[moeCTF 2023] crypto

news2025/1/10 22:39:30

这个比赛从8月到10月,漫长又不分段。结束了以后前边的都基本上忘光了。还是分段提交的好点,有机会写写。不过反正也是新生赛,又不是新生只是打个热闹。

ezrot

厨子解决大部分问题

可可的新围墙

给了1个串

mt3_hsTal3yGnM_p3jocfFn3cp3_hFs3c_3TrB__i3_uBro_lcsOp}e{ciri_hT_avn3Fa_j

经过思考发现根据头确定处理的顺序

a = 'mt3_hsTal3yGnM_p3j'
b = 'ocfFn3cp3_hFs3c_3TrB__i3_uBro_lcsOp}'
c = 'e{ciri_hT_avn3Fa_j'

flag = ''
for i in range(18):
    flag += a[0]+b[0]+c[0]+b[1]
    a = a[1:]
    b = b[2:]
    c = c[1:]
    print(flag)

 皇帝的新密码

tvljam{JhLzhL_JPwoLy_Pz_h_cLyF_zPtwPL_JPwoLy!_ZmUVUA40q5KbEQZAK5Ehag4Av}

结构都已经有了,只是这偏移怎么上移法,根据头判断

 

不是“皇帝的新密码” 

scsfct{wOuSQNfF_IWdkNf_Jy_o_zLchmK_voumSs_zvoQ_loFyof_FRdiKf_4i4x4NLgDn}

维吉尼亚密码,试出头来就出来了

 

猫言喵语

 喵喵? 喵喵喵喵喵喵喵喵喵喵喵喵 喵喵喵 喵喵喵喵喵喵喵喵?喵喵?喵喵喵喵喵? 喵喵?喵喵喵喵喵? 喵喵喵喵喵? 喵喵喵喵喵?喵喵? 喵喵喵喵喵? 喵喵喵喵喵喵 喵喵喵喵喵喵 喵喵喵喵喵喵喵喵?喵喵?喵喵喵喵喵? 喵喵?喵喵喵喵喵?喵喵喵 喵喵喵喵喵? 喵喵? 喵喵喵喵喵喵喵喵?喵喵?喵喵喵喵喵? 喵喵?喵喵喵喵喵喵喵喵喵 喵喵喵喵喵喵喵喵? 喵喵? 喵喵喵喵喵喵喵喵?喵喵?喵喵喵喵喵? 喵喵?喵喵喵喵喵喵喵喵喵 喵喵喵 喵喵喵喵喵喵喵喵?喵喵?喵喵喵喵喵? 喵喵?喵喵喵喵喵?喵喵喵 喵喵喵喵喵? 喵喵喵喵喵?喵喵喵喵喵喵 喵喵喵喵喵?喵喵喵喵喵喵 喵喵喵 喵喵?喵喵喵喵喵喵 喵喵喵喵喵喵喵喵?喵喵?喵喵喵喵喵? 喵喵?喵喵?喵喵喵 喵喵?喵喵?喵喵? 喵喵喵喵喵喵喵喵? 喵喵?喵喵?喵喵喵喵喵喵 喵喵喵喵喵喵 喵喵喵喵喵喵喵喵?喵喵?喵喵喵喵喵? 喵喵?喵喵喵喵喵喵喵喵喵 喵喵?喵喵喵喵喵?喵喵? 喵喵喵喵喵喵喵喵?喵喵?喵喵喵喵喵? 喵喵喵喵喵?喵喵喵 喵喵?喵喵喵喵喵喵喵喵?

有3种符号,明显是用空格来分隔的。经测试 喵喵?转成. 喵喵喵 转成- 转成摩尔斯码

- .... . ..--.- -.- .- .-- .- .. .. ..--.- -.-. .- - ..--.- -... ..- - ..--.- -... . ..--.- -.-. .- .-.. .-.. . -.. ..--.- --. --- ..- --.. .. ..--.- -... -.-- ..--.- .-. -..- 

THE_KAWAII_CAT_BUT_BE_CALLED_GOUZI_BY_RX 

baby_e

 

from Crypto.Util.number import getPrime,bytes_to_long

p,q = getPrime(2048),getPrime(2048)
e = 7
n = p*q
m = bytes_to_long(open('flag.txt','rb').read().strip())
c = pow(m,e,n)
print("c = ",c)
print("n = ",n)

# c =  147693154873835354725007152781732424355869776162377337823960431913672366269917723916891506269449726723757821517328874729037838600793748824028829185409932536014732765063216715033843955453706710187792772702199448156372644163429786386035008302836467605094954587157232829525150652611067567669525072625329634860065850520051628272535479197120008981979404760445193750864902244921407742155742716289495581989134730376783828846663464819337418977287363028738701414486788851136608957124505485242331701209645216580641917007780811842757125048746184068597664780265422321550909392419865169775282217442331295071069272774722564587602419768461231775480847018941840911357926330143045826277813722919121117172763493242590521245640828462665947672485094793188432098216701511715232654611338293295459889814699850788048985878279440740712956248569068077253790198036918598519191892836075254345518967666166925163908185663991353344555402397055977817370082929420443034626201745027965444069777059760865359310439815816749939498993014457995041394803598825093836045546578310632172636478575946653375857640993393714607308326474003446154152048840071034349831168612740218034679021240949747357214453636633636662650940968576792518622437627529244515229173
# n =  553409369582823237678532685244026647155180191225879439432235077135813123637186465008813830373646133388592395760175777499266561095087891764348044063111935877931069321764391883899483374576303169645488542398590564148654412004383012178107972880058460460806768779452529433458826925606225797078653905380530651390617109384086518728626571028089036812787671647095695947167204428442727185744172445701874820612799168887428075695751162763647868386879374037826876671079326544820609721731078985096813307183878793033824330869698508952853770794414757655681370862323768018291030331209143189638496644361618184164228294031490537429556439588954274708598530042700988138862000054458742762198052079867259365645914383561162796796952346445529346145323567650621600171442575319262718389389870407629339714751583360252884338116164466349449862781112019462555743429653595045695696967783338371470032332852204294900011651434678829104876529439166176589508898757122660322523937330848536715937381297551894198974459004139082562228022412335520195652419375915216074658463954339332593244483927157329404652516225481116614815221154229491846087288087715884363786672244655901308480290011237244562251084095684531716327141154558809471185132979704992609461470501119328696999713829

很明显e很小,而且明显c<n所以可以直接开方

bad_e

from Crypto.Util.number import *
p = getPrime(512)
q = getPrime(512)
e = 65537

print(p) # 6853495238262155391975011057929314523706159020478084061020122347902601182448091015650787022962180599741651597328364289413042032923330906135304995252477571
print(q) # 11727544912613560398705401423145382428897876620077115390278679983274961030035884083100580422155496261311510530671232666801444557695190734596546855494472819

with open("flag.txt","r") as fs:
    flag = fs.read().strip()

m = bytes_to_long(flag.encode())
c = pow(m,e,p*q)
print(c) # 63388263723813143290256836284084914544524440253054612802424934400854921660916379284754467427040180660945667733359330988361620691457570947823206385692232584893511398038141442606303536260023122774682805630913037113541880875125504376791939861734613177272270414287306054553288162010873808058776206524782351475805

n已经分解好了

flag = long_to_bytes(pow(c,invert(e,(p-1)*(q-1)),p*q))

factor_signin

from Crypto.Util.number import getPrime
from math import prod

with open("flag.txt","rb") as f:
    flag = f.read().strip()
assert len(flag) == 72

m1 = int.from_bytes(flag[:36],"big")
m2 = int.from_bytes(flag[36:],"big")

e = 65537

p,q = getPrime(2048),getPrime(2048)
n1 = p*q
c1 = pow(m1,e,n1)
print("c1 = ",c1)
print("n1 = ",n1)

primes = [getPrime(64) for _ in range(32)]
n2 = prod(primes)
c2 = pow(m2,e,n2)
print("c2 = ",c2)
print("n2 = ",n2)

