-1, 1, Conv, [128, 1, 1]],
   [-3, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 16-P3/8  
   [-1, 1, Conv, [128, 1, 1]],
   [-2, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [512, 1, 1]],  # 24
         
   [-1, 1, MP, []],
   [-1, 1, Conv, [256, 1, 1]],
   [-3, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 29-P4/16  
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [1024, 1, 1]],  # 37
         
   [-1, 1, MP, []],
   [-1, 1, Conv, [512, 1, 1]],
   [-3, 1, Conv, [512, 1, 1]],
   [-1, 1, Conv, [512, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 42-P5/32  
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [1024, 1, 1]],  # 50
  ]

# yolov7 head
head:
  [[-1, 1, SPPCSPC, [512]], # 51
  
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [37, 1, Conv, [256, 1, 1]], # route backbone P4
   [[-1, -2], 1, Concat, [1]],
   
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1]], # 63
   
   [-1, 1, Conv, [128, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [24, 1, Conv, [128, 1, 1]], # route backbone P3
   [[-1, -2], 1, Concat, [1]],
   
   [-1, 1, Conv, [128, 1, 1]],
   [-2, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [128, 1, 1]], # 75
      
   [-1, 1, MP, []],
   [-1, 1, Conv, [128, 1, 1]],
   [-3, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 2]],
   [[-1, -3, 63], 1, Concat, [1]],
   
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1]], # 88
      
   [-1, 1, MP, []],
   [-1, 1, Conv, [256, 1, 1]],
   [-3, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, -3, 51], 1, Concat, [1]],
   
   [-1, 1, Conv, [512, 1, 1]],
   [-2, 1, Conv, [512, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [512, 1, 1]], # 101
   
   [75, 1, RepConv, [256, 3, 1]],
   [88, 1, RepConv, [512, 3, 1]],
   [101, 1, RepConv, [1024, 3, 1]],

   [[102,103,104], 1, IDetect, [nc, anchors]],   # Detect(P3, P4, P5)
  ]

YOLOX 网络配置

参考YOLOAir算法库

注:YOLOv5、YOLOv7、YOLOX网络结构图均为博主原创,未经允许,不得转发在其他平台或者其他博客!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1147.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【C++笔试强训】第十三天

🎇C笔试强训 博客主页:一起去看日落吗分享博主的C刷题日常,大家一起学习博主的能力有限,出现错误希望大家不吝赐教分享给大家一句我很喜欢的话:夜色难免微凉,前方必有曙光 🌞。 💦&a…

YOLOv5、v7改进之三十八:引入RepVGG模型结构

前 言:作为当前先进的深度学习目标检测算法YOLOv7,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法。此后的系列文章,将重点对YOLOv7的如何改进进行详…

基于javaweb的养老院管理系统(java+springboot+thymeleaf+html+js+mysql)

基于javaweb的养老院管理系统(javaspringbootthymeleafhtmljsmysql) 运行环境 Java≥8、MySQL≥5.7 开发工具 eclipse/idea/myeclipse/sts等均可配置运行 适用 课程设计,大作业,毕业设计,项目练习,学习演示等 功能说明 基于…

synchronized到底锁的是谁、何时生效

一、synchronized锁的几种形式 synchronized修饰普通方法synchronized修饰静态方法synchronized修饰代码块 1、synchronized修饰普通方法 简单示例 public class Test{private String age;private String name;public synchronized void print(String arg1, String arg2) {…

零代码,让业务人员实现应用创造自由

摘要:以汽车营销场景为例,从AppCube零代码和业务大屏入手,帮助开发者更好地理解AppCube低代码和零代码异同点,在实际使用时能更快选取更合适的工具能力,实现应用构建效率最大化。本文分享自华为云社区《DTT第8期直播回…

超级详细的Vue安装与配置教程

Vue web前端三大主流框架之一,是一套用于构建用户界面的渐进式框架,下面这篇文章主要给大家介绍了关于Vue安装与配置教程的相关资料,文中通过图文介绍的非常详细,需要的朋友可以参考下 − 目录 一、下载和安装Vue二、创建全局安装目录和缓存日志目录三、配置环境变量 1. 环境…

【k哥爬虫普法】简历大数据公司被查封,个人隐私是红线!

