非侵入式负荷检测与分解:电力数据挖掘新视角

news2025/1/11 19:59:57

电力数据挖掘

  • 概述
  • 案例背景
  • 分析目标
  • 分析过程
  • 数据准备
    • 数据探索
    • 缺失值处理
  • 属性构造
    • 设备数据
    • 周波数据
    • 模型训练
  • 性能度量
  • 推荐阅读

在这里插入图片描述

主页传送门:📀 传送

概述


  摘要:本案例将根据已收集到的电力数据,深度挖掘各电力设备的电流、电压和功率等情况,分析各电力设备的实际用电量,进而为电力公司制定电能能源策略提供一定的参考依据。更多详细内容请参考《Python数据挖掘:入门进阶与实用案例分析》一书。

案例背景

  为了更好地监测用电设备的能耗情况,电力分项计量技术随之诞生。电力分项计量对于电力公司准确预测电力负荷、科学制定电网调度方案、提高电力系统稳定性和可靠性有着重要意义。对用户而言,电力分项计量可以帮助用户了解用电设备的使用情况,提高用户的节能意识,促进科学合理用电。

在这里插入图片描述

分析目标


  本案例根据非侵入式负荷检测与分解的电力数据挖掘的背景和业务需求,需要实现的目标如下:

  • 分析每个用电设备的运行属性。

  • 构建设备判别属性库。

  • 利用K最近邻模型,实现从整条线路中“分解”出每个用电设备的独立用电数据。

分析过程


在这里插入图片描述

数据准备


数据探索


  在本案例的电力数据挖掘分析中,不会涉及操作记录数据。因此,此处主要获取设备数据、周波数据和谐波数据。在获取数据后,由于数据表较多,每个表的属性也较多,所以需要对数据进行数据探索分析。在数据探索过程中主要根据原始数据特点,对每个设备的不同属性对应的数据进行可视化,得到的部分结果如图1~图3所示。

无功功率和总无功功率

在这里插入图片描述

电流轨迹:
在这里插入图片描述

电压轨迹:
在这里插入图片描述

可视化数据代码示例:

import pandas as pd

import matplotlib.pyplot as plt

import os

 

filename = os.listdir('../data/附件1')  # 得到文件夹下的所有文件名称

n_filename = len(filename)  

# 给各设备的数据添加操作信息,画出各属性轨迹图并保存

def fun(a):

    save_name = ['YD1', 'YD10', 'YD11', 'YD2', 'YD3', 'YD4',

           'YD5', 'YD6', 'YD7', 'YD8', 'YD9']

    plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签

    plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

    for i in range(a):

        Sb = pd.read_excel('../data/附件1/' + filename[i], '设备数据', index_col = None)

        Xb = pd.read_excel('../data/附件1/' + filename[i], '谐波数据', index_col = None)

        Zb = pd.read_excel('../data/附件1/' + filename[i], '周波数据', index_col = None)

        # 电流轨迹图

        plt.plot(Sb['IC'])

        plt.title(save_name[i] + '-IC')

        plt.ylabel('电流(0.001A)')

        plt.show()

        # 电压轨迹图

        lt.plot(Sb['UC'])

        plt.title(save_name[i] + '-UC')

        plt.ylabel('电压(0.1V)')

        plt.show()

        # 有功功率和总有功功率

        plt.plot(Sb[['PC', 'P']])

        plt.title(save_name[i] + '-P')

        plt.ylabel('有功功率(0.0001kW)')

        plt.show()

        # 无功功率和总无功功率

        plt.plot(Sb[['QC', 'Q']])

        plt.title(save_name[i] + '-Q')

        plt.ylabel('无功功率(0.0001kVar)')

        plt.show()

        # 功率因数和总功率因数

        plt.plot(Sb[['PFC', 'PF']])

        plt.title(save_name[i] + '-PF')

        plt.ylabel('功率因数(%)')

        plt.show()

        # 谐波电压

        plt.plot(Xb.loc[:, 'UC02':].T)

        plt.title(save_name[i] + '-谐波电压')

        plt.show()

        # 周波数据

        plt.plot(Zb.loc[:, 'IC001':].T)

        plt.title(save_name[i] + '-周波数据')

        plt.show()

 

fun(n_filename)