第1部分,n1可以查到分解,第2部分都是小素数,可以很容易分解

c1 =  10004937130983861141937782436252502991050957330184611684406783226971057978666503675149401388381995491152372622456604317681236160071166819028679754762162125904637599991943368450200313304999566592294442696755822585022667008378021280392976010576970877334159755332946926433635584313137140987588847077645814987268595739733550220882135750267567373532603503399428451548677091911410732474324157868011686641243202218731844256789044721309478991918322850448456919991540932206923861653518190974620161055008847475600980152660468279765607319838003177639654115075183493029803981527882155542925959658123816315099271123470754815045214896642428657264709805029840253303446203030294879166242867850331945166255924821406218090304893024711068773287842075208409312312188560675094244318565148284432361706108491327014254387317744284876018328591380705408407853404828189643214087638328376675071962141118973835178054884474523241911240926274907256651801384433652425740230755811160476356172444327762497910600719286629420662696949923799255603628210458906831175806791599965316549386396788014703044837917283461862338269599464440202019922379625071512100821922879623930069349084917919100015782270736808388388006084027673781004085620817521378823838335749279055639005125
n1 =  343504538870081878757729748260620800783581983635281373321527119223374418103340873199654926888439040391545101913132680017655039577253974802351999985470115474655124168592386965001556620077117966153475518658881140827499124290142523464795351995478153288872749817655925271395693435582010998996210909883510311066017237567799370371513462802547313382594409676803895262837061350017911885033133654781876923251129406855067993830824618637981136966134029212516871210627954762147349788788999116702635535406398258621926040887099782494271000823401788337120154104692934583729065189687995570122890809807661370008740283447636580308161498808092269041815719148127168137018600113465985504975054319601741498799761500526467431533990903047624407330243357514588557352746347337683868781554819821575385685459666842162355673947984514687068626166144076257334426612302554448774082488600083569900006274897032242821388126274957846236552373226099112200392102883351088570736254707966329366625911183721875374731791052229266503696334310835323523568132399330263642353927504971311717117370721838701629885670598853025212521537158141447625623337563164790788106598854822686494249848796441153496412236527242235888308435573209980270776407776277489669763803746640746378181948641
p1 = 18055722101348711626577381571859114850735298658417345663254295930584841136416234624852520581982069555948490061840244710773146585295336094872892685938420880462305333393436098181186277450475949236132458958671804132443554885896037342335902958516394876382378829317303693655605215373555988755516058130500801822723195474873517960624159417903134580987202400855946137101429970119186394052011747475879598126195607938106163892658285305921071673588966184054026228745012993740035399652049777986535759039077634555909031397541116025395236871778797949216479130412500655359057128438928721459688727543057760739527720641179290282309741
q1 = 19024691283015651666032297670418553586155390575928421823630922553034857624430114628839720683172187406577114034710093054198921843669645736474448836706112221787749688565566635453151716934583685087745112614898780150391513798368931496744574075511968933800467288441832780919514199410584786925010518564670786685241724643282580795568609339268652910564215887176803735675069372979560024792322029911970574914829712553975379661212645059271137916107885326625543090473004683836665262304916304580076748336858662108554591235698235221618061328251985929904075811056422186525179189846420226944944513865790999242309352900287977666792901
m1 = long_to_bytes(pow(c1,inverse(e, (p1-1)*(q1-1)),n1))
print(m1)

c2 =  4948422459907576438725352912593232312182623872749480015295307088166392790756090961680588458629287353136729331282506869598853654959933189916541367579979613191505226006688017103736659670745715837820780269669982614187726024837483992949073998289744910800139692315475427811724840888983757813069849711652177078415791290894737059610056340691753379065563574279210755232749774749757141836708161854072798697882671844015773796030086898649043727563289757423417931359190238689436180953442515869613672008678717039516723747808793079592658069533269662834322438864456440701995249381880745586708718334052938634931936240736457181295
n2 =  8582505375542551134698364096640878629785534004976071646505285128223700755811329156276289439920192196962008222418309136528180402357612976316670896973298407081310073283979903409463559102445223030866575563539261326076167685019121804961393115251287057504682389257841337573435085535013992761172452417731887700665115563173984357419855481847035192853387338980937451843809282267888616833734087813693242841580644645315837196205981207827105545437201799441352173638172133698491126291396194764373021523547130703629001683366722885529834956411976212381935354905525700646776572036418453784898084635925476199878640087165680193737

ps = [
15211380502610462057,
11853704782834170959,
14397830993057803133,
12404642343676224637,
16408421615173973083,
10049235158029375571,
13645878578452317313,
10596280721192026229,
10864078180916418691,
15332916111580607077,
13062839684118954553,
15751974537676958401,
14813953870710226847,
12034779627328165471,
9949603102225364603 ,
17289161209347211817,
16123604149048919099,
14678737767649343977,
17673334943789572513,
11092420583960163379,
18345408081492711641,
14745811312384518031,
10547615587767500213,
16870346804576162551,
17093292308638969889,
18390046459144888243,
18106525049998616747,
15175734709842430433,
14619040595108594017,
17543713628803023199,
12448177342966243757,
17265001711647542137]

phi = 1
for v in ps:
    phi*=v - 1

d = inverse(e,phi)
m2 = long_to_bytes(pow(c2,d,n2)) 
#moectf{fACtord6_And_YAfu_Are_6oth_good_utils_to_fACtorize_num6ers_ff90S}

feistel

寻找中。。。。看最后一题吧,是同一个题,一开始作的那个,那个没给key这个给了,比那个简单。

n&n

共模攻击

from Crypto.Util.number import *

p = getPrime(1024)
q = getPrime(1024)

with open("flag.txt","r") as f:
    flag = f.read().strip().encode()

m = bytes_to_long(flag)
n = p * q
e1 = 0x114514
e2 = 19198101

c1 = pow(m,e1,n)
c2 = pow(m,e2,n)
print(c1) 
print(c2)
print(n)

c1 =  5776799746376051463605370130675046329799612910435315968508603116759552095183027263116443417343895252766060748671845650457077393391989018107887540639775168897954484319381180406512474784571389477212123123540984850033695748142755414954158933345476509573211496722528388574841686164433315356667366007165419697987147258498693175698918104120849579763098045116744389310549687579302444264316133642674648294049526615350011916160649448726069001139749604430982881450187865197137222762758538645387391379108182515717949428258503254717940765994927802512049427407583200118969062778415073135339774546277230281966880715506688898978925
c2 = 4664955020023583143415931782261983177552050757537222070347847639906354901601382630034645762990079537901659753823666851165175187728532569040809797389706253282757017586285211791297567893874606446000074515260509831946210526182765808878824360460569061258723122198792244018463880052389205906620425625708718545628429086424549277715280217165880900037900983008637302744555649467104208348070638137050458275362152816916837534704113775562356277110844168173111385779258263874552283927767924979691542028126412133709129601685315027689094437957165812994784648540588277901241854031439324974562449032290219652206466731675967045633360
n =13612969130810965900902742090064423006385890357159609755971027204203418808937093492927060428980020085273603754747223030702684866992231913349067578014240319426522039068836171388168087260774376277346092066880984406890296520951318296354893551565670293486797637522297989653182109744864444697818991039473180752980752117041574628063002176339235126861152739066489620021077091941250365101779354009854706729448088217051728432010328667839532327286559570597994183126402340332924370812383312664419874352306052467284992411543921858024469098268800500500651896608097346389396273293747664441553194179933758992070398387066135330851531
e1 = 0x114514
e2 = 19198101
g, x1, x2 = gmpy2.gcdext(e1,e2)   #g!=1, e有公因子需要再开根号
m = pow(c1,x1,n)*pow(c2,x2,n) % n
print(long_to_bytes(int(gmpy2.iroot(m,g)[0])))

#moectf{dO_nOt_u53_5AM3_MOdulu5_tO_3ncrYPt_dIFF3r3nt_dAtA!_JY63x33iiA0Ji}

|p-q|

费马分解,p,q距离很近。不过很多软件都会,也可以不必自己用费马分解。

with open("flag.txt","rb") as fs:
    flag = fs.read().strip()
assert len(flag) == 72

m = int.from_bytes(flag,"big")

from Crypto.Util.number import getPrime, isPrime

def next_prime(p):
    while True:
        p += 2
        if isPrime(p):
            return p

p = getPrime(2048)
q = next_prime(p)
n = p * q
e = 65537
c = pow(m,e,n)
print("n =",n)
print("c =",c)

e = 65537
n = 329960318345010350458589325571454799968957932130539403944044204698872359769449414256378111233592533561892402020955736786563103586897940757198920737583107357264433730515123570697570757034221232010688796344257587359198400915567115397034901247038275403825404094129637119512164953012131445747740645183682571690806238508035172474685818036517880994658466362305677430221344381425792427288500814551334928982040579744048907401043058567486871621293983772331951723963911377839286050368715384227640638031857101612517441295926821712605955984000617738833973829140899288164786111118033301974794123637285172303688427806450817155786233788027512244397952849209700013205803489334055814513866650854230478124920442832221946442593769555237909177172933634236392800414176981780444770542047378630756636857018730168151824307814244094763132088236333995807013617801783919113541391133267230410179444855465611792191833319172887852945902960736744468250550722314565805440432977225703650102517531531476188269635151281661081058374242768608270563131619806585194608795817118466680430500830137335634289617464844004904410907221482919453859885955054140320857757297655475489972268282336250384384926216818756762307686391740965586168590784252524275489515352125321398406426217
c = 307746143297103281117512771170735061509547958991947416701685589829711285274762039205145422734327595082350457374530975854337055433998982493020603245187129916580627539476324521854057990929173492940833073106540441902619425074887573232779899379436737429823569006431370954961865581168635086246592539153824456681688944066925973182272443586463636373955966146029489121226571408532284480270826510961605206483011204059402338926815599691009406841471142048842308786000059979977645988396524814553253493672729395573658564825709547262230219183672493306100392069182994445509803952976016630731417479238769736432223194249245020320183199001774879893442186017555682902409661647546547835345461056900610391514595370600575845979413984555709077635397717741521573798309855584473259503981955303774208127361309229536010653615696850725905168242705387575720694946072789441481191449772933265705810128547553027708513478130258801233619669699177901566688737559102165508239876805822898509541232565766265491283807922473440397456701500524925191214292669986798631732639221198138026031561329502985577205314190565609214349344303324429408234237832110076900414483795318189628198913032900272406887003325858236057373096880675754802725017537119549989304878960436575670784578550
from math import isqrt,is_square
def factorize(N):
    """
    Recovers the prime factors from a modulus using Fermat's factorization method.
    :param N: the modulus
    :return: a tuple containing the prime factors, or None if the factors were not found
    """
    a = isqrt(N)
    b = a * a - N
    while b < 0 or not is_square(b):
        a += 1
        b = a * a - N
    
    p = a - isqrt(b)
    q = N // p
    if p * q == N:
        return p, q

p,q = factorize(n)