我国目前并未出台专门针对网络爬虫技术的法律规范,但在司法实践中,相关判决已屡见不鲜,K 哥特设了“K哥爬虫普法”专栏,本栏目通过对真实案例的分析,旨在提高广大爬虫工程师的法律意识,知晓如何合法合规利用…

mysql忘记密码怎么办(附免密登录和修改密码)

前言 博主个人社区:开发与算法学习社区 博主个人主页:Killing Vibe的博客 欢迎大家加入,一起交流学习~~ 一、打开MySQL(能打开请跳过此步) 第一种:安装完MySQL之后,MySQL提供大家的客户端程序 …

DASCTF X GFCTF 2022十月挑战赛-hade_waibo

这是一个非预期解&#xff0c;但是得到出题人的赞许&#xff0c;莫名开心&#xff0c;哈哈&#xff1a; cancan need处存在任意文件读取 <!DOCTYPE html> <html lang"en" class"no-js"> <head> <meta charset"UTF-8" />…

引爆记忆广告语盘点

在数字化、流量红利见顶、营销环境巨变的进程中&#xff0c;品牌传播的节奏从快到稳。品牌出圈更需要产品、渠道、内容、文化等方面的共振影响&#xff0c;其中广告语作为品牌定位和价值主张的核心载体&#xff0c;是连接消费者心智的重要品牌资产。 根据益普索Ipsos《引爆记忆…

uni-app、小程序项目分包经验之谈与天坑异常:RangeError: Maximum call stack size exceeded

小程序分包经验之谈与天坑异常&#xff1a;RangeError: Maximum call stack size exceeded小程序分包概述分包配置参数&#xff1a;subPackages分包预载配置参数&#xff1a;preloadRule如何使用实际小程序项目分包项目结构配置分包配置分包预载天坑异常场景分析猜想尝试解决解…

springboot配置多个数据源

一.多数据源的典型使用场景 在实际开发中,经常可能遇到在一个应用中可能要访问多个数据库多的情况,以下是两种典型场景 1.业务复杂 数据分布在不同的数据库中,数据库拆了,应用没拆.一个公司多个子项目,各用各的数据库,设计数据共享 2.读写分离 为了解决数据库的性能瓶颈(读…

C++内存管理和模板

目录 内存管理 new T[N] new和delete关键字的总结&#xff1a; 定位new表达式(placement-new)&#xff1a; 作用&#xff1a; 使用格式&#xff1a; 使用场景&#xff1a; 实例&#xff1a; 调用析构函数的两个方法&#xff1a; 池化技术&#xff1a; 面试题&#xff1…

Unity 分享 功能 用Unity Native Share Plugin 实现链接、图片、视频等文件的分享+ 安卓 Ios 都可以,代码图文详解

Unity 分享 功能 用Unity Native Share Plugin 实现链接、图片、视频等文件的分享 安卓 Ios 都可以&#xff0c;代码图文详解前言环境效果一、Unity Native Share Plugin导入1.下载2.导入二、案例1.分享文字1.脚本2.发包注意2.分享视频1.完善下刚才的脚本2.给复制按钮添加点击事…

【Linux】Linux环境搭建

​&#x1f320; 作者&#xff1a;阿亮joy. &#x1f386;专栏&#xff1a;《学会Linux》 &#x1f387; 座右铭&#xff1a;每个优秀的人都有一段沉默的时光&#xff0c;那段时光是付出了很多努力却得不到结果的日子&#xff0c;我们把它叫做扎根 目录&#x1f449;Linux的介…

【QT 自研上位机 与 STM32F103下位机联调>>>通信测试-基础样例-联合文章】

【QT 自研上位机 与 STM32F103下位机联调>>>通信测试-基础样例-联合文章】1、概述2、实验环境3、联合文章&#xff08;1&#xff09;对于上位机&#xff0c;可以参照如下例子&#xff08;2&#xff09;对于下位机&#xff0c;可以参照如下例子4、QT上位机部分第一步&a…

python中os库的使用

目录介绍1 listdir(path: str)2 path.isdir(path: str)3 path.isfile(path: str)4 path.join(path: str, file: str)5 path.getsize(path: str)介绍 本博客记录python中os库的一些函数使用。 1 listdir(path: str) listdir()函数输入一个目录&#xff0c;返回该目录下的所有…

web前端 html+css+javascript游戏网页设计实例 (网页制作课作业)

&#x1f389;精彩专栏推荐&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb; ✍️ 作者简介: 一个热爱把逻辑思维转变为代码的技术博主 &#x1f482; 作者主页: 【主页——&#x1f680;获取更多优质源码】 &#x1f393; web前端期末大作业…

数字化浪潮下,低代码能否加速企业的数字化转型

随着加快建设数字中国的目标明确下来&#xff0c;市场上与数字化相关的企业都得到了极大鼓舞&#xff0c;这不仅意味着后续数字领域的加速发展&#xff0c;更是代表着数字化已经完全可以向各行各业拓展&#xff0c;大力推进数字化建设。数字中国也说明了数字化并不能只是限制在…

FastTunnel Win10内网穿透实现远程桌面

目录 一、需求 二、购买公网服务器 三、远程公网服务器 四、FastTunnel 的使用 1.下载 FastTunnel 2.启动服务器端 3.启动客户端 五、测试 六、安装服务 结束 一、需求 FastTunnel 简介 高性能跨平台内网穿透工具&#xff0c;使用它可以实现将内网服务暴露到公网供…