计算机毕设 基于CNN实现谣言检测 - python 深度学习 机器学习

news2024/9/24 1:28:12

文章目录

  • 1 前言
    • 1.1 背景
  • 2 数据集
  • 3 实现过程
  • 4 CNN网络实现
  • 5 模型训练部分
  • 6 模型评估
  • 7 预测结果
  • 8 最后

1 前言

Hi,大家好,这里是丹成学长,今天向大家介绍 一个深度学习项目

基于CNN实现谣言检测

1.1 背景

社交媒体的发展在加速信息传播的同时,也带来了虚假谣言信息的泛滥,往往会引发诸多不安定因素,并对经济和社会产生巨大的影响。

2 数据集

本项目所使用的数据是从新浪微博不实信息举报平台抓取的中文谣言数据,数据集中共包含1538条谣言和1849条非谣言。

如下图所示,每条数据均为json格式,其中text字段代表微博原文的文字内容。

在这里插入图片描述

每个文件夹里又有很多新闻文本。

在这里插入图片描述
每个文本又是json格式,具体内容如下:

在这里插入图片描述

3 实现过程

步骤入下:

*(1)解压数据,读取并解析数据,生成all_data.txt
*(2)生成数据字典,即dict.txt
*(3)生成数据列表,并进行训练集与验证集的划分,train_list.txt 、eval_list.txt
*(4)定义训练数据集提供器train_reader和验证数据集提供器eval_reader

import zipfile
import os
import io
import random
import json
import matplotlib.pyplot as plt
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Conv2D, Linear, Embedding
from paddle.fluid.dygraph.base import to_variable

#解压原始数据集,将Rumor_Dataset.zip解压至data目录下
src_path="/home/aistudio/data/data36807/Rumor_Dataset.zip" #这里填写自己项目所在的数据集路径
target_path="/home/aistudio/data/Chinese_Rumor_Dataset-master"
if(not os.path.isdir(target_path)):
    z = zipfile.ZipFile(src_path, 'r')
    z.extractall(path=target_path)
    z.close()

#分别为谣言数据、非谣言数据、全部数据的文件路径
rumor_class_dirs = os.listdir(target_path+"非开源数据集") # 这里填写自己项目所在的数据集路径
non_rumor_class_dirs = os.listdir(target_path+"非开源数据集")
original_microblog = target_path+"非开源数据集"
#谣言标签为0,非谣言标签为1
rumor_label="0"
non_rumor_label="1"

#分别统计谣言数据与非谣言数据的总数
rumor_num = 0
non_rumor_num = 0
all_rumor_list = []
all_non_rumor_list = []

#解析谣言数据
for rumor_class_dir in rumor_class_dirs: 
    if(rumor_class_dir != '.DS_Store'):
        #遍历谣言数据,并解析
        with open(original_microblog + rumor_class_dir, 'r') as f:
            rumor_content = f.read()
        rumor_dict = json.loads(rumor_content)
        all_rumor_list.append(rumor_label+"\t"+rumor_dict["text"]+"\n")
        rumor_num +=1
#解析非谣言数据
for non_rumor_class_dir in non_rumor_class_dirs: 
    if(non_rumor_class_dir != '.DS_Store'):
        with open(original_microblog + non_rumor_class_dir, 'r') as f2:
            non_rumor_content = f2.read()
        non_rumor_dict = json.loads(non_rumor_content)
        all_non_rumor_list.append(non_rumor_label+"\t"+non_rumor_dict["text"]+"\n")
        non_rumor_num +=1
        
print("谣言数据总量为:"+str(rumor_num))
print("非谣言数据总量为:"+str(non_rumor_num))

#全部数据进行乱序后写入all_data.txt
data_list_path="/home/aistudio/data/"
all_data_path=data_list_path + "all_data.txt"
all_data_list = all_rumor_list + all_non_rumor_list

random.shuffle(all_data_list)

#在生成all_data.txt之前,首先将其清空
with open(all_data_path, 'w') as f:
    f.seek(0)
    f.truncate() 
    
with open(all_data_path, 'a') as f:
    for data in all_data_list:
        f.write(data) 
print('all_data.txt已生成')