>>> from Crypto.Util.number import *
>>> d = invert(e,(p-1)*(q-1))
>>> m = pow(c,d,n)
>>> long_to_bytes(m)
b'moectf{it_iS_vUlnErablE_iF_p_iS_aboUt_thE_SaME_SiZE_aS_Q_MVoAYArrlG3uco}'

 

rsa_signin

给了一堆n,c这里边有一对有公因子

with open("flag.txt","rb") as f:
    flag = f.read().strip()

m = int.from_bytes(flag, "big")
e = 65537

from Crypto.Util.number import getPrime

for x in range(10):
    p = getPrime(1024)
    q = getPrime(1024)
    n = p * q
    c = pow(m, e, n)

    print("n =", n)
    print("c =", c)



n1 = 17524722204224696445172535263975543817720644608816706978363749891469511686943372362091928951563219068859089058278944528021615923888948698587206920445508493551162845371086030869059282352535451058203615402089133135136481314666971507135484450966505425514285114192275051972496161810571035753943880190780759479521486741046704043699838021850105638224212696697865987677760179564370167062037563913329993433080123575434871852732981112883423565015771421868680113407260917902892944119552200927337996135278491046562185003012971570532979090484837684759828977460570826320870379601193678304983534424368152743368343335213808684523217
c1 = 6870605439714128574950893771863182370595667973241984289208050776870220326525943524507319708560433091378319367164606150977103661770065561661544375425887970907060665421562712515902428061727268441585629591525591001533188276465911918724808701356962871139957343861919730086334623932624184172272488406793955068827527130338853980609365042071290967556159598511667974987218999253443575482949258292953639729393456515185185102248985930422080581185292420347510600574229080211050520146551505605537486989306457793451086767402197128573781597156939709237045132856159368959981648969874765462190363842275826077556314448408825308218451
n2 = 24974121071274650888046048586598797033399902532613815354986756278905133499432183463847175542164798764762683121930786715931063152122056911933710481566265603626437742951648885379847799327315791800670175616973945640322985175516271373004547752061826574576722667907302681961850865961386200909397231865804894418194711076667760169256682834206788730947602211228930301853348503098156592000286467190760378847541148772869356389938999094673945092387627113807899212568399028514283219850734634544982646070106811651490010946670117927664594365986238107951837041859682547029079035013475238052160645871718246031144694712586073789250183
c2 = 10324627733161143472233272675096997859064721978612320424254305978486200326061730105384511258706433940176741256952824288120499229240005823611541292676234913505775165761543820764046537413943393325463602612485849366939102550336256797820440347815027443410399157963547486098366749815425187247171697678576246606105486928212486117878157055321965270364583625270716186820068538749425299073309429589410882809098930213978117176627031795312102177342499674234163614021182116065492884880492891668658240362567156235958605768725892407536211503981819707919444725863397622629226309480836486427388484176463279384813974310500625102568341
n3 = 14215826065753265334521416948225868542990756976323308408298887797364519400310818641526401662106853573185085731682502059761982246604277475488691297554851873224516934619888327644352138127883043558424300092247604877819821625587944308487310522092440517150600171819145803937177931473336108429889165189521078678397694303305705260759351843006130968234071638035667854938070597400634242396852782331461576526836227336952718230741560369621645218729592233657856104560425642219241082727756696967324334634822771842625681505869025740662258929200756109704988223034840699133778958569054445520305361142302393767439478256174414187983763
c3 = 415916446053083522663299405080903121619846594209033663622616979372099135281363175464579440520262612010099820951944229484417996994283898028928384268216113118778734726335389504987546718739928112684600918108591759061734340607527889972020273454098314620790710425294297542021830654957828983606433731988998097351888879368160881316237557097381718444193741788664735559392675419489952796677690968481917700683813252460912749931286739585465657312416977086336732056497161860235343155953578618273940135486362350057858779130960380833359506761436212727289297656191243565734621757889931250689354508999144817518599291078968866323093
n4 = 12221355905532691305226996552124162033756814028292708728711809229588190407700199452617060657420166395065565154239801465361510672853972152857415394695376825120759202857555325904640144375262531345320714166285999668052224661520834318497234299585219832943519644095197479639328120838919035625832361810964127485907587199925564724081163804724975965691571850962714258888527902920462746795712011579424322515292865504642938090200503979483095345893697972170153990274670257331483858538617460680462369680572833191232126527727222302641204529110948993583190295067970240051042000918629138767209918572311469915774910003970381965123241
c4 = 2248834602646305164283014556051672824689884721514190813323189875541899566338153534858709617544459297836048770439230174669883719627734394673012731609952869246171300132019334542245094425654362711870373095782083791160029789553806741967408922001051006100049326921742208757147339981269528740944842177729701945606827918253016001436218891580980192743564642120923356793292885805519110411357830040053435569937296612987581482128241218218550319154933831743819546558930918761162723110000328532730751591375727881221199739397698390594797621758011191224528339478784930214820615602510460640307707682865125229937141010351138099874025
n5 = 18152103454920389919231636321286527841833809319334215885641536161086810144890443857211776387914779781628740172079478910188540146498426564211851629962338413488555121865779016981727229209606498886170396500155102635962395243364899026418106378234307821492609778555173516000309435730752571818439328803899462791834490025768785383592935046996428331508608555503567191807692523852530836008436655164751054189301721070209363416058642811329040202582026786024825518381761299547703962502636888833428457116986351812252188468878701301184044948733274488264320930936362549028124581962244201377136969591119942276742760215403738913067567
c5 = 2797812094994121597295362327809389195134238119144547570610194659000554967367804835006774413888965325870488368112707535584687083342412367127561646136089638402907513075405746055834487062923240856950047936297155455745928810738711368950139327254040579266046642851362228893522740216519732851152162928545416236075387903789535000820423985522550638100049857678600662008021574841083416323980817348573062083159710189689337626277009675683473560325178417766400002763719953723259300977655801234386662217462862844994462505601804422871991694828697337752697234180117437785537788728412520613916334045368736691714704501962513954509705
n6 = 22877887459293720334652698748191453972019668578065068224653972884599636421200068659750242304040301306798039254241668648594556654589309801728248683586229288074709849246660525799452637187132633064172425677552176203292787732404537215347782229753837476655088638984496409603054524994383358547132112778403912563916886533181616856401929346567686400616307916690806467019665390260267596320840786982457521423178851498130935577260638269429250197050326097193841333205073650802709022947551398142692735680419453533128176592587955634333425401930362881423044363132586170013458300714163531162544301477356808388416864173949089028317961
c6 = 12271947322974809255127222556723394446467844330408506340843897575503534175121932185624776713618037572593449207329510171212097269297133492090526270770286000839978630002819714376964416081198925899119135271459404333829811516667576167576916805217016117373027245648473458331936273975110163065432285322832123169216976420362833557809289561705091817949915218278430834098156335989014645979633658818904753942786129126233956314517292746008579152368541316795082120147520597254020266752859205131887527661767589367756335766220841483940854397440079467053684289006956034944336788288196391829411432383541473132962783883758561108297747
n7 = 19844333358004073542783728196775487079202832688982038135532362073659058674903791697765527614270399097276261983744620537925712167578187109058145015032736796457938148615396547198728652435169126585595701228287449135664667959433491335769206692390262797325133960778920452511673878233190120432257482339068405290918739453464061987163074129048150451046315248186376609350095502130018696275764450248681787926130463463923862832714969425813770847493135627599129546112143050369344208092649256659330284904392961574494907186727388685504929586018639846040474616307662546605623294842316524163106100888851228858194942825157286544846177
c7 = 9531264751315473345056673937611382755236533664089452852716992791452558274873158812669513178040971923528201631609089069182049526587423864397527252061341857426422965190913745048414029690931254119437249218321954899956104589066479231204536856131403590472063496956452030342299863907499976917750846369802185896519725837163530049157920978007252920334447236842959033879772444475877613295594785710745889554296655932909212643500877218304116451889820444820534937901427158918411546484157737612926382420354101675658160847653151539420222526999426483473829341628599881460824765758346670633385844187252696874025582747177333702736465
n8 = 16956880944655068255446705024149899655327230949463546092744762226005904114738078692036960935391303255804754787864713189658290361949509917704853428701870609882427423574672772606814823959758208695540116440342488334213300943604780971422918744381486937517952553797134323570131582724393100092308466968491068503301604506186521656059375518680612292667310641047190088814753025794048591445267711939066523165042651430468971452726568222388482323097260496415484997546126185688914792795834046855221759289007609518312601640548469651358391745947588643697900883634533872314566389446271647587564348026861264979727062157272541149018781
c8 = 16110326928338602237561005337578085623028116490564329920738844771341250444164294693848130674347672763073995755532723894042946521372321947507527854966013459795492930736187058535665041545095683801386814190612817128504426590828954205050425979880047802547011117626354405687170961272200066258220699329112978151044633994329352673342582175349200008181837211288847301836681860817044391028992501763375849046751094019224570802498414368189170656992427042010362385494565216988561215657424755648213390551881450141899860811844684546992754530755092358644968088017107313907435586729574798046187046145596726569637758312033849476689378
n9 = 16472195897077185060734002588086375750797253422014472876266294484788862733424113898147596402056889527985731623940969291811284437034420929030659419753779530635563455664549165618528767491631867637613948406196511848103083967995689432928779805192695209899686072900265108597626632371718430059561807147486376536203800038054012500244392964187780217667805308512187849789773573138494622201856638931435423778275004491853486855300574479177472267767506041000072575623287557610576406578525902565241580838652860552046216587141709709405062150243990097835181557208274750462554811004137033087430556692966525170882625891516050207318491
c9 = 11867731823522211833301190385669833752050387304375114576570892885641949969365352586215693183003550684262313893105989683214739695968039039944442567581277252581988489020834299896625977474857889570528169919064941042132119301236852358823696947330423679033138054012027878783478922023431469564210485180679933264749281963405243082505688901662659030897104957499953192201440290084373968716271056483463909282407034181891901928790601973222643210525000717355062752079302291729448234374709852429885984987094307177760741403086538949190424454337896501402430653783597070178968921411867485584517214777073301007918941216316241784521708
n10 = 13890749889361612188368868998653029697326614782260719535555306236512452110708495623964530174188871342332417484996749651846510646453983388637377706674890018646246874688969342600780781646175634455109757266442675502522791531161284420286435654971819525519296719668701529481662071464145515727217108362496784024871976015116522898184301395037566514980846499856316532479656908169681719288258287756566886281183699239684997698487409138330229321935477734921670373632304542254938831218652340699024011371979519574576890581492623709896310465567043899767342676912434857372520308852745792360420376574037705943820090308501053778144141
c10 = 6250115196713939477947942995075509357173312813431601073354390451609559579925704891503987992181988654989477525811826607070378476102616752398280691012244301950194800995432882828020405062344160270290542566163969692748126314259624623341922057435728127596172871894887055305291345372720594481096374310285437492746765510292863238933163142677773310305789984897974266961231555124787205980411992251387207335655129551950825339766848166539671565212408741432649813058363660321480995187545006718837863674527475323414266732366507905974800565463011676462244368010182725161416783875646259625352308599198614681446394427674340328493047
n11 = 21457499145521259498911107987303777576783467581104197687610588208126845121702391694574491025398113729462454256070437978257494064504146718372095872819969887408622112906108590961892923178192792218161103488204912792358327748493857104191029765218471874759376809136402361582721860433355338373725980783308091544879562698835405262108188595630215081260699112737457564998798692048522706388318528370551365364702529068656665853097899157141017378975007689790000067275142731212069030175682911154288533716549782283859340452266837760560153014200605378914071410125895494331253564598702942990036163269043699029806343766286247742865671
c11 = 6269656777204332618433779865483197625538144405832409880710764183039800286008967127279281167109250083159801218370191973055663058165456565194979210256278526713608759141588082614531352489547674696723140599892318118960648862531538435596775798128845789504910467783731144808685373807716609662688064728614003904579841055786083326311313295311152563668422289435606771091246147867715987583149743032723028324394173498623642539175178996531881058274717907066845565199058931743481410454382746158558886667761300257488769795092777021292335562818583719708133179974425584610403335487082478848975656282384575767178925517257692365828720
ns = [n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11]
cs = [c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11]
for i in range(len(ns)-1):
    for j in range(i+1,len(ns)):
        if gcd(ns[i],ns[j]) != 1:
            print(i,j,gcd(ns[i],ns[j]))
            