缺失值处理


通过数据探索,发现数据中部分“time”属性存在缺失值,需要对这部分缺失值进行处理。由于每份数据中“time”属性的缺失时间段长不同,所以需要进行不同的处理。对于每个设备数据中具有较大缺失时间段的数据进行删除处理,对于具有较小缺失时间段的数据使用前一个值进行插补。

在进行缺失值处理之前,需要将训练数据中所有设备数据中的设备数据表、周波数据表、谐波数据表和操作记录表,以及测试数据中所有设备数据中的设备数据表、周波数据表和谐波数据表都提取出来,作为独立的数据文件,生成的部分文件如图4所示。

在这里插入图片描述

提取数据文件代码示例:

# 将xlsx文件转化为CSV文件

import glob

import pandas as pd

import math

 

def file_transform(xls):

    print('共发现%s个xlsx文件' % len(glob.glob(xls)))

    print('正在处理............')

    for file in glob.glob(xls):  # 循环读取同文件夹下的xlsx文件

        combine1 = pd.read_excel(file, index_col=0, sheet_name=None)

        for key in combine1:

            combine1[key].to_csv('../tmp/' + file[8: -5] + key + '.csv', encoding='utf-8')

    print('处理完成')

 

xls_list = ['../data/附件1/*.xlsx', '../data/附件2/*.xlsx']

file_transform(xls_list[0])  # 处理训练数据

file_transform(xls_list[1])  # 处理测试数据

提取数据文件完成后,对提取的数据文件进行缺失值处理,处理后生成的部分文件如图5所示。

在这里插入图片描述
缺失值处理代码示例:

# 对每个数据文件中较大缺失时间点数据进行删除处理,较小缺失时间点数据进行前值替补

def missing_data(evi):

    print('共发现%s个CSV文件' % len(glob.glob(evi)))

    for j in glob.glob(evi):

        fr = pd.read_csv(j, header=0, encoding='gbk')

        fr['time'] = pd.to_datetime(fr['time'])

        helper = pd.DataFrame({'time': pd.date_range(fr['time'].min(), fr['time'].max(), freq='S')})

        fr = pd.merge(fr, helper, on='time', how='outer').sort_values('time')

        fr = fr.reset_index(drop=True)

 

        frame = pd.DataFrame()

        for g in range(0, len(list(fr['time'])) - 1):

            if math.isnan(fr.iloc[:, 1][g + 1]) and math.isnan(fr.iloc[:, 1][g]):

                continue

            else:

                scop = pd.Series(fr.loc[g])

                frame = pd.concat([frame, scop], axis=1)

        frame = pd.DataFrame(frame.values.T, index=frame.columns, columns=frame.index)

        frames = frame.fillna(method='ffill')

        frames.to_csv(j[:-4] + '1.csv', index=False, encoding='utf-8')

    print('处理完成')

 

evi_list = ['../tmp/附件1/*数据.csv', '../tmp/附件2/*数据.csv']

missing_data(evi_list[0])  # 处理训练数据

missing_data(evi_list[1])  # 处理测试数据

属性构造


虽然在数据准备过程中对属性进行了初步处理,但是引入的属性太多,而且这些属性之间存在重复的信息。为了保留重要的属性,建立精确、简单的模型,需要对原始属性进一步筛选与构造。

设备数据


在数据探索过程中发现,不同设备的无功功率、总无功功率、有功功率、总有功功率、功率因数和总功率因数差别很大,具有较高的区分度,故本案例选择无功功率、总无功功率、有功功率、总有功功率、功率因数和总功率因数作为设备数据的属性构建判别属性库。

处理好缺失值后,每个设备的数据都由一张表变为了多张表,所以需要将相同类型的数据表合并到一张表中,如将所有设备的设备数据表合并到一张表当中。同时,因为缺失值处理的其中一种方式是使用前一个值进行插补,所以产生了相同的记录,需要对重复出现的记录进行处理,处理后生成的数据表如表1所示。
在这里插入图片描述
合并且去重设备数据代码示例:

import glob

import pandas as pd

import os

 

# 合并11个设备数据及处理合并中重复的数据

def combined_equipment(csv_name):

    # 合并

    print('共发现%s个CSV文件' % len(glob.glob(csv_name)))

    print('正在处理............')

    for i in glob.glob(csv_name):  # 循环读取同文件夹下的CSV文件

        fr = open(i, 'rb').read()

        file_path = os.path.split(i)

        with open(file_path[0] + '/device_combine.csv', 'ab') as f:

            f.write(fr)

    print('合并完毕!')