在这里插入图片描述

接下来就是生成数据字典。

# 生成数据字典
def create_dict(data_path, dict_path):
    with open(dict_path, 'w') as f:
        f.seek(0)
        f.truncate() 

    dict_set = set()
    # 读取全部数据
    with open(data_path, 'r', encoding='utf-8') as f:
        lines = f.readlines()
    # 把数据生成一个元组
    for line in lines:
        content = line.split('\t')[-1].replace('\n', '')
        for s in content:
            dict_set.add(s)
    # 把元组转换成字典,一个字对应一个数字
    dict_list = []
    i = 0
    for s in dict_set:
        dict_list.append([s, i])
        i += 1
    # 添加未知字符
    dict_txt = dict(dict_list)
    end_dict = {"<unk>": i}
    dict_txt.update(end_dict)
    # 把这些字典保存到本地中
    with open(dict_path, 'w', encoding='utf-8') as f:
        f.write(str(dict_txt))
    print("数据字典生成完成!",'\t','字典长度为:',len(dict_list))

我们可以查看一下dict_txt的内容

在这里插入图片描述

接下来就是数据列表的生成

# 创建序列化表示的数据,并按照一定比例划分训练数据与验证数据
def create_data_list(data_list_path):
    
    with open(os.path.join(data_list_path, 'dict.txt'), 'r', encoding='utf-8') as f_data:
        dict_txt = eval(f_data.readlines()[0])

    with open(os.path.join(data_list_path, 'all_data.txt'), 'r', encoding='utf-8') as f_data:
        lines = f_data.readlines()
    
    i = 0
    with open(os.path.join(data_list_path, 'eval_list.txt'), 'a', encoding='utf-8') as f_eval,\
    open(os.path.join(data_list_path, 'train_list.txt'), 'a', encoding='utf-8') as f_train:
        for line in lines:
            title = line.split('\t')[-1].replace('\n', '')
            lab = line.split('\t')[0]
            t_ids = ""
            if i % 8 == 0:
                for s in title:
                    temp = str(dict_txt[s])
                    t_ids = t_ids + temp + ','
                t_ids = t_ids[:-1] + '\t' + lab + '\n'
                f_eval.write(t_ids)
            else:
                for s in title:
                    temp = str(dict_txt[s])
                    t_ids = t_ids + temp + ','
                t_ids = t_ids[:-1] + '\t' + lab + '\n'
                f_train.write(t_ids)
            i += 1
        
    print("数据列表生成完成!")

定义数据读取器

def data_reader(file_path, phrase, shuffle=False):
    all_data = []
    with io.open(file_path, "r", encoding='utf8') as fin:
        for line in fin:
            cols = line.strip().split("\t")
            if len(cols) != 2:
                continue
            label = int(cols[1])
            
            wids = cols[0].split(",")
            all_data.append((wids, label))

    if shuffle:
        if phrase == "train":
            random.shuffle(all_data)

    def reader():
        for doc, label in all_data:
            yield doc, label
    return reader

class SentaProcessor(object):
    def __init__(self, data_dir,):
        self.data_dir = data_dir
        
    def get_train_data(self, data_dir, shuffle):
        return data_reader((self.data_dir + "train_list.txt"), 
                            "train", shuffle)

    def get_eval_data(self, data_dir, shuffle):
        return data_reader((self.data_dir + "eval_list.txt"), 
                            "eval", shuffle)

    def data_generator(self, batch_size, phase='train', shuffle=True):
        if phase == "train":
            return paddle.batch(
                self.get_train_data(self.data_dir, shuffle),
                batch_size,
                drop_last=True)
        elif phase == "eval":
            return paddle.batch(
                self.get_eval_data(self.data_dir, shuffle),
                batch_size,
                drop_last=True)
        else:
            raise ValueError(
                "Unknown phase, which should be in ['train', 'eval']")

总之在数据处理这一块需要我们注意的是一共生成以下的几个文件。

在这里插入图片描述

4 CNN网络实现

接下来就是构建以及配置卷积神经网络(Convolutional Neural Networks, CNN),开篇也说了,其实这里有很多模型的选择,之所以选择CNN是因为让我们熟悉CNN的相关实现。 输入词向量序列,产生一个特征图(feature map),对特征图采用时间维度上的最大池化(max pooling over time)操作得到此卷积核对应的整句话的特征,最后,将所有卷积核得到的特征拼接起来即为文本的定长向量表示,对于文本分类问题,将其连接至softmax即构建出完整的模型。在实际应用中,我们会使用多个卷积核来处理句子,窗口大小相同的卷积核堆叠起来形成一个矩阵,这样可以更高效的完成运算。另外,我们也可使用窗口大小不同的卷积核来处理句子。具体的流程如下:

在这里插入图片描述
首先我们构建单层CNN神经网络。

#单层
class SimpleConvPool(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels, # 通道数
                 num_filters,  # 卷积核数量
                 filter_size,  # 卷积核大小
                 batch_size=None): # 16
        super(SimpleConvPool, self).__init__()
        self.batch_size = batch_size
        self._conv2d = Conv2D(num_channels = num_channels,
            num_filters = num_filters,
            filter_size = filter_size,
            act='tanh')
        self._pool2d = fluid.dygraph.Pool2D(
            pool_size = (150 - filter_size[0]+1,1),
            pool_type = 'max',
            pool_stride=1
        )

    def forward(self, inputs):
        # print('SimpleConvPool_inputs数据纬度',inputs.shape) # [16, 1, 148, 128]
        x = self._conv2d(inputs)
        x = self._pool2d(x)
        x = fluid.layers.reshape(x, shape=[self.batch_size, -1])
        return x


class CNN(fluid.dygraph.Layer):
    def __init__(self):
        super(CNN, self).__init__()
        self.dict_dim = train_parameters["vocab_size"]
        self.emb_dim = 128   #emb纬度
        self.hid_dim = [32]  #卷积核数量
        self.fc_hid_dim = 96  #fc参数纬度
        self.class_dim = 2    #分类数
        self.channels = 1     #输入通道数
        self.win_size = [[3, 128]]  # 卷积核尺寸
        self.batch_size = train_parameters["batch_size"] 
        self.seq_len = train_parameters["padding_size"]
        self.embedding = Embedding( 
            size=[self.dict_dim + 1, self.emb_dim],
            dtype='float32', 
            is_sparse=False)
        self._simple_conv_pool_1 = SimpleConvPool(
            self.channels,
            self.hid_dim[0],
            self.win_size[0],
            batch_size=self.batch_size)
        self._fc1 = Linear(input_dim = self.hid_dim[0],
                            output_dim = self.fc_hid_dim,
                            act="tanh")
        self._fc_prediction = Linear(input_dim = self.fc_hid_dim,
                                    output_dim = self.class_dim,
                                    act="softmax")

    def forward(self, inputs, label=None):

        emb = self.embedding(inputs) # [2400, 128]
        # print('CNN_emb',emb.shape)  
        emb = fluid.layers.reshape(   # [16, 1, 150, 128]
            emb, shape=[-1, self.channels , self.seq_len, self.emb_dim])
        # print('CNN_emb',emb.shape)
        conv_3 = self._simple_conv_pool_1(emb)
        fc_1 = self._fc1(conv_3)
        prediction = self._fc_prediction(fc_1)
        if label is not None:
            acc = fluid.layers.accuracy(prediction, label=label)
            return prediction, acc
        else:
            return prediction

接下来就是参数的配置,不过为了在模型训练过程中更直观的查看我们训练的准确率,我们首先利用python的matplotlib.pyplt函数实现一个可视化图,具体的实现如下:

def draw_train_process(iters, train_loss, train_accs):
    title="training loss/training accs"
    plt.title(title, fontsize=24)
    plt.xlabel("iter", fontsize=14)
    plt.ylabel("loss/acc", fontsize=14)
    plt.plot(iters, train_loss, color='red', label='training loss')
    plt.plot(iters, train_accs, color='green', label='training accs')
    plt.legend()
    plt.grid()
    plt.show()

5 模型训练部分

def train():
    with fluid.dygraph.guard(place = fluid.CUDAPlace(0)): # 因为要进行很大规模的训练,因此我们用的是GPU,如果没有安装GPU的可以使用下面一句,把这句代码注释掉即可
    # with fluid.dygraph.guard(place = fluid.CPUPlace()):

        processor = SentaProcessor( data_dir="data/")
    
        train_data_generator = processor.data_generator(
            batch_size=train_parameters["batch_size"],
            phase='train',
            shuffle=True)
            