#2 10 147352146484643764031622970604294889624856525072751495442791038251325198568446104214691837421831622655415627526708110986526177662910836604556867226815780490826061784656230373978115117669691022691171484914452586975269776325816859478861737379536769555626991492537714713353640978988383143423169600280639641367257
p = gcd(n3,n11)
q = n3//p
d = invert(e, (p-1)*(q-1))
m = pow(c3,d,n3)
long_to_bytes(m)
#moectf{it_is_re@lly_@_signin_level_cryPto_ch@ll@nge_ng92WPIBung92WPIBun}

 

xorrrrr

单字节异或加密,key不清楚,爆破呗

flag = open('flag.txt','rb').read()
assert flag.startswith(b'moectf{') and flag.endswith(b'}')
article = open('article.txt','rb').read()

import random

strxor = lambda x,y: bytes([a^b for a,b in zip(x,y)])

result = []

for i in range(100):
    range_start = random.randint(0, len(article) - len(flag))
    mask = article[range_start:range_start + len(flag)]
    result.append(strxor(flag,mask))

with open("result.log","w") as fs:
    fs.writelines([str(i)+"\n" for i in result])
msg = open('result.log').readlines()
msg = [eval(v) for v in msg]

strxor = lambda x,y: bytes([a^b for a,b in zip(x,y)])

msg.pop(93)

flag = b'moectf{W0W_y0U_HaVe_mastered_tHe_x0r_0Peart0r!_0iYlJf!M3rux9G9Vf!JoxiMl}'

for i in range(99):
    k = strxor(msg[i],flag)
    print(i,k, msg[i][len(flag): len(flag)+4])

 

ez_chain

from Crypto.Util.number import *

with open("key.txt", "r") as fs:
    key = int(fs.read().strip())
with open("flag.txt", "rb") as fs:
    flag = fs.read().strip()
assert len(flag) == 72

key = random.randint(base)
flag = b'moectf{1234567890}'
m = bytes_to_long(flag)

base = bytes_to_long(b"koito")
iv = 3735927943

def blockize(long):
    out = []
    while long > 0:
        out.append(long % base)
        long //= base
    return list(reversed(out))

blocks = blockize(m)


def encrypt_block_cbc(blocks, iv, key):
    encrypted = [iv]
    for i in range(len(blocks)):
        encrypted.append(blocks[i] ^ encrypted[i] ^ key)
    return encrypted[1:]


print(encrypt_block_cbc(blocks, iv, key))

CBC的异或加密

from Crypto.Util.number import *

def get_base(v,key):
    k = 0
    for i in v:
        k*=base 
        k+=i^key
    return long_to_bytes(k)

enc = [8490961288, 122685644196, 349851982069, 319462619019, 74697733110, 43107579733, 465430019828, 178715374673, 425695308534, 164022852989, 435966065649, 222907886694, 420391941825, 173833246025, 329708930734]

base = bytes_to_long(b"koito")
iv = 3735927943

enc = [iv]+enc
enc_no_cbc = [enc[i-1]^enc[i] for i in range(1,len(enc))]
print(enc_no_cbc)
#[432674690023, 316083479432, 352306305703, 371107977111, 290734220940, 297123248011, 319994912423, 299600071333, 439506635169, 117796865187, 390928024701, 116328574846, 334545012049, 126344729644, 4910773519]

#先猜长度
for kl in range(60,70):
    tkey = (bytes_to_long(b'moectf{')<<kl*8)//base**(len(enc_no_cbc)-1)
    tkey ^=enc_no_cbc[0]
    for i in range(-1000,1000):
        key = tkey + i
        v = get_base(enc_no_cbc, key)
        if b'moectf{' in v:
            print(kl, v)
            break
    
#b'moectf{thE_c6c_Is_not_so_hard_9ifxi9i!JGofMJ36D9cPMxroif6!M6oSMuliPPcA3}'

