分类预测 | MATLAB实现SSA-CNN-BiGRU麻雀算法优化卷积双向门控循环单元数据分类预测

news2024/11/28 21:00:08

分类预测 | MATLAB实现SSA-CNN-BiGRU麻雀算法优化卷积双向门控循环单元数据分类预测

目录

    • 分类预测 | MATLAB实现SSA-CNN-BiGRU麻雀算法优化卷积双向门控循环单元数据分类预测
      • 分类效果
      • 基本描述
      • 程序设计
      • 参考资料

分类效果

1
2
3
4

5
6

基本描述

1.MATLAB实现SSA-CNN-BiGRU麻雀算法优化卷积双向门控循环单元数据分类预测,运行环境Matlab2021b及以上;
2.基于麻雀优化算法(SSA)、卷积神经网络(CNN)和双向门控循环单元(BiGRU)的数据分类预测程序;
3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用;SSA优化算法优化学习率,隐藏层节点,正则化系数,这3个关键参数。
程序语言为matlab,程序可出分类效果图,混淆矩阵图。
4.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行。
5.适用领域:适用于各种数据分类场景,如滚动轴承故障、变压器油气故障、电力系统输电线路故障区域、绝缘子、配网、电能质量扰动,等领域的识别、诊断和分类。
使用便捷:直接使用EXCEL表格导入数据,无需大幅修改程序。内部有详细注释,易于理解。

程序设计

  • 完整程序和数据获取方式:私信博主回复MATLAB实现SSA-CNN-BiGRU麻雀算法优化卷积双向门控循环单元数据分类预测
%%  优化算法参数设置
SearchAgents_no = 8;                   % 数量
Max_iteration = 5;                    % 最大迭代次数
dim = 3;                               % 优化参数个数
lb = [1e-3,10 1e-4];                 % 参数取值下界(学习率,隐藏层节点,正则化系数)
ub = [1e-2, 30,1e-1];                 % 参数取值上界(学习率,隐藏层节点,正则化系数)

fitness = @(x)fical(x,num_dim,num_class,p_train,t_train,T_train);

[Best_score,Best_pos,curve]=SSA(SearchAgents_no,Max_iteration,lb ,ub,dim,fitness)
Best_pos(1, 2) = round(Best_pos(1, 2));   
best_hd  = Best_pos(1, 2); % 最佳隐藏层节点数
best_lr= Best_pos(1, 1);% 最佳初始学习率
best_l2 = Best_pos(1, 3);% 最佳L2正则化系数
 
%% 建立模型
lgraph = layerGraph();                                                   % 建立空白网络结构
tempLayers = [
    sequenceInputLayer([num_dim, 1, 1], "Name", "sequence")              % 建立输入层,输入数据结构为[num_dim, 1, 1]
    sequenceFoldingLayer("Name", "seqfold")];                            % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中
tempLayers = [
    convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1]16个特征图
    reluLayer("Name", "relu_1")                                          % Relu 激活层

lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中

tempLayers = [
    sequenceUnfoldingLayer("Name", "sequnfold")                      % 建立序列反折叠层
    flattenLayer("Name", "flatten")                                  
    fullyConnectedLayer(num_class, "Name", "fc")                     % 全连接层
    softmaxLayer("Name", "softmax")                                  % softmax激活层
    classificationLayer("Name", "classification")];                  % 分类层
lgraph = addLayers(lgraph, tempLayers);                              % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1");             % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); 

%% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法
    'MaxEpochs', 500,...                 % 最大训练次数 
    'InitialLearnRate', best_lr,...          % 初始学习率为0.001
    'L2Regularization', best_l2,...         % L2正则化参数
    'LearnRateSchedule', 'piecewise',...  % 学习率下降
    'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1
    'LearnRateDropPeriod', 400,...        % 经过训练后 学习率为 0.001*0.1
    'Shuffle', 'every-epoch',...          % 每次训练打乱数据集
    'ValidationPatience', Inf,...         % 关闭验证
    'Plots', 'training-progress',...      % 画出曲线
    'Verbose', false);