        model = CNN()
        sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=train_parameters["adam"],parameter_list=model.parameters())
        steps = 0
        Iters,total_loss, total_acc = [], [], []
        for eop in range(train_parameters["epoch"]):
            for batch_id, data in enumerate(train_data_generator()):
                steps += 1
                #转换为 variable 类型
                doc = to_variable(
                    np.array([
                        np.pad(x[0][0:train_parameters["padding_size"]],  #对句子进行padding,全部填补为定长150
                              (0, train_parameters["padding_size"] - len(x[0][0:train_parameters["padding_size"]])),
                               'constant',
                              constant_values=(train_parameters["vocab_size"])) # 用 <unk> 的id 进行填补
                        for x in data
                    ]).astype('int64').reshape(-1))
                #转换为 variable 类型
                label = to_variable(
                    np.array([x[1] for x in data]).astype('int64').reshape(
                        train_parameters["batch_size"], 1))

                model.train() #使用训练模式
                prediction, acc = model(doc, label)
                loss = fluid.layers.cross_entropy(prediction, label)
                avg_loss = fluid.layers.mean(loss)
                avg_loss.backward()
                sgd_optimizer.minimize(avg_loss)
                model.clear_gradients()
                
                if steps % train_parameters["skip_steps"] == 0:
                    Iters.append(steps)
                    total_loss.append(avg_loss.numpy()[0])
                    total_acc.append(acc.numpy()[0])
                    print("eop: %d, step: %d, ave loss: %f, ave acc: %f" %
                         (eop, steps,avg_loss.numpy(),acc.numpy()))
                if steps % train_parameters["save_steps"] == 0:
                    save_path = train_parameters["checkpoints"]+"/"+"save_dir_" + str(steps)
                    print('save model to: ' + save_path)
                    fluid.dygraph.save_dygraph(model.state_dict(),
                                                   save_path)
                # break
    draw_train_process(Iters, total_loss, total_acc)

训练的过程以及训练的结果如下:

在这里插入图片描述

6 模型评估

def to_eval():
    with fluid.dygraph.guard(place = fluid.CUDAPlace(0)):
        processor = SentaProcessor(data_dir="data/") #写自己的路径

        eval_data_generator = processor.data_generator(
                batch_size=train_parameters["batch_size"],
                phase='eval',
                shuffle=False)

        model_eval = CNN() #示例化模型
        model, _ = fluid.load_dygraph("data//save_dir_180.pdparams") #写自己的路径
        model_eval.load_dict(model)

        model_eval.eval() # 切换为eval模式
        total_eval_cost, total_eval_acc = [], []
        for eval_batch_id, eval_data in enumerate(eval_data_generator()):
            eval_np_doc = np.array([np.pad(x[0][0:train_parameters["padding_size"]],
                                    (0, train_parameters["padding_size"] -len(x[0][0:train_parameters["padding_size"]])),
                                    'constant',
                                    constant_values=(train_parameters["vocab_size"]))
                            for x in eval_data
                            ]).astype('int64').reshape(-1)
            eval_label = to_variable(
                                    np.array([x[1] for x in eval_data]).astype(
                                    'int64').reshape(train_parameters["batch_size"], 1))
            eval_doc = to_variable(eval_np_doc)
            eval_prediction, eval_acc = model_eval(eval_doc, eval_label)
            loss = fluid.layers.cross_entropy(eval_prediction, eval_label)
            avg_loss = fluid.layers.mean(loss)
            total_eval_cost.append(avg_loss.numpy()[0])
            total_eval_acc.append(eval_acc.numpy()[0])

    print("Final validation result: ave loss: %f, ave acc: %f" %
        (np.mean(total_eval_cost), np.mean(total_eval_acc) ))   

评估准确率如下:

在这里插入图片描述

7 预测结果

# 获取数据
def load_data(sentence):
    # 读取数据字典
    with open('data/dict.txt', 'r', encoding='utf-8') as f_data:
        dict_txt = eval(f_data.readlines()[0])
    dict_txt = dict(dict_txt)
    # 把字符串数据转换成列表数据
    keys = dict_txt.keys()
    data = []
    for s in sentence:
        # 判断是否存在未知字符
        if not s in keys:
            s = '<unk>'
        data.append(int(dict_txt[s]))
    return data

train_parameters["batch_size"] = 1
lab = [ '谣言', '非谣言']
 
with fluid.dygraph.guard(place = fluid.CUDAPlace(0)):
    