 

flag_exchange

通过7次幂的加密,7太小了

from Crypto.Util.number import isPrime
from random import getrandbits

with open("flag.txt","rb") as fs:
    flag = fs.read().strip()

def diffie_hellman(p, flag):
    alice_privKey = getrandbits(1024)
    alice_pubKey = pow(7, alice_privKey, p)
    bob_privKey = getrandbits(1024)
    bob_pubKey = pow(7, bob_privKey, p)

    superkey = pow(bob_pubKey, alice_privKey, p)
    m = int.from_bytes(flag, 'big')
    return (m * superkey) % p, alice_pubKey, bob_pubKey


from typing import Callable

def chall(input:Callable[[str],None], print:Callable[[str],None]):
    p = int(input("P = "))
    if isPrime(p) and p.bit_length() >= 1024:
        c, alice_pubKey, bob_pubKey = diffie_hellman(p, flag)
        print("Alice's public key: {}".format(alice_pubKey))
        print("Bob's public key: {}".format(bob_pubKey))
        print("Ciphertext: {}".format(c))
    else:
        print("Invalid P")
p = 148489452939627293978440608759173442996844898460634522907853247036287190215343795547617202268308624753445214064773770913426160349040708130179091977708205626736036279968938890838225633390629273742668246518422214765060312463614874340097452229306723297896927521825468282346196425145184245667794004328269609137340417

ak = 13506505257902994926795380249835905035332235135211590669651308742167829046269285891449598193037355963934752767648404113487207650100033109025478128962303857858447936638923060635597426544104185868673581919643713670014001896204436868960342513827314899205480094036790812749085955676625407571768335193974649726494695
bk = 59201325930301080831020707685410323615662991813563685602352712666092170206124564190043221611539340845561303528216487138415532082769687060195426542753971585990425051581542903924039946519721877000739041825359986436864770793802041542615070727007409297662567507378880622382458757946880200666631006526627977012754315
cipher = 113859159624765890256820636097278078757726957717820539253273545045734749731324609285395064129161531586821631272409416097549974696104116207732168692060239798339988828548845153764394213384370110210010127665521461773892895483778273116595550989394557731721950223900029326813602085382207407781759070210822358775058078

#c = (m * superkey) % p
a = discrete_log(ak,mod(7,p))
a = 64668307636287699049178361204443104904947965453137320623869437362374876996215394346912445893643403561894212148309122505028572486721984798507289505281507627944598519908420891989408013250242428623664747266752871230816411372152512197777858955459437623237541142998761716048619580286646790406108437435522991034889
#superkey = pow(bob_pubKey, alice_privKey, p)
s = pow(bk,a,p)
m = c*inverse_mod(s,p)%p


#moectf{diffie_he11man_key_exChange_is_not_so_hard_2WPIBung92WPIBung9?WP}

 

giant_e

猜测是e非常d非常小的情况,用winner分解

from Crypto.Util.number import getPrime

with open("flag.txt","rb") as fs:
    flag = fs.read().strip()

p = getPrime(1024)
q = getPrime(1024)
n = p * q
e = 0x609778981bfbb26bb93398cb6d96984616a6ab08ade090c1c0d4fedb00f44f0552a1555efec5cc66e7960b61e94e80e7483b9f906a6c8155a91cdc3e4917fa5347c58a2bc85bb160fcf7fe98e3645cfea8458ea209e565e4eb72ee7cbb232331a862d8a84d91a0ff6d74aa3c779b2b129c3d8148b090c4193234764f2e5d9b2170a9b4859501d07c0601cdd18616a0ab2cf713a7c785fd06f27d68dff24446d884644e08f31bd37ecf48750e4324f959a8d37c5bef25e1580851646d57b3d4f525bc04c7ddafdf146539a84703df2161a0da7a368675f473065d2cb661907d990ba4a8451b15e054bfc4dd73e134f3bf7d8fa4716125d8e21f946d16b7b0fc43
m = int.from_bytes(flag,"big")
c = pow(m,e,n)

n = 0xbaa70ba4c29eb1e6bb3458827540fce84d40e1c966db73c0a39e4f9f40e975c42e02971dab385be27bd2b0687e2476894845cc46e55d9747a5be5ca9d925931ca82b0489e39724ea814800eb3c0ea40d89ebe7fe377f8d3f431a68d209e7a149851c06a4e67db7c99fcfd9ec19496f29d59bb186feb44a36fe344f11d047b9435a1c47fa2f8ed72f59403ebb0e439738fd550a7684247ab7da64311690f461e6dce03bf2fcd55345948a3b537087f07cd680d7461d326690bf21e39dff30268cb33f86eeceff412cd63a38f7110805d337dcad25e6f7e3728b53ca722b695b0d9db37361b5b63213af50dd69ee8b3cf2085f845d7932c08b27bf638e98497239
c = 0x45a9ce4297c8afee693d3cce2525d3399c5251061ddd2462513a57f0fd69bdc74b71b519d3a2c23209d74fcfbcb6b196b5943838c2441cb34496c96e0f9fc9f0f80a2f6d5b49f220cb3e78e36a4a66595aa2dbe3ff6e814d84f07cb5442e2d5d08d08aa9ccde0294b39bfde79a6c6dcd2329e9820744c4deb34a039da7933ddf00b0a0469afb89cba87490a39783a9b2f8f0274f646ca242e78a326dda886c213bc8d03ac1a9150de4ba08c5936c3fe924c8646652ef85aa7ac0103485f472413427a0e9d9a4d416b99e24861ca8499500c693d7a07360158ffffa543480758cafff2a09a9f6628f92767764fa026d48a9dd899838505ae16e38910697f9de14
e = 0x609778981bfbb26bb93398cb6d96984616a6ab08ade090c1c0d4fedb00f44f0552a1555efec5cc66e7960b61e94e80e7483b9f906a6c8155a91cdc3e4917fa5347c58a2bc85bb160fcf7fe98e3645cfea8458ea209e565e4eb72ee7cbb232331a862d8a84d91a0ff6d74aa3c779b2b129c3d8148b090c4193234764f2e5d9b2170a9b4859501d07c0601cdd18616a0ab2cf713a7c785fd06f27d68dff24446d884644e08f31bd37ecf48750e4324f959a8d37c5bef25e1580851646d57b3d4f525bc04c7ddafdf146539a84703df2161a0da7a368675f473065d2cb661907d990ba4a8451b15e054bfc4dd73e134f3bf7d8fa4716125d8e21f946d16b7b0fc43
from Crypto.Util.number import long_to_bytes,bytes_to_long
def transform(x,y):
    res = []
    while y:
        res.append(x//y)
        x,y = y,x%y
    return res

def continued_fraction(res):
    numerator,denominator = 1,0
    for i in res[::-1]:
        denominator,numerator = numerator,i*numerator+denominator
    return numerator,denominator

def wiener_attack(c,res,n):
    print("Attack start...")
    for i in range(1,len(res)):
        ress = res[:i]
        d = continued_fraction(ress)[1]
        m = long_to_bytes(pow(c,d,n))
        print(m)
        if all(0x20<=k<=0x7f for k in m):
        #if b'flag{' in m:
            print(m)
            break
        
res = transform(e,n)
wiener_attack(c,res,n)
#moectf{too_larGe_exponent_is_not_a_iDea_too!_Bung92WPIBung92WPIBung9?WP}

 

minipack

远看是背包加密,但是没取模

import random

with open("flag.txt", "rb") as fs:
    flag = fs.read().strip()

assert len(flag) == 72
m = int.from_bytes(b"\xff" + flag + b"\xff", "big")


def long2bits(long):
    bits = []
    while long > 0:
        bits.append(long & 1)
        long >>= 1
    return list(reversed(bits))


def genkey(len):
    sum = 0
    out = []
    for i in range(len):
        delta = random.randint(1, 10000)
        x = sum + delta
        out.append(x)
        sum += x
    return out


key = genkey(74 * 8)

with open("key.txt", "w") as fs:
    fs.write(str(key))


def encrypt(m, keys):
    data = long2bits(m)
    assert len(data) == len(keys)
    return sum((k if (p == 1) else 1) for p, k in zip(data, keys))


with open("ciphertext.txt", "w") as fs:
    fs.write(str(encrypt(m, key)))

直接一个个减就行,不够就是0,够就是1

from key import key
from Crypto.Util.number import *

c = 44096612931024003148407895164090667174657344536623354666642108463093659898867859567157728084018394988840266329206836985537987081415020571845239234014695335928717091578810470705259929
m = ''
for k in key[::-1]:
    if c>=k:
        c-=k 
        m+='1'
    else:
        m+='0'

flag = int(m[::-1],2)
print(long_to_bytes(flag))
#moectf{superiNcreasiNg_sequeNce_is_useful_tO_cONstruct_a_KNapsacK_MAxSM}

bad_random

LCG加密,先用grobner基求参数,再解

import random

with open("flag.txt", "r") as f:
    flag = f.read().strip()


class LCG:
    def set_params(self):
        self.m = random.randint(10000, 20000)
        self.a = random.randint(10000, 20000)
        self.c = random.randint(1, self.a-1)
        self.x = random.randint(0, self.m-1)
    
    def get_all_output(self):
        x0 = self.x
        s = set()
        while (t := self()) not in s:
            s.add(t)
        self.x = x0
        return s
    
    def __init__(self):
        self.set_params()
        while len(self.get_all_output()) < 10:
            self.set_params()
    
    def __call__(self):
        self.x = (self.a * self.x + self.c) % self.m
        return self.x

from typing import Callable

def chall(input:Callable[[str],None], print:Callable[[str],None]):
    from hashlib import md5
    from string import ascii_letters
    s = "".join(random.choices(ascii_letters, k=16))
    h = md5(s.encode()).hexdigest()
    print(f"<!> md5(XXXXXXXX+{s[8:]}) == {h}")
    i = input("Give me XXXXXXXX: ")
    if md5((i + s[8:]).encode()).hexdigest() != h:
        print("<!> ACCESS DENIED <!>")
        return
    inst = LCG()
    print("Let's play a simple game! If you can guess the right number, I will give your the flag! You have 10 tries")
    for tries in range(10):
        i = input(f"Give me a number, you have failed for {tries} times: ")
        if int(i) == (right := inst()):
            print(f"Congurations! You win the game! Your flag is here: {flag}")
        else:
            print(f"Oh, you are wrong! The right number is {right}")
from pwn import *
from hashlib import md5 
import string 
from math import gcd 
from gmpy2 import invert 

io = remote('127.0.0.1', 11027)
context.log_level = 'debug'

io.recvuntil(b'md5(XXXX+')
tail = io.recvuntil(b') == ', drop = True)
hash = io.recvline().strip().decode()