    # 去重

    df = pd.read_csv(file_path[0] + '/device_combine.csv', header=None, encoding='utf-8')

    datalist = df.drop_duplicates()

    datalist.to_csv(file_path[0] + '/device_combine.csv', index=False, header=0)

    print('去重完成')

 

csv_list = ['../tmp/附件1/*设备数据1.csv', '../tmp/附件2/*设备数据1.csv']

combined_equipment(csv_list[0])  # 处理训练数据

combined_equipment(csv_list[1])  # 处理测试数据

周波数据


在数据探索过程中发现,周波数据中的电流随着时间的变化有较大的起伏,不同设备的周波数据中的电流绘制出来的折线图的起伏不尽相同,具有明显的差异,故本案例选择波峰和波谷作为周波数据的属性构建判别属性库。

由于原始的周波数据中并未存在电流的波峰和波谷两个属性,所以需要进行属性构建,构建生成的数据表如表2所示。

在这里插入图片描述
构建周波数据中的属性代码示例:

# 求取周波数据中电流的波峰和波谷作为属性参数

import glob

import pandas as pd

from sklearn.cluster import KMeans

import os

 

def cycle(cycle_file):

    for file in glob.glob(cycle_file):

        cycle_YD = pd.read_csv(file, header=0, encoding='utf-8')

        cycle_YD1 = cycle_YD.iloc[:, 0:128]

        models = []

        for types in range(0, len(cycle_YD1)):

            model = KMeans(n_clusters=2, random_state=10)

            model.fit(pd.DataFrame(cycle_YD1.iloc[types, 1:]))  # 除时间以外的所有列

            models.append(model)

 

        # 相同状态间平稳求均值

        mean = pd.DataFrame()

        for model in models:

            r = pd.DataFrame(model.cluster_centers_, )  # 找出聚类中心

            r = r.sort_values(axis=0, ascending=True, by=[0])

            mean = pd.concat([mean, r.reset_index(drop=True)], axis=1)

        mean = pd.DataFrame(mean.values.T, index=mean.columns, columns=mean.index)

        mean.columns = ['波谷', '波峰']

        mean.index = list(cycle_YD['time'])

        mean.to_csv(file[:-9] + '波谷波峰.csv', index=False, encoding='gbk ')

 

cycle_file = ['../tmp/附件1/*周波数据1.csv', '../tmp/附件2/*周波数据1.csv']

cycle(cycle_file[0])  # 处理训练数据

cycle(cycle_file[1])  # 处理测试数据

 

# 合并周波的波峰波谷文件

def merge_cycle(cycles_file):

    means = pd.DataFrame()

    for files in glob.glob(cycles_file):

        mean0 = pd.read_csv(files, header=0, encoding='gbk')

        means = pd.concat([means, mean0])

    file_path = os.path.split(glob.glob(cycles_file)[0])

    means.to_csv(file_path[0] + '/zuhe.csv', index=False, encoding='gbk')

    print('合并完成')

 

cycles_file = ['../tmp/附件1/*波谷波峰.csv', '../tmp/附件2/*波谷波峰.csv']

merge_cycle(cycles_file[0])  # 训练数据

merge_cycle(cycles_file[1])  # 测试数据

模型训练


在判别设备种类时,选择K最近邻模型进行判别,利用属性构建而成的属性库训练模型,然后利用训练好的模型对设备1和设备2进行判别。构建判别模型并对设备种类进行判别,如代码清单6所示。

建立判别模型并对设备种类进行判别代码示例:

import glob

import pandas as pd

from sklearn import neighbors

import pickle

import os

 

# 模型训练

def model(test_files, test_devices):

    # 训练集

    zuhe = pd.read_csv('../tmp/附件1/zuhe.csv', header=0, encoding='gbk')

    device_combine = pd.read_csv('../tmp/附件1/device_combine.csv', header=0, encoding='gbk')

    train = pd.concat([zuhe, device_combine], axis=1)

    train.index = train['time'].tolist()  # 把“time”列设为索引

    train = train.drop(['PC', 'QC', 'PFC', 'time'], axis=1)

    train.to_csv('../tmp/' + 'train.csv', index=False, encoding='gbk')