    data = load_data('兴仁县今天抢小孩没抢走,把孩子母亲捅了一刀,看见这车的注意了,真事,车牌号辽HFM055!!!!!赶紧散播! 都别带孩子出去瞎转悠了 尤其别让老人自己带孩子出去 太危险了 注意了!!!!辽HFM055北京现代朗动,在各学校门口抢小孩!!!110已经 证实!!全市通缉!!')
    data_np = np.array(data)
    data_np = np.array(np.pad(data_np,(0,150-len(data_np)),"constant",constant_values =train_parameters["vocab_size"])).astype('int64').reshape(-1)

    infer_np_doc = to_variable(data_np)
   
    model_infer = CNN()
    model, _ = fluid.load_dygraph("data/save_dir_900.pdparams")
    model_infer.load_dict(model)
    model_infer.eval()
    result = model_infer(infer_np_doc)
    print('预测结果为:', lab[np.argmax(result.numpy())])

在这里插入图片描述

8 最后

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1141116.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

使用NATAPP内网穿透详细步骤

在开发过程中&#xff0c;避免不了前端和后端不在一个局域网下&#xff0c;这时候&#xff0c;前后端联调的时候&#xff0c;前端访问不到后端的服务器&#xff0c;使用穿透就可以解决这个问题。 1、打开网址https://natapp.cn/2、进行注册&#xff0c;然后登录 3、击购买渠道…

大数据-Storm流式框架(五)---DRPC

DRPC 概念 分布式RPC&#xff08;DRPC&#xff09;背后的想法是使用Storm在运行中并行计算真正强大的函数。 Storm拓扑接收函数参数流作为输入&#xff0c;并为每个函数调用发送结果的输出流。 DRPC并不是Storm的一个特征&#xff0c;因为它基于Storm的spouts&#xff0c;bo…

推荐一个高效测试用例工具:XMind2TestCase..

一、背景 软件测试的核心是什么&#xff1f;毫无疑问是测试分析和测试用例设计&#xff0c;也是日常测试投入最多时间的工作内容之一。 然而&#xff0c;传统的测试用例设计过程有很多痛点&#xff1a; 1、使用Excel表格进行测试用例设计&#xff0c;虽然成本低&#xff0c;但…

FL Studio音乐编曲软件好不好用?要不要购买

音乐编曲软件的出现使得音乐创作者能够克服时间和空间的限制&#xff0c;随时随地进行创作。随着信息时代的发展&#xff0c;使用编曲软件已成为音乐创作领域的主流。那么编曲软件哪个好用呢&#xff1f;我推荐这三款。 在业内&#xff0c;常用的音乐编曲软件包括Cubase、Logi…

增强常见问题解答搜索引擎:在 Elasticsearch 中利用 KNN 的力量

在快速准确的信息检索至关重要的时代&#xff0c;开发强大的搜索引擎至关重要。 随着大型语言模型和信息检索架构&#xff08;如 RAG&#xff09;的出现&#xff0c;在现代软件系统中利用文本表示&#xff08;向量/嵌入&#xff09;和向量数据库已变得越来越流行。 在本文中&am…

scratch接钻石 2023年9月中国电子学会图形化编程 少儿编程 scratch编程等级考试三级真题和答案解析

目录 scratch接钻石 一、题目要求 1、准备工作 2、功能实现 二、案例分析

postgis ST_ClipByBox2D用法

官方文档 概述 geometry ST_ClipByBox2D(geometry geom, box2d box); 描述 以快速且宽松但可能无效的方式通过 2D 框剪切几何体。 拓扑上无效的输入几何图形不会导致抛出异常。 不保证输出几何图形有效&#xff08;特别是&#xff0c;可能会引入多边形的自相交&#xff09;…

FL Studio21.2中文版多少钱?值得下载吗

水果&#xff0c;全称Fruity Loop Studio&#xff0c;简称FL Studio。是一款全能的音乐制作软件&#xff0c;经过二十多年的演化更迭&#xff0c;其各项功能非常的先进。其开创性的Pat\song模式&#xff0c;也为初学者的学习提供了便利。那么水果音乐制作软件需要多少钱呢&…

鸡尾酒学习——沧海桑田

1、材料&#xff1a;冰块&#xff08;或者雪莲&#xff09;、蓝橙力娇酒、伏特加、橙汁、柠檬、雪碧/气泡水&#xff1b; 2、口感&#xff1a;酸甜口味&#xff0c;下层感觉是再喝橙汁&#xff0c;上层在喝有些度数的雪碧&#xff0c;可能是昨天的长岛冰茶过于惊艳&#xff0c;…