#proof
found = iters.bruteforce(lambda x: md5(x.encode() + tail).hexdigest() == hash, string.ascii_letters, 4)
io.sendlineafter(b"XXXX: ", found.encode())

xs = []
for _ in range(9):
    io.sendlineafter(b"times: ", b'88')
    io.recvuntil(b'The right number is ')
    xs.append(int(io.recvline()))

print(f"{xs = }")
#

'''
P.<a,c> = PolynomialRing(ZZ)
F = []
for i in range(1, 9):
    f = xs[i-1]*a + c - xs[i]
    F.append(f)

I = Ideal(F).groebner_basis()
print(I)
# 求解参数a c m  : x = (ax+c) %m
res=[x.constant_coefficient() for x in I]
m = res[2]
a = -res[0]%m
c = -res[1]%m
for a in range(10000,20000):
    if xs[-1] == (xs[-2]*a+c)%m:
        print((xs[-1]*a+c)%m)
        break
'''

x10 = input('x10:')
#print(b's'+x10.encode())
io.sendlineafter(b"times: ", x10.encode())
io.recvline()
io.interactive()
#moectf{u5e_5ingle_lcg_a5_a_RanDoM_nuMbeR_geneRaToR_i5_noT_a_gooD_iDea!_}\n'

 

broken_hash

自制的hash,换个顺序还能得到相同值。

def F(x, y, z):
    return ((x & ~y) ^ (y & ~z) ^ (z & ~x)) ^ (
        ((x + y) * (y + z) + (x + z)) & 0xFFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF
    )


def _block_hash(a, b, c, d):
    x, y, z, w = F(a, b, c), F(b, c, d), F(c, d, a), F(d, a, b)
    return (a ^ b ^ c ^ d ^ x ^ y ^ z ^ w) ^ 0xFFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF


def _hash(blocks: list[int]):
    length = len(blocks)
    if length % 4 != 0:
        padding = 4 - length % 4
        blocks += [0] * padding
        length += padding
    if length == 4:
        return _block_hash(*blocks)
    else:
        block_size = length // 4
        h1 = _hash(blocks[:block_size])
        h2 = _hash(blocks[block_size : block_size * 2])
        h3 = _hash(blocks[block_size * 2 : block_size * 3])
        h4 = _hash(blocks[block_size * 3 :])
        return _block_hash(h1, h2, h3, h4)


def bytes2blocks(data: bytes, block_size=16):
    if len(data) % block_size != 0:
        data += b"\x00" * (block_size - len(data) % block_size)
    return [
        int.from_bytes(data[i : i + block_size], "little")
        for i in range(0, len(data), block_size)
    ]


def hash(*data: list[bytes]):
    return _hash(bytes2blocks(b"".join(data)))


from typing import Callable
from random import randbytes
from base64 import b64decode,b64encode
from hashlib import md5
from string import ascii_letters
from random import choices

with open("flag.txt", "r") as f:
    flag = f.read().strip()

def chall(input: Callable[[str], None], print: Callable[[str], None]):
    def proof_of_work():

        s = "".join(choices(ascii_letters, k=16))
        h = md5(s.encode()).hexdigest()
        print(f"<!> md5(XXXXXXXX+{s[8:]}) == {h}")
        i = input("Give me XXXXXXXX: ")
        return md5((i + s[8:]).encode()).hexdigest() == h
    if not proof_of_work():
        print("<!> ACCESS DENIED <!>")
        return

    b = randbytes(256)
    print(f"this is a random bytes: {b64encode(b).decode()}")
    i = input("give me another bytes with the same hash: ")
    try:
        d = b64decode(i)
    except:
        print("invaild input")
    if hash(b) == hash(d) and d!=b:
        print(f"congurations! and your flag is {flag}")
        
from pwn import *
from base64 import * 
from hashlib import md5 

io = remote('127.0.0.1', 10946)
context.log_level = 'debug'

io.recvuntil(b'md5(XXXX+')
tail = io.recvuntil(b') == ', drop = True)
hash = io.recvline().strip().decode()

#proof
found = iters.bruteforce(lambda x: md5(x.encode() + tail).hexdigest() == hash, string.ascii_letters, 4)
io.sendlineafter(b": ", found.encode())

io.recvuntil(b"this is a random bytes: ")
b = b64decode(io.recvline().strip())

a = b[16:64] + b[:16] + b[64:]
a64 = b64encode(a)

io.sendlineafter("give me another bytes with the same hash: ", a64)

print(io.recvline())
io.interactive()
#moectf{a_hash_FUNCtioN_With_sYMMEtRY_is_vERY_vUlNERa6lE_3iiA0JiuP0DxuuP}

 

factorize_me!

给了9个因子的N和对应的phi,从中选3个作n加密,先用多因子分解得到因子,再找出是哪个

from Crypto.Util.number import getPrime
from math import prod
from sympy import nextprime
from random import choices

with open('flag.txt', 'rb') as fs:
    flag = fs.read().strip()

primes = [getPrime(512) for _ in range(9)]
print(f"{prod(primes) = }")
print(f"{prod(p - 1 for p in primes) = }")

primes2 = [nextprime(p) for p in choices(primes, k=3)]
n = prod(primes2)
e = 65537
c = pow(int.from_bytes(flag, 'big'), e, n)

print(f'n = {n}')
print(f'e = {e}')
print(f'c = {c}')
from Crypto.Util.number import *
from gmpy2 import *

N =  363364907814244019888662301376841344262476227242899756862391470731421569394957444030214887114615748277199649349781524749919652160244484352285668794188836866602305788131186220057989320357344904731322223310531945208433910803617954798258382169132907508787682006064930747033681966462568715421005454243255297306718356766130469885581576362173340673516476386201173298433892314145854649884922769732583885904512624543994675379894718657682146178638074984373206937523380103438050549181568015985546172618830480078894445808092527561363650503540062128543705172678754195578429520889784813733491180748361345720247750720179608752244490362713103319685024237941527268458213442611663415417005556439749055222361212059968254748751273361732365487788593341859760309778894350385339764442343374673786357175846291309425081492959910254127778240522152676060766139057453197528944251599979227271074508795482632471242983094008619339488744362509349734218480932255216087706001484182136783834973304870508270118505737767002256270427907341952256516206663258530300791364944105025764611810001781971638030661367630116818647252727909489405550104641122269772492252464714694507693447974171377200402508765841829763548525530878309985480248379655169722567051495205792089930014228403456098065971372039443284193603395249634283366194562380309469628114581468645669390610963076340643757972439104287127375438663839421605531570285615180251
phi =  363364907814244019888662301376841344262476227242899756862391470731421569394957444030214887114615748277199649349781524749919652160244484352285668794188836492373364350673588273863828369502073826782362255108313852264064760467561392054178047091483873483255491431451728274259516789065331176728192953741805933100379191778599394515981288225535175013258094287912195847642598436035132783919453991516358280321085873745330313812205910011387125778714795906023110368957596998222544234082487264006696812862179916726781327290284827659294751262185328816323311831349296593013038823107653943652771448719760448938995150646738377177532550757319539185878535087009904848382493668686831331474113789651777885239747000076063679062106375348803749466079052774597412239427050432901553466002731972993029311850718200685157193170716432600165476733200831046297530470544781309612128231925681374239849452623513538498417735984094919756374577623486416462101457492789215144166273775249387638107644634704270216130852885082174564648445147377239033930079759024399532146184753110240154062693457622208373371290126810856885343328090305620627668495081760346853701632815149478447405718664667978825807101325764916405446176183238866136433205933785973568759281210319422288153910340542098573782006262190181726245838857185687242960093445000287347616796984610291664809895901301187179157382169999966124177588884152267266994164841066291200
n = 899081756851564072995842371038848265712822308942406479625157544735473115850983700580364485532298999127834142923262920189902691972009898741820291331257478170998867183390650298055916005944577877856728843264502218692432679062445730259562784479410120575777748292393321588239071577384218317338474855507210816917917699500763270490789679076190405915250953860114858086078092945282693720016414837231157788381144668395364877545151382171251673050910143023561541226464220441
e = 65537
c = 841335863342518623856757469220437045493934999201203757845757404101093751603513457430254875658199946020695655428637035628085973393246970440054477600379027466651143466332405520374224855994531411584946074861018245519106776529260649700756908093025092104292223745612991818151040610497258923925952531383407297026038305824754456660932812929344928080812670596607694776017112795053283695891798940700646874515366341575417161087304105309794441077774052357656529143940010140