    # 测试集

    for test_file, test_device in zip(test_files, test_devices):

        test_bofeng = pd.read_csv(test_file, header=0, encoding='gbk')

        test_devi = pd.read_csv(test_device, header=0, encoding='gbk')

        test = pd.concat([test_bofeng, test_devi], axis=1)

        test.index = test['time'].tolist()  # 把“time”列设为索引

        test = test.drop(['PC', 'QC', 'PFC', 'time'], axis=1)

 

        # K最近邻

        clf = neighbors.KNeighborsClassifier(n_neighbors=6, algorithm='auto')

        clf.fit(train.drop(['label'], axis=1), train['label'])

        predicted = clf.predict(test.drop(['label'], axis=1))

        predicted = pd.DataFrame(predicted)

        file_path = os.path.split(test_file)[1]

        test.to_csv('../tmp/' + file_path[:3] + 'test.csv', encoding='gbk')

        predicted.to_csv('../tmp/' + file_path[:3] + 'predicted.csv', index=False, encoding='gbk')

        with open('../tmp/' + file_path[:3] + 'model.pkl', 'ab') as pickle_file:

            pickle.dump(clf, pickle_file)

        print(clf)

 

model(glob.glob('../tmp/附件2/*波谷波峰.csv'),

      glob.glob('../tmp/附件2/*设备数据1.csv'))

性能度量


根据代码清单6的设备判别结果,对模型进行模型评估,得到的结果如下
在这里插入图片描述
混淆矩阵如图7所示:
在这里插入图片描述
ROC曲线如图8所示 :
在这里插入图片描述
模型评估代码示例:

import glob

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn import metrics

from sklearn.preprocessing import label_binarize

import os

import pickle

 

# 模型评估

def model_evaluation(model_file, test_csv, predicted_csv):

    for clf, test, predicted in zip(model_file, test_csv, predicted_csv):

        with open(clf, 'rb') as pickle_file:

            clf = pickle.load(pickle_file)

        test = pd.read_csv(test, header=0, encoding='gbk')

        predicted = pd.read_csv(predicted, header=0, encoding='gbk')

        test.columns = ['time', '波谷', '波峰', 'IC', 'UC', 'P', 'Q', 'PF', 'label']

        print('模型分类准确度:', clf.score(test.drop(['label', 'time'], axis=1), test['label']))

        print('模型评估报告:\n', metrics.classification_report(test['label'], predicted))

 

        confusion_matrix0 = metrics.confusion_matrix(test['label'], predicted)

        confusion_matrix = pd.DataFrame(confusion_matrix0)

        class_names = list(set(test['label']))

 

        tick_marks = range(len(class_names))

        sns.heatmap(confusion_matrix, annot=True, cmap='YlGnBu', fmt='g')

        plt.xticks(tick_marks, class_names)

        plt.yticks(tick_marks, class_names)

        plt.tight_layout()

        plt.title('混淆矩阵')

        plt.ylabel('真实标签')

        plt.xlabel('预测标签')

        plt.show()

        y_binarize = label_binarize(test['label'], classes=class_names)

        predicted = label_binarize(predicted, classes=class_names)

 

        fpr, tpr, thresholds = metrics.roc_curve(y_binarize.ravel(), predicted.ravel())

        auc = metrics.auc(fpr, tpr)

        print('计算auc:', auc)  

        # 绘图

        plt.figure(figsize=(8, 4))

        lw = 2

        plt.plot(fpr, tpr, label='area = %0.2f' % auc)

        plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')

        plt.fill_between(fpr, tpr, alpha=0.2, color='b')

        plt.xlim([0.0, 1.0])

        plt.ylim([0.0, 1.05])

        plt.xlabel('1-特异性')

        plt.ylabel('灵敏度')

        plt.title('ROC曲线')

        plt.legend(loc='lower right')

        plt.show()

 

model_evaluation(glob.glob('../tmp/*model.pkl'),

                 glob.glob('../tmp/*test.csv'),

                 glob.glob('../tmp/*predicted.csv'))