%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1145900.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【计算机视觉】3D视觉

文章目录 一、基本问题二、三个坐标系 X w \boldsymbol{X}_w Xw​到 X c \boldsymbol{X}_c Xc​的转换 X c \boldsymbol{X}_c Xc​到 x i \boldsymbol{x}_i xi​的转换投影矩阵尺度模糊问题 三、相机标定四、立体视觉 我的《计算机视觉》系列参考UC Berkeley的CS180课程&#x…

JDK21下载和安装

说明 本文介绍 JDK21(Oracle版)的下载和安装。 下载 Oracle官网JDK21下载页面 根据操作系统的类型,下载相应的版本。本文下载的是Windows64位的安装版。 下载页面示例 安装包示例 安装 双击安装包,开始安装。 把路径改为自定…

【数据结构】数组和字符串(八):稀疏矩阵的链接存储:十字链表的创建、插入元素、遍历打印(按行、按列、打印矩阵)、销毁

文章目录 4.2.1 矩阵的数组表示4.2.2 特殊矩阵的压缩存储a. 对角矩阵的压缩存储b~c. 三角、对称矩阵的压缩存储d. 稀疏矩阵的压缩存储——三元组表4.2.3三元组表的转置、加法、乘法、操作4.2.4十字链表0. 十字链表结构1. 创建2. 销毁3. 插入4. 打印矩阵形式5. 按行打印6.按列打…

京东平台数据分析(京东销量):2023年9月京东吸尘器行业品牌销售排行榜

鲸参谋监测的京东平台9月份吸尘器市场销售数据已出炉! 根据鲸参谋电商数据分析平台的相关数据显示,今年9月,京东吸尘器的销量为19万,环比下滑约12%,同比下滑约25%;销售额为1.2亿,环比下滑约11%&…

刀具磨损状态识别(Python代码,MSCNN_LSTM_Attention模型,初期磨损、正常磨损和急剧磨损分类,解压缩直接运行)

1.运行效果:刀具磨损状态识别(Python代码,MSCNN_LSTM_Attention模型,初期磨损、正常磨损和急剧磨损)_哔哩哔哩_bilibili 环境库: NumPy 版本: 1.19.4 Pandas 版本: 0.23.4 Matplotlib 版本: 2.2.3 Keras …

【Qt之控件QTreeView】设置单元格高度、设置图标尺寸

设置列宽 设置高度 自定义代理 继承QItemDelegate,实现sizeHint ()方法,设置自定义委托。 class itemDelegate : public QItemDelegate {Q_OBJECTpublic:explicit itemDelegate(QObject *parent 0) : QItemDelegate(parent){}~itemDelegate(){}virtua…

策略路由和路由策略

目录 策略路由 路由策略 策略路由和路由策略 策略路由 Step1:配置ACL,匹配流量 acl number 2010 rule 10 permit source 192.168.10.0 0.0.0.255 acl number 2020 rule 10 permit source 192.168.20.0 0.0.0.255 Step2:流分类traffic classifier jiaoxue //匹配…

Navicat for MySQL 视图创建使用方法

创建视图步骤: 点击新建;选择视图;点击视图创建工具;可以在左侧拖拽表到工作区;选择表字段进行连线

二维码智慧门牌管理系统升级,解决地址要素挂接难题!