from math import gcd
from random import randrange
def factorize_multi_prime(N, phi):
    """
    Recovers the prime factors from a modulus if Euler's totient is known.
    This method works for a modulus consisting of any number of primes, but is considerably be slower than factorize.
    More information: Hinek M. J., Low M. K., Teske E., "On Some Attacks on Multi-prime RSA" (Section 3)
    :param N: the modulus
    :param phi: Euler's totient, the order of the multiplicative group modulo N
    :return: a tuple containing the prime factors
    """
    prime_factors = set()
    factors = [N]
    while len(factors) > 0:
        # Element to factorize.
        N = factors[0]
        w = randrange(2, N - 1)
        i = 1
        while phi % (2 ** i) == 0:
            sqrt_1 = pow(w, phi // (2 ** i), N)
            if sqrt_1 > 1 and sqrt_1 != N - 1:
                # We can remove the element to factorize now, because we have a factorization.
                factors = factors[1:]
                p = gcd(N, sqrt_1 + 1)
                q = N // p
                print(p)
                if is_prime(p):
                    prime_factors.add(p)
                elif p > 1:
                    factors.append(p)
                if is_prime(q):
                    prime_factors.add(q)
                elif q > 1:
                    factors.append(q)
                # Continue in the outer loop
                break
            i += 1
    return list(prime_factors)

n_factors = factorize_multi_prime(N,phi)
n_factors = sorted(n_factors)

#[6811480804433459752827714558479851837166061762294131563310130325846430072816177165149613687307165209577130630311477665591141650399740741396784593477667511,6991223361118904775931217829045348785013077549030883418924453538830605687999480005714979700653172534877541317997174968789510984315425270755055110913347281, 7592439908930473591169395506464664967460880934907692099467559610659035874008829133810341129161864445676397227262130671224157308868678442281617413952593477, 7661276973316857207751367277881032536449069939447322837508906694964933673171693624171780997296797446643574508184011878230465391879808258241752897792891323, 8752762682421281693932454897190422008900505775990831144558827755415243453970083322530846132571648469860763497724505255094464743633789884168771246977571539, 9987009117206906203158749743824168660291275882852229158070368815160479543708376165641735042845357978292384303332559592302507789120810447986634662721490507, 10022455487144667211701100343824680124338467215246658405697280466931561838565228778624923751405642974058833143888323468902504576610147119708725877528011439, 11627877395179828773706504422918933052041685770731872812302758181943244472706231518350716590168708806854971155512042158777017234038219076771501368374236727, 12876877424944854147075816504195994138450356002779004886384584287813869165469217718717854027672044903401715370348223932937626725119320180795716270261309139]

for t in n_factors:
    for i in range(2000):
        if gcd(t+i, n) != 1:
            print(t+i)
        
p = [6991223361118904775931217829045348785013077549030883418924453538830605687999480005714979700653172534877541317997174968789510984315425270755055110913347349,
9987009117206906203158749743824168660291275882852229158070368815160479543708376165641735042845357978292384303332559592302507789120810447986634662721490849,
12876877424944854147075816504195994138450356002779004886384584287813869165469217718717854027672044903401715370348223932937626725119320180795716270261309141]

phi = (p[0]-1)*(p[1]-1)*(p[2]-1)
d = inverse_mod(e,phi)
m = pow(c,d,n)
long_to_bytes(int(m))

#moectf{you_KNow_how_to_faCtorize_N_right?_9?WPIBung6?WPIBung6?WPIBund6?}

 

feistel_promax

from Crypto.Util.number import *
from os import urandom

round = 2
flag = open("./secret", "rb").read().strip()


def f(m, key):
    m = m ^ (m >> 4)
    m = m ^ (m << 5)
    m = m ^ (m >> 8)
    m ^= key
    m = (m * 1145 + 14) % 2**64
    m = (m * 1919 + 810) % 2**64
    m = (m * key) % 2**64
    return m


def enc(m, key, round):
    key = bytes_to_long(key)
    left = bytes_to_long(m[:8])
    right = bytes_to_long(m[8:])
    for i in range(round):
        left, right = right, f(right, key) ^ left
    left, right = right, left
    return long_to_bytes(left).rjust(8, b"\x00") + long_to_bytes(right).rjust(8, b"\x00")


def padding(m):
    mlen = len(m)
    pad = 16 - mlen % 16
    return m + pad * bytes([pad])


def ecb_enc(m, key):
    m = padding(m)
    mlen = len(m)
    c = b""
    for i in range(mlen // 16):
        c += enc(m[i * 16 : i * 16 + 16], key, round)
    return c


key = urandom(8)

print(ecb_enc(padding(flag), key))
# b'B\xf5\xd8gy\x0f\xaf\xc7\xdf\xabn9\xbb\xd0\xe3\x1e0\x9eR\xa9\x1c\xb7\xad\xe5H\x8cC\x07\xd5w9Ms\x03\x06\xec\xb4\x8d\x80\xcb}\xa9\x8a\xcc\xd1W\x82[\xd3\xdc\xb4\x83P\xda5\xac\x9e\xb0)\x98R\x1c\xb3h'

很麻烦

from Crypto.Util.number import long_to_bytes as l2b, bytes_to_long as b2l


def f(m, key):
    m = m ^ (m >> 4)
    m = m ^ (m << 5)
    m = m ^ (m >> 8)
    m ^= key
    m = (m * 1145 + 14) % 2**64
    m = (m * 1919 + 810) % 2**64
    m = (m * key) % 2**64
    return m

def enc(m, key, round):
    key = b2l(key)
    left = b2l(m[:8])
    right = b2l(m[8:])
    for i in range(round):
        left, right = right, f(right, key) ^ left
    left, right = right, left
    return l2b(left).rjust(8, b"\x00") + l2b(right).rjust(8, b"\x00")

'''
key = b'\xcdU\x19\xb4\x04\x9f\xaaE'
flag = b'0123456789abcdef}'
for i in range(1,17):
    tmp = flag + bytes([i])*i 
    tmp = tmp[-16:]
    c = enc(tmp,key,2)
    print(c)

b'\xa0\x8b\x9b\xce\xe4\xc8\xc2l<^\xfc\xe1\x8b\xb8\xbe\xd1'
b'\x82Z\x13o\x92!\xf7V\xa7\n\x03!\x8b\xe2\x0f\x1e'
b'\x1f<\xb8\x15c\xce\x84\x87\xb5\x91\xea\xb3\xc6\xe0S\x97'
b'\x82nW\x12\xb8I\xe1\x81^Z\xdc\xc0\xba\xde\xdd\xb0'
b'!\xd3\x84Vh~\xa7\x01\x1b\xb7u\xad\x92\xeb\xb6\xfd'
b'Un\x1d\xf2\nzg\xc0F|*\xa7\xadX\xf0"'
b',\x83\x91\xacs@V\x13\x08\x17\xc6\xdb81\xcfk'
b'\x80_-S\xa3\xd1S\xa7\xad\xc2\xb8W\xb5\xaeju'
b'\r\xc7Z\xcbh}\x14\xf7\xa4\xc23s8\x83\\\xc7'
b'1u\xb4\x90\x8c\t\x16\xb0P\xc9\x8a\n\xdf\xeb\xeav'
b'\r\xad\xfd\xe1\x8a.P\xac\xb4\xc3\x0148\xbb\xfdI'
b'\xce3\xeb\t\x82\xc3K[<\xf0\xd7\xc2\x0e?o,'
b'\xa7+\x88.K\xee\x8be\xec\xf4Z\xac\x83@u\xeb'
b';8q}\x07\x069\xfeh\xe1\xcb\xf7\xe7\xf19\x9a'
b'\xa2\xf1r\x90\xf9\xd4k\x8c\xce\x964\xd3y\x16BU'
b'\x81\xb9\xa1d\xac\xac\x81:Q\x12\xcb\xe4S1n\x91'
'''
'''
l         r                  plain
r         f(r)^l             round 1
f(r)^l    f(f(r)^l)^r        round 2
f(f(r)^l)^r   f(r)^l         c
'''

'''
#test
l = b2l(b'\x10'*8)
r = b2l(b'\x10'*8)
key = b2l(b'\xcdU\x19\xb4\x04\x9f\xaaE')
fr = f(r,key)^l
ffr = f(fr,key)^r
print(l2b(fr),l2b(ffr))
'''
enc = b'B\xf5\xd8gy\x0f\xaf\xc7\xdf\xabn9\xbb\xd0\xe3\x1e0\x9eR\xa9\x1c\xb7\xad\xe5H\x8cC\x07\xd5w9Ms\x03\x06\xec\xb4\x8d\x80\xcb}\xa9\x8a\xcc\xd1W\x82[\xd3\xdc\xb4\x83P\xda5\xac\x9e\xb0)\x98R\x1c\xb3h'