机器学习(四十九):高斯混合模型

补充一个聚类算法:高斯混合模型 假设有一组需要根据它们的相似性分组到几个部分或簇中的数据点。在机器学习中,这被称为聚类。有几种可用的聚类方法: K均值聚类分层聚类高斯混合模型在这篇文章中,我们将讨论高斯混合模型。 文章目录 正态或高斯分布期望最大化(EM)算法期…

微信 macOS 版迎来 3.8.4.20 更新,新功能一览

微信 macOS 版迎来 3.8.4.20 更新&#xff0c;增加了多个新功能&#xff0c;包括可将某个聊天在独立窗口中显示、可在聊天中搜索表情等。 附更新信息如下&#xff1a; 可将某个聊天在独立窗口中显示&#xff1b; ・可在聊天中搜索表情&#xff1b; ・新增 「看一看」&#…

Umijs创建一个antd+Ts项目环境

上文搭建Umijs环境并创建一个项目 介绍基本操作中 我们构建了一个Umijs环境的环境 但也只创建了一个页面 真正开发来讲 也不可能只创建几个界面这么简单 这里面的创建 还是非常完整的 这里 我创建一个文件夹 主要是做我们的项目目录 然后 我们在终端输入命令 然后 打开目录终…

VScode 自定义主题各参数解析

参考链接&#xff1a; vscode自定义颜色时各个参数的作用(史上最全)vscode编辑器&#xff0c;自己喜欢的颜色 由于 VScode 搜索高亮是在是太不起眼了&#xff0c;根本看不到此时选中到哪个搜索匹配了&#xff0c;所以对此进行了配置&#xff0c;具体想增加更多可配置项可参考…

第三篇:实践篇 《使用Assembler 实现图片任意切割功能》

实现原理&#xff1a; 共用一个texture、material、渲染状态等。紧通过修改vertex、uvs、indexes数据即可实现任意切割功能。 一、线段分割多边形&#xff0c;并分散多边形 线段分割多边形 已知多边形points&#xff0c;线段sp、ep。线段分割多边形得到两个多边形。 publi…

双十一期间VBA钜惠

大家好&#xff0c;本年度双11即将到来&#xff0c;为了答谢大家多年来的支持及更广泛的推广VBA的应用&#xff0c;“VBA语言専功”在此期间推出巨大优惠&#xff1a;此期间打包购买VBA技术资料实行半价优惠。 1 &#xff1a;面向对象&#xff1a;学员及非学员 2 &#xff1a…

AR眼镜安卓主板,智能眼镜光机方案定制

AR智能眼镜是一项涉及广泛技术的创新产品&#xff0c;它需要考虑到光学、显示、功耗、散热、延迟、重量以及佩戴人体工学等多个方面的因素&#xff0c;每一个项目都是技术进步所需攻克的难题。 在本文中&#xff0c;我们将重点讨论AR眼镜的主板和光学方案。 首先是AR智能眼镜的…

OpenCV学习(三)——响应鼠标事件(获取点击点坐标和颜色,利用鼠标进行绘图)

响应鼠标事件 3. 响应鼠标事件3.1 获取鼠标点击的坐标3.2 获取鼠标点击像素点的颜色3.3 在鼠标点击的位置生成圆3.4 通过拖动鼠标来绘制填充矩形3.5 通过拖动鼠标绘制未填充矩形3.6 使用鼠标选点绘制多边形3.7 按住鼠标左键进行绘图 3. 响应鼠标事件 使用OpenCV读取图像&#…

2023年第四届MathorCup大数据挑战赛(B题)|电商零售商家需求预测及库存优化问题|数学建模完整代码+建模过程全解全析

当大家面临着复杂的数学建模问题时&#xff0c;你是否曾经感到茫然无措&#xff1f;作为2021年美国大学生数学建模比赛的O奖得主&#xff0c;我为大家提供了一套优秀的解题思路&#xff0c;让你轻松应对各种难题。 希望这些想法对大家的做题有一定的启发和借鉴意义。 让我们来…

python接口自动化测试

写在前面的话&#xff1a; 这个是我实际工作中写的项目&#xff0c;主要用来备注和后期查看~~大家可以参考学习&#xff0c;但是请不要用于其他不好的途径~~ 准备工作&#xff1a; 先下载HTMLTestRunner.py 下载地址&#xff1a;HTMLTestRunner - tungwaiyips software 参考&a…