文章目录 前言一、传统问题和新解决方案二、多样化应用三、实际案例 前言 随着科技的不断发展,智能化管理已经深入到各行各业。在地址要素采集过程中,如何实现要素之间的挂接关系,是智慧门牌管理系统面临的重要挑战。本文将为您揭秘一种升级…

【错误解决方案】ModuleNotFoundError: No module named ‘cPickle‘

1. 错误提示 在python程序中试图导入一个名为cPickle的模块,但Python提示找不到这个模块。 错误提示:ModuleNotFoundError: No module named cPickle 2. 解决方案 实际上,cPickle是Python的pickle模块的一个C语言实现,通常用于…

【ROS入门】机器人导航(仿真)——导航实现

文章结构 建图 SLAM编写gmapping节点相关launch文件执行 地图服务 map_server地图保存节点 map_server地图服务 map_server 定位 amcl编写amcl节点相关的launch文件编写测试launch文件执行 路径规划 move_basemove_base与代价地图碰撞算法 move_base使用launch文件配置文件laun…

Selenium自动测试框架

selenium3 selenium元素的定位css 选择器Xpath 操作测试对象 API添加等待浏览器的操作键盘操作鼠标操作定位一组元素下拉框弹窗上传文件 <dependencies><!-- https://mvnrepository.com/artifact/org.seleniumhq.selenium/selenium-java --><dependency><…

phar反序列化学习

PHP反序列化常见的是使用unserilize()进行反序列化&#xff0c;除此之外还有其它的反序列化方法&#xff0c;不需要用到unserilize()。就是用到phar反序列化。 Phar phar文件 Phar是将php文件打包而成的一种压缩文档&#xff0c;类似于Java中的jar包。它有一个特性就是phar文…

2024级199管理类联考之写作

小作文(论证有效性分析-600字/30分/20-25分钟) 核心原理 找到明显的论证逻辑错误(找到4个即可得16分),然后分析前提推不出结论(14分)(反驳别人) 论证指的是前提推结论 前提引词&#xff1a;因为结论引词&#xff1a;所以,因此,由此可得等有些论证没有明显的引词,需要自行判断怎…

QT webengine显示HTML简单示例

文章目录 参考示例1TestWebenqine.promainwindow.hmainwindow.cppmain.cpp效果 示例2 (使用setDevToolsPage函数)main.cpp效果 参考 QT webengine显示HTML简单示例 示例1 编译器 : Desktop Qt 5.15.2 MSVC2019 64bit编辑器: QtCreator代码: TestWebenqine.pro # TestWeben…

C语言char的取值范围以及溢出情况

char 的取值范围 有符号&#xff1a; 1111 1111 ~ 1000 0000 — 0000 0000 ~ 0111 1111 -127 ~ -0 0 ~ 127 -128 ~ 127&#xff08;因为不需要两个 0 所以给负值增加了一位&#xff09; char 的溢出情况

C语言其它进制转十进制

权值法介绍 权值法&#xff1a; 主要功能为将 X 进制数据转为十进制的数据&#xff0c;具体流程如下&#xff1a; 将 X 进制中的每一位上的 基数 * 位权&#xff0c;再累加 基数&#xff1a;X 进制中每一位的数码个数 位权&#xff1a;X 进制每一位上对应的权值 二进制转十进…

MyString字符串类

MyString字符串类 包括&#xff1a;有参构造、拷贝构造、移动构造、析构、拷贝赋值和移动赋值。 MyString.h文件 #ifndef MYSTRING_H #define MYSTRING_H#include <iostream> using namespace std;class MyString {private:char* str;unsigned int MaxSize;unsigned i…

C语言 定义一个函数,并调用,该函数中完成百文百鸡问题

#include<stdio.h> int main(int argc, char const *argv[]) {int num 0;for (int i 0; i < 33; i){for (int j 0; j < 50; j){int x 100 - i - j;if(3*i2*jx/3 100 && x%3 0){printf("&#x1f413;有%d只,母鸡有%d只,小鸡有%d只\n",i,j,…

深度学习之基于yolov8的安全帽检测系统

欢迎大家点赞、收藏、关注、评论啦 &#xff0c;由于篇幅有限&#xff0c;只展示了部分核心代码。 文章目录 一项目简介 二、功能三、基于yolov8的安全帽检测系统四. 总结 一项目简介 在企业作业和工地施工过程中&#xff0c;安全永远高于一切。众所周知&#xff0c;工人在进入…