根据分析目标,需要计算实时用电量。实时用电量计算的是瞬时的用电器的电流、电压和时间的乘积,公式如下。
在这里插入图片描述
其中,为实时用电量,单位是0.001kWh。为功率,单位为W。

实时用电量计算,得到的实时用电量如表3所示。

在这里插入图片描述
计算实时用电量

# 计算实时用电量并输出状态表

def cw(test_csv, predicted_csv, test_devices):

    for test, predicted, test_device in zip(test_csv, predicted_csv, test_devices):

        # 划分预测出的时刻表

        test = pd.read_csv(test, header=0, encoding='gbk')

        test.columns = ['time', '波谷', '波峰', 'IC', 'UC', 'P', 'Q', 'PF', 'label']

        test['time'] = pd.to_datetime(test['time'])

        test.index = test['time']

        predicteds = pd.read_csv(predicted, header=0, encoding='gbk')

        predicteds.columns = ['label']

        indexes = []

        class_names = list(set(test['label']))

        for j in class_names:

            index = list(predicteds.index[predicteds['label'] == j])

            indexes.append(index)

 

        # 取出首位序号及时间点

        from itertools import groupby  # 连续数字

        dif_indexs = []

        time_indexes = []

        info_lists = pd.DataFrame()

        for y, z in zip(indexes, class_names):

            dif_index = []

            fun = lambda x: x[1] - x[0]

            for k, g in groupby(enumerate(y), fun):

                dif_list = [j for i, j in g]  # 连续数字的列表

                if len(dif_list) > 1:

                    scop = min(dif_list)  # 选取连续数字范围中的第一个

                else:

                    scop = dif_list[0   ]

                dif_index.append(scop)

            time_index = list(test.iloc[dif_index, :].index)

            time_indexes.append(time_index)

            info_list = pd.DataFrame({'时间': time_index, 'model_设备状态': [z] * len(time_index)})

            dif_indexs.append(dif_index)

            info_lists = pd.concat([info_lists, info_list])

        # 计算实时用电量并保存状态表

        test_devi = pd.read_csv(test_device, header=0, encoding='gbk')

        test_devi['time'] = pd.to_datetime(test_devi['time'])

        test_devi['实时用电量'] = test_devi['P'] * 100 / 3600

        info_lists = info_lists.merge(test_devi[['time', '实时用电量']],

                                      how='inner', left_on='时间', right_on='time')

        info_lists = info_lists.sort_values(by=['时间'], ascending=True)

        info_lists = info_lists.drop(['time'], axis=1)

        file_path = os.path.split(test_device)[1]

        info_lists.to_csv('../tmp/' + file_path[:3] + '状态表.csv', index=False, encoding='gbk')

        print(info_lists)

 

cw(glob.glob('../tmp/*test.csv'),

   glob.glob('../tmp/*predicted.csv'),

   glob.glob('../tmp/附件2/*设备数据1.csv'))

推荐阅读


在这里插入图片描述
正版链接:https://item.jd.com/13814157.html

《Python数据挖掘:入门、进阶与实用案例分析》是一本以项目实战案例为驱动的数据挖掘著作,它能帮助完全没有Python编程基础和数据挖掘基础的读者快速掌握Python数据挖掘的技术、流程与方法。在写作方式上,与传统的“理论与实践结合”的入门书不同,它以数据挖掘领域的知名赛事“泰迪杯”数据挖掘挑战赛(已举办10届)和“泰迪杯”数据分析技能赛(已举办5届)(累计1500余所高校的10余万师生参赛)为依托,精选了11个经典赛题,将Python编程知识、数据挖掘知识和行业知识三者融合,让读者在实践中快速掌握电商、教育、交通、传媒、电力、旅游、制造等7大行业的数据挖掘方法。

