【Python 算法】信号处理通过陷波滤波器准确去除工频干扰

news2025/1/19 3:06:46

对于一个信号来说通常汇入工频噪声往往是因为交流电产生的电泳,影响了我们信号采集导致信号上存在工频干扰。
那么matlab去除工频干扰可以通过陷波滤波器实现。

通常使用scipy.signal实现信号的处理。
Scipy的信号处理模块(scipy.signal)来创建自定义的陷波滤波器。陷波滤波器通常用于去除特定频率上的噪声或干扰,比如电源线干扰。

import numpy as np
from scipy import signal
import matplotlib.pyplot as plt

# 生成示例数据,包括噪声和带有干扰的信号
fs = 1000  # 采样频率
t = np.arange(0, 1, 1/fs)
noise = 0.5 * np.sin(2 * np.pi * 50 * t)  # 50 Hz噪声
signal_with_noise = np.sin(2 * np.pi * 5 * t) + noise  # 5 Hz信号 + 50 Hz噪声

# 设计陷波滤波器来去除50 Hz干扰
f0 = 50.0  # 噪声的中心频率
Q = 30.0  # 带宽
b, a = signal.iirnotch(f0, Q, fs)

# 使用滤波器来去除噪声
filtered_signal = signal.lfilter(b, a, signal_with_noise)

# 绘制原始信号和去噪后的信号
plt.figure()
plt.subplot(2, 1, 1)
plt.plot(t, signal_with_noise, 'b', label='带噪声的信号')
plt.legend()
plt.subplot(2, 1, 2)
plt.plot(t, filtered_signal, 'g', label='去噪后的信号')
plt.legend()
plt.tight_layout()
plt.show()

上述示例中,signal.iirnotch函数用于设计陷波滤波器的系数,然后使用signal.lfilter来应用该滤波器。这可以帮助去除信号中指定频率的噪声或干扰。
在这里插入图片描述
上图中蓝色的线条是,5Hz正弦波,和50Hz干扰正弦波的求和。

绿色的线,是我们规定去irrnotch函数中心频率为50Hz,带宽Q为30进行处理。

实际上说,原始信号有一个正弦信号5Hz。
在这里插入图片描述
但是为什么滤波之后原始信号不是光滑的呢?
需要考虑陷波滤波器中心频率的带宽。

在陷波滤波器中,带宽Q(Quality Factor)表示滤波器的调制深度或选择性。它是一个无单位的参数,通常用于定义陷波滤波器的性能。

带宽Q的值越大,滤波器的选择性越高,也就是滤除特定频率附近的信号时,对该频率的抑制会更强。带宽Q的值越小,滤波器的选择性越低,也就是滤除特定频率附近的信号时,对该频率的抑制会较弱。

具体来说,对于陷波滤波器,Q的计算公式通常如下:

Q = f0 / Δf

Q是带宽Q。
f0是你希望去除的频率的中心点。
Δf是带宽,表示你希望保留的频率范围。
Q的值越大,带宽越小,滤波器越窄,抑制特定频率的效果越强。Q的值越小,带宽越大,滤波器越宽,抑制效果越弱。选择Q值的大小通常取决于你的应用和数据中噪声或干扰的性质。常见的Q值范围通常在10到100之间。

在陷波滤波器设计中,选择适当的Q值对于有效地去除特定频率的干扰非常重要。你需要根据具体的应用和数据特点来调整Q值,以获得最佳的滤波效果。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
通过对比四个不同的带宽q=1,10,50,100。我们可以观察波形得到结果。
当q=1的时候最接近原始期望得到的5Hz正弦波。但是产生了导数超调,在开始的位置有一个小翘起,那说明就是并不是理想的滤波器。或者说很难得到理想的滤波效果。信号的起始端和结束端都会产生该结果。
在信号处理中,滤波操作可能会引入一些边界效应,特别是在信号的开始和结束段,这种现象通常被称为"边界效应"或"边界伪像"。这是由于滤波器的有限长度以及信号的截断所引起的。
那为什么滤波结束开始端会产生波动,但是信号的结尾段不会产生波动?
边界效应的主要原因包括以下几点:

信号截断:通常,你对一个连续的信号进行离散采样,然后在有限长度的窗口内进行滤波。这会导致信号在开始和结束时被截断,因此,信号在这些边界处可能不连续。

**滤波器的有限长度:**滤波器通常是有限长度的,而不是无限长度。这意味着滤波器本身在时间或频率上也存在截断。当你将有限长度的滤波器应用于信号时,它会影响信号的边界处,引入额外的波动。

**初始条件和阶跃响应:**在滤波器的应用过程中,初始条件和滤波器的阶跃响应可能会导致边界效应。这些效应在滤波器开始和结束时可能会更为显著。

通常情况下,信号处理中的边界效应是不可避免的,并且可能因滤波器类型、信号特性和截断方式而异。为了减轻这些效应,你可以考虑以下方法:

使用合适的边界处理:一种方法是在信号的开始和结束时应用边界处理技术**,如零填充**、周期延拓或反射延拓,以减少边界效应的影响。

使用长滤波器:使用更长的滤波器可以减少滤波器的有限长度效应,但也会增加计算成本。

谨慎选择滤波器类型:不同类型的滤波器在边界效应方面有不同的性质,因此根据具体应用的需要选择适当的滤波器类型。

考虑后处理:在滤波后,对信号的边界段进行后处理,以减小边界效应的影响。
综上所述,边界效应是信号处理中的常见问题,可以通过适当的处理方法和滤波器选择来减轻其影响。

为了最终得到完美的滤波器,我们可以考虑零相位滤波器,简单来说就是这种滤波器进行双向滤波一定程度上减少了边界效应。

直接上代码和结果

# 开发时间:2023/10/25 22:22
# 开发内容:
# 运行环境:
# 备注内容:
import numpy as np
from scipy import signal
import matplotlib.pyplot as plt

# 生成示例数据,包括噪声和带有干扰的信号
fs = 1000  # 采样频率
t = np.arange(0, 1, 1/fs)
fs =1000
t =np.arange(0,1,1/fs)



noise = 0.5 * np.sin(2 * np.pi * 50 * t)  # 50 Hz噪声
signal_with_noise = np.sin(2 * np.pi * 5 * t) + noise  # 5 Hz信号 + 50 Hz噪声

# 设计陷波滤波器来去除50 Hz干扰
f0 = 50.0  # 噪声的中心频率
Q = 0.2# 带宽-------------------------------------------修改之处
b, a = signal.iirnotch(f0, Q, fs)

# 使用滤波器来去除噪声--------------------------------------修改之处
filtered_signal = signal.filtfilt(b, a, signal_with_noise)

# 绘制原始信号和去噪后的信号
plt.figure(1)
plt.subplot(2, 1, 1)
plt.plot(t, signal_with_noise, 'b', label='带噪声的信号')
plt.legend()
plt.subplot(2, 1, 2)
plt.plot(t, filtered_signal, 'g', label='q=100')
plt.legend()
plt.tight_layout()
plt.show()

fs=1000
t =np.arange(0,1,1/fs)

signalwave =np.sin(2*np.pi*5*t)
plt.figure(2)
plt.plot(signalwave,label="5Hz-sin")
plt.legend()
plt.show()


在这里插入图片描述
效果已经很好那么我们要是使用截断法,可以截断尾部的信号。而且我们这个滤波之后的信号不存在相位移动。。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1133469.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

算法通过村第十六关-滑动窗口|黄金笔记|结合堆的应用

文章目录 前言堆与滑动窗口结合的问题总结 前言 提示:不论记忆多么痛苦,它属于过去,已经逝去了,我们为什么还执着于它并让它代表我们?我们就这样,所以,我们受苦。 --丹津葩默 这个还是一个比较重…

堆(二叉树,带图详解)

一.堆 1.堆的概念 2.堆的存储方式 逻辑结构 物理结构 2.堆的插入问题 3.堆的基本实现(代码)(以小堆为例) 1.堆的初始化 2. 向上调整 3.插入结点 4. 交换函数、堆的打印 5.向下调整 6.删除根节点并调整成小根堆 7.获取堆…

Transformer详解学习

1. Transformer 原理 1.1 Transformer整体结构 Transformer的结构图,拆解开来,主要分为图上4个部分,其中最重要的就是2和3Encoder-Decoder部分,对咯,Transformer是一个基于Encoder-Decoder框架的模型。 接下来我将按照…

通过使用Cpolar内网穿透工具实现BUG管理系统的远程访问

文章目录 前言1. 本地安装配置BUG管理系统2. 内网穿透2.1 安装cpolar内网穿透2.2 创建隧道映射本地服务 3. 测试公网远程访问4. 配置固定二级子域名4.1 保留一个二级子域名 5. 配置二级子域名6. 使用固定二级子域名远程7. 结语 前言 BUG管理软件,作为软件测试工程师的必备工具…

Kettle循环结果集中的数据并传入SQL组件【或转换】里面

简介:在尝试使用了结果集的Demo循环后,进入到生产还是有一点问题的,以下是各个组件的分解解释、遇到的问题,以及解决问题的思路,最后文章的最后会把完整的Ktr文件放出来。记得收藏点赞喔! 先来看张图~来自…

【疯狂Java】数组

1、一维数组 (1)初始化 ①静态初始化:只指定元素,不指定长度 new 类型[] {元素1,元素2,...} int[] intArr; intArr new int[] {5,6,7,8}; ②动态初始化:只指定长度,不指定元素 new 类型[数组长度] int[] princes new in…