本书不仅适用于零基础的读者自学,还适用于教师教学,为了帮助读者更加高效地掌握本书的内容,本书提供了以下10项附加价值:
(1)建模平台:提供一站式大数据挖掘建模平台,免配置,包含大量案例工程,边练边学,告别纸上谈兵
(2)视频讲解:提供不少于600分钟Python编程和数据挖掘相关教学视频,边看边学,快速收获经验值
(3)精选习题:精心挑选不少于60道数据挖掘练习题,并提供详细解答,边学边练,检查知识盲区
(4)作者答疑:学习过程中有任何问题,通过“树洞”小程序,纸书拍照,一键发给作者,边问边学,事半功倍
(5)数据文件:提供各个案例配套的数据文件,与工程实践结合,开箱即用,增强实操性
(6)程序代码:提供书中代码的电子文件及相关工具的安装包,代码导入平台即可运行,学习效果立竿见影
(7)教学课件:提供配套的PPT课件,使用本书作为教材的老师可以申请,节省备课时间
(8)模型服务:提供不少于10个数据挖掘模型,模型提供完整的案例实现过程,助力提升数据挖掘实践能力
(9)教学平台:泰迪科技为本书提供的附加资源提供一站式数据化教学平台,附有详细操作指南,边看边学边练,节省时间
(10)就业推荐:提供大量就业推荐机会,与1500+企业合作,包含华为、京东、美的等知名企业

通过学习本书,读者可以理解数据挖掘的原理,迅速掌握大数据技术的相关操作,为后续数据分析、数据挖掘、深度学习的实践及竞赛打下良好的技术基础。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1132453.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

全网最全面最深入 剖析华为“五看三定”战略神器中的“五看”(即市场洞察)(长文干货,建议收藏)

添加图片注释,不超过 140 字(可选) (本文摘自谢宁专著《华为战略管理法:DSTE实战体系》,欢迎购买) 兵法有云:胜兵先胜而后求战,败兵先战而后求胜,所谓胜兵先…

对被测软件来说,需要多少测试就足够了?

相信每位测试人员或者测试团队都曾遇到这样的问题“需要多少测试才能确保软件成功发布”。这个答案很难回答,在很大程度上,这取决于被测软件的类型、用途和目标受众。所有的测试人员都希望用一种比测试手电筒的应用程序更严格的方法来测试其他软件。然而…

JavaScript异步编程:提升性能与用户体验

目录 什么是异步编程? 回调函数 Promise Async/Await 总结 在Web开发中,处理耗时操作是一项重要的任务。如果我们在执行这些操作时阻塞了主线程,会导致页面失去响应,用户体验下降。JavaScript异步编程则可以解决这个问题&…

睿趣科技:抖音开网店多久回本

随着互联网的发展,越来越多的人选择在抖音上开设网店。然而,开店容易,经营难。许多人关心的问题是:抖音开网店多久能回本? 首先,我们需要明确一点,抖音开网店的回本时间并不是固定的,它受到许多…

经典卷积神经网络 - NIN

网络中的网络,NIN。 AlexNet和VGG都是先由卷积层构成的模块充分抽取空间特征,再由全连接层构成的模块来输出分类结果。但是其中的全连接层的参数量过于巨大,因此NiN提出用1*1卷积代替全连接层,串联多个由卷积层和“全连接”层构成…

C语言:杨氏矩阵、杨氏三角、单身狗1与单身狗2

下面介绍四道题目和解法 1.杨氏矩阵 算法:右上角计算 题目:有一个数字矩阵,矩阵的每行从左到右是递增的,矩阵从上到下是递增的,请编写程序在这样的矩阵中查找某个数字是否存在。 要求:时间复杂度小于O(N…

react笔记基础部分(组件生命周期路由)

注意点&#xff1a; class是一个关键字&#xff0c; 类。 所以react 写class, 用classname &#xff0c;会自动编译替换class 点击方法&#xff1a; <button onClick {this.sendData}>给父元素传值</button>常用的插件&#xff1a; 需要引入才能使用的&#xf…

ubuntu执行普通用户或root用户执行apt-get update时报错Couldn‘t create temporary file /tmp/...

apt-get update无法更新&#xff0c;报错&#xff1a; Couldnt create temporary file /tmp/apt.conf.GSzv74 for passing config to&#xff0c;&#xff0c;&#xff0c; 这是由于/tmp目录没有权限导致的&#xff0c;解决办法&#xff1a; chmod 777 /tmp

额定电压输出电流:电源性能测试指标之一

额定电压和额定电流是电源设计生产时需要考虑的两个重要参数&#xff0c;额定电压是电源输出的电压标准&#xff0c;额定电流是电源能够提供的最大电流容量。这两个参数是评估电源性能的重要指标之一&#xff0c;指导着电气设备的正常工作运行。 额定电压输出电流测试方法 额定…

上门家政维修多城市代理多商户师傅入驻小程序开源版开发

上门家政维修多城市代理多商户师傅入驻小程序开源版开发 用户登录/注册&#xff1a;用户可以使用手机号或第三方账号登录或注册小程序。 服务分类&#xff1a;在主页上显示不同的服务分类&#xff0c;例如电器维修、家具拆装、管道疏通、清洁保洁等。 城市选择&#xff1a;用…

C++反转链表递归

文章目录 题目描述解题思路代码复杂度分析 题目描述 LCR 024. 反转链表 - 力扣&#xff08;LeetCode&#xff09; 给定单链表的头节点 head &#xff0c;请反转链表&#xff0c;并返回反转后的链表的头节点。 解题思路 这里我们采用递归的思路来解决首先我们分为两个视角来查看…

竞赛选题 深度学习卫星遥感图像检测与识别 -opencv python 目标检测

文章目录 0 前言1 课题背景2 实现效果3 Yolov5算法4 数据处理和训练5 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; **深度学习卫星遥感图像检测与识别 ** 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;学长非常推荐…

超好用的数据可视化工具推荐,小白也适用!

Excel、Tableau……可以做数据可视化的工具不少&#xff0c;但简单、好用又高效&#xff0c;甚至连无SQL基础的小白也能轻松使用的就真没几个。奥威BI数据可视化工具是少有的操作难度低、成本支出低、灵活自助分析能力强的BI工具。 1、操作难度低 奥威BI数据可视化工具的操作…

图片放大镜效果

安装&#xff1a; vueuse 插件 npm i vueuse/core 搜索&#xff1a; useMouseInElement 方法 <template><div ref"target"><h1>Hello world</h1></div> </template><script> import { ref } from vue import { useM…

图纸管理制度《三》

一、目的和使用范围 为了更好的规范设备及设计图纸的保管、发放和使用&#xff0c;根据业主仅提供四套图纸的实际情况&#xff0c;本着施工图纸服务施工的第一原则&#xff0c;合理利用有限的图纸资源&#xff0c;将《管理制度汇编》中的图纸管理制度进行细化&#xff0c;制定本…

视频与png图片批量分类技巧:轻松管理文件

在我们的日常工作中&#xff0c;经常会遇到需要处理大量文件的情况&#xff0c;其中就包括视频和png图片。这些文件数量繁多&#xff0c;如果一个个手动分类&#xff0c;不仅耗时而且容易出错。因此&#xff0c;掌握批量分类技巧成为了高效管理文件的关键。本文将为您运用云炫文…

地面文物古迹保护方案,用科技为文物古迹撑起“智慧伞”

一、行业背景 当前&#xff0c;文物保护单位的安防系统现状存在各种管理弊端&#xff0c;安防系统没有统一的平台&#xff0c;系统功能不足、建设标准不同&#xff0c;产品和技术多样&#xff0c;导致各系统独立&#xff0c;无法联动&#xff0c;形成了“信息孤岛”。地面文物…

64从零开始学Java之关于日期时间的新特性

作者&#xff1a;孙玉昌&#xff0c;昵称【一一哥】&#xff0c;另外【壹壹哥】也是我哦 千锋教育高级教研员、CSDN博客专家、万粉博主、阿里云专家博主、掘金优质作者 前言 在上一篇文章中&#xff0c;壹哥给大家讲解了Java里的格式化问题&#xff0c;这样我们就可以个性化设…

《排错》Python重新安装后,执行yum命令报错

安装完新的python以后&#xff0c;发现yum命令没法用 以下是报错信息&#xff1a; [rootmaster ~]# yum There was a problem importing one of the Python modules required to run yum. The error leading to this problem was:No module named yumPlease install a packag…

ResNet中文翻译(Deep Residual Learning for Image Recognition)

Deep Residual Learning for Image Recognition 用于图像识别的深度残差学习 原文&#xff1a;https://arxiv.org/abs/1512.03385 摘要 更深层次的神经网络更难训练。我们提出了一个残差学习框架&#xff0c;以简化比以前使用的网络更深的网络训练。我们明确地将层重新表示为参…