【德哥说库系列】-PostgreSQL跨版本升级

📢📢📢📣📣📣 哈喽!大家好,我是【IT邦德】,江湖人称jeames007,10余年DBA及大数据工作经验 一位上进心十足的【大数据领域博主】!😜&am…

【算法训练-动态规划 五】【二维DP问题】最大正方形

废话不多说,喊一句号子鼓励自己:程序员永不失业,程序员走向架构!本篇Blog的主题是【动态规划】,使用【数组】这个基本的数据结构来实现,这个高频题的站点是:CodeTop,筛选条件为&…

Kafka - 深入了解Kafka基础架构:Kafka的基本概念

文章目录 Kafka的基本概念 Kafka的基本概念 我们首先了解一些Kafka的基本概念。 1)Producer :消息生产者,就是向kafka broker发消息的客户端2)Consumer :消息消费者,向kafka broker获取消息的客户端3&…

如何避免Web3诈骗,重点关注这5个安全标识提醒

从预付费电子邮件到网络钓鱼攻击,互联网充斥着各种骗局。尽管区块链内置了加密功能,但它们也遭受了相当多的恶意攻击并被获取了对帐户的访问权限。幸运的是,大多数诈骗攻击都有特定的安全标识提醒,精明的用户可以留意,…

淘宝商品详情API接口,解决滑块问题

淘宝商品详情API接口是一种用于获取淘宝商品详细信息的接口,它可以帮助开发者在自己的网站或应用程序中快速获取淘宝商品的详细信息,包括价格、图片、商品描述等。 该接口的主要作用包括: 商品信息展示:通过淘宝商品详情API接口…

网络协议--IGMP:Internet组管理协议

13.1 引言 12.4节概述了IP多播给出,并介绍了D类IP地址到以太网地址的映射方式。也简要说明了在单个物理网络中的多播过程,但当涉及多个网络并且多播数据必须通过路由器转发时,情况会复杂得多。 本章将介绍用于支持主机和路由器进行多播的In…

wkhtmltoimage/wkhtmltopdf 使用实践

1. 介绍 wkhtmltopdf/wkhtmltoimage 用于将简单的html页面转换为pdf或图片; 2.安装 downloads 2.1. mac os 下载64-bit 版本然后按照指示安装, 遇到 untrust developers 时,需要在 Settings -> Privacy 处信任下该安装包。 2.2. debian # 可用…

[AutoSar NVM] 存储架构

依AutoSAR及公开知识辛苦整理,禁止转载。 专栏 《深入浅出AutoSAR》, 全文 2900 字. 图片来源: 知乎 汽车的ECU内存中有很多不同类型的变量,这些变量包括了车辆各个系统和功能所需的数据。大部分变量在ECU掉电后就会丢失&#x…

AnkiPDF Guru软件评测:打开全新学习方式的大门

在当今信息爆炸的时代,如何高效学习和记忆成为了每个人关注的焦点。AnkiPDF Guru软件作为结合了Anki和PDF的学习利器,向我们展示了一种全新的学习方式。本文将以软件的实用性和使用场景为切入点,从专业的角度客观分析和评测该软件&#xff0c…

3.2.6:工作表的VBA操作引申

我给VBA的定义:VBA是个人小型自动化处理的有效工具。利用好了,可以大大提高自己的劳动效率,而且可以提高数据处理的准确度。我推出的VBA系列教程共九套和一部VBA汉英手册,现在已经全部完成,希望大家利用、学习。 如果…

【毕业设计】基于SSM酒店后台管理系统

前言 🔥本系统可以选作为毕业设计,运用了现在主流的SSM框架,采用Maven来帮助我们管理依赖,所选结构非常合适大学生所学的技术,本系统结构简单,容易理解!本系统功能结构完整,非常高适…

express session JWT JSON Web Token

了解 Session 认证的局限性 Session 认证机制需要配合 cookie 才能实现。由于 Cookie 默认不支持跨域访问,所以,当涉及到前端跨域请求后端接口的时候,需要做很多额外的配置,才能实现跨域 Session 认证。 注意: 当前端…

rust学习—— 复合类型结构体、复合类型枚举、复合类型元组

文章目录 复合类型元组用模式匹配解构元组用点来访问元组元组的使用示例 复合类型结构体结构体定义结构体语法创建结构体实例访问结构体字段简化结构体创建结构体更新语法 结构体的内存排列元组结构体(Tuple Struct)单元结构体(Unit-like Struct)结构体数据的所有权打印结构体 …

k8s kubeadm配置

master 192.168.41.30 docker、kubeadm、kubelet、kubectl、flannel node01 192.168.41.31 docker、kubeadm、kubelet、kubectl、flannel node02 192.168.41.32 do…