#c = b'\x81\xb9\xa1d\xac\xac\x81:Q\x12\xcb\xe4S1n\x91'
c = enc[-16:]
cl,cr = b2l(c[8:]), b2l(c[:8])   #cl和r取3字节,l取2字节
#print(l2b(cl),l2b(cr))
'''
for pad in range(1,17):
    l = bytes([pad])*2
    r = bytes([pad])*3
    l,r = b2l(l),b2l(r)
    for key8 in range(256):
        for key7 in range(256):
            key = (key7<<8) |key8
            fr  = (f(r,  key)^l) &0xffff
            ffr = (f(cl, key)^r) &0xffff
            if fr == cl&0xffff and ffr == cr&0xffff:
                print(pad, hex(key7), hex(key8) )
'''
#pad 16  key = b'\xac\xb4'
pad = 16
key_tail = b'4t*zFD\xac\xb4'
'''
mod = 1<<(8*(len(key_tail)+1))
l = bytes([pad])*8
r = bytes([pad])*8
l,r = b2l(l),b2l(r)
for k in range(256):
    key = (k<<(8*len(key_tail)))|b2l(key_tail)
    fr  = (f(r,  key)^l) %mod
    ffr = (f(cl, key)^r) %mod
    if fr == cl%mod and ffr == cr%mod:
        print(l2b(key) )
'''
key = b2l(key_tail )
#从明文 
c = enc[32:48]
cl,cr = b2l(c[8:]),b2l(c[:8])
r = f(cl,key)^cr
l = f(r,key)^cl
print(l2b(l)+l2b(r))

#moectf{F_func_1s_n1t_Ve5y_$EcU%e}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1129247.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[c语言]深入返回值为函数指针的函数

之前写过个好玩代码 c语言返回值为函数指针的函数 一、发现 #include<stdio.h>int (*drink(void)) (void) {static int i;i;printf("(%d)\n", i);return (int(*)(void))drink; }int main() {drink()();return 0; }这个代码定义了一个返回值为函数指针的函数&…

Python基础入门例程11-NP11 单词的长度

目录 描述 输入描述&#xff1a; 输出描述&#xff1a; 示例1 解答&#xff1a; 说明&#xff1a; 描述 牛妹正在学英语&#xff0c;但是背单词实在是太痛苦了&#xff0c;她想让你帮她写一个小程序&#xff0c;能够根据输入的单词&#xff0c;快速得到单词的长度。 输…

测试C#调用Windows Media Player组件

新建基于.net framework的Winform项目&#xff0c;可以通过添加引用的方式选择COM组件中的Windows Media Player组件&#xff0c;如下图所示&#xff1a;   也可以在VS2022的工具箱空白处点右键&#xff0c;选择“选择项…”菜单。   在弹出的选择工具箱项窗口中&#xf…

多线程环境下的原子性问题

什么是原子性呢? 在数据库事务的ACID特性中就有原子性&#xff0c;它是指当前操作中包含的多个数据库事务操作&#xff0c;要么全部成功&#xff0c;要么全部失败&#xff0c;不允许存在部分成功、部分失败的情况。而在多线程中的原子性与数据库事务的原子性相同&…

WPS中图的自动编号及引用

WPS中图的自动编号及引用 图的自动编号图编号的引用图编号及引用的更新 图的自动编号 将光标放置在需要插入编号的位置点击“引用”→“题注”&#xff1a; 点击“引用”→“题注”&#xff1a; 点击“编号”&#xff0c;设置图的编号格式&#xff0c;可勾选“包含章节编号”&…

【RTOS学习】信号量 | 互斥量 | 递归锁

&#x1f431;作者&#xff1a;一只大喵咪1201 &#x1f431;专栏&#xff1a;《RTOS学习》 &#x1f525;格言&#xff1a;你只管努力&#xff0c;剩下的交给时间&#xff01; 信号量 | 互斥量 | 递归锁 &#x1f37a;信号量&#x1f964;原理&#x1f964;使用信号量的函数&…

Java反射获取内部类方法

Java反射获取内部类方法 结论一、案例准备二、测试方法&#xff1a;使用反射获取类的成员内部类和方法具体操作具体操作&#xff08;使用getDeclaredClasses&#xff09; 结论 Java 通过反射可以获得内部类&#xff0c;包括内部类属性信息和方法。 一、案例准备 创建了一个类…

1024,向着“顶尖程序员“迈进

10月24日&#xff0c;对每个程序员而言&#xff0c;都是一个具有特殊意义的日子。1024这个数字&#xff0c;不再只是计算机存储容量的基础单位&#xff0c;更是我们向着技术巅峰进发的象征。 回顾我的程序员之路&#xff0c;那是一个不断学习、不断成长的过程。起初是对编程充…

『第二章』这只燕子很特别:Swift 特性

在本篇博文中,您将学到如下内容: 1. Swift 语言概览2. Objective-C “练废了”&#xff0c;重新写一门新语言吧&#xff01;3. Swift 的“习性”与优势3.1. Swift 更简洁、更易于阅读、所需代码更少3.2. Swift 更加安全3.3. Swift 内存管理更加统一3.4. Swift 更快3.5. Swift 会…

Redis主从模式(二)---拓扑结构及复制过程

目录 一, Redis主从模式下的复制拓扑结构 1.1 一主一从结构 1.2 一主多从结构 1.3 树形主从结构 二, 主从复制过程 2.1 主从复制建立复制流程图 2.2 数据同步(psyc) 1.replicationid/replid (复制id) 2.offset(偏移量) 2.3 psync运行流程 2.4 全量复制 2.5 部分复制…

Opencv-图像插值与LUT查找表

图像像素的比较 白色是255&#xff0c;黑色是0 min(InputArray src1,InputArray src2,OutputArray dst) max(InputArray src1,InputArray src2,OutpurArray dstsrc1:第一个图像矩阵&#xff0c;通道数任意src2&#xff1a;第二个图像矩阵&#xff0c;尺寸和通道数以及数据类型…

【C++面向对象】5. this指针

文章目录 【 1. 基本原理 】【 2. 实例 】 【 1. 基本原理 】 在 C 中&#xff0c;只有成员函数才有 this 指针&#xff08;友元函数没有 this 指针&#xff0c;因为友元不是类的成员&#xff09;&#xff0c;this 指针是所有成员函数的隐含参数。 在成员函数内部&#xff0c;…

用*画田字形状,numpy和字符串格式化都可以胜任

numpy的字符型元素矩阵&#xff0c;可以方便画&#xff1b;直接python字符串手撕&#xff0c;也可以轻巧完成。 (本笔记适合熟悉循环和列表的 coder 翻阅) 【学习的细节是欢悦的历程】 Python 官网&#xff1a;https://www.python.org/ Free&#xff1a;大咖免费“圣经”教程《…

【WinForm详细教程一】WinForm中的窗体、Label、TextBox及Button控件、RadioButton和CheckBox、ListBox

文章目录 1.WinForm文件结构2. 窗体的常用属性、方法与事件2.1 常用属性&#xff08;可直接在属性中设置&#xff09;2.2 常用方法2.3 常用事件 3.Label、TextBox及Button控件4.RadioButton和CheckBox5.ListBox&#xff08;列表框&#xff09; 1.WinForm文件结构 .sln文件 &am…

IEEE754 标准存储浮点数

1. IEEE754 标准简介 IEEE754 标准是一种用于浮点数表示和运算的标准&#xff0c;由国际电工委员会&#xff08;IEEE&#xff09;制定。它定义了浮点数的编码格式、舍入规则以及基本的算术运算规则&#xff0c;旨在提供一种可移植性和一致性的方式来表示和处理浮点数 IEEE754 …

浅谈电力电容器的故障处理及选型

安科瑞 华楠 【摘要】常见的电力电容器都是为了改善电力系统的电压质量和提高输电线路的输电能力&#xff0c;它们在减少系统功率损耗、提高功率因数、降低运行电流、提升电网电压、释放变压器使用裕度等方面有着显著效果。按电压等级可以划分高、低压两部分。虽然它们可以起着…

Vue mixin混入

可以把多个组件中共有的配置提取出来构成一个混入。 一、配置混入 &#xff08;一&#xff09; 创建mixin.js 这里的名字可以自定义&#xff0c;但是为了方便识别&#xff0c;多数场景下都写mixin。 mixin.js 要创建在src目录下&#xff0c;与main.js平级&#xff1a; &…

win10启动venv报错:无法加载文件 venv\Scripts\activate.ps1,因为在此系统上禁止运行脚本。

背景&#xff1a; 最近需要用到python开发&#xff0c;切换虚拟环境时&#xff0c;在win10系统上安装编辑器后创建了虚拟环境&#xff0c;但是执行activate时报错&#xff1a;.\venv\Scripts\activate&#xff0c;报错内容如题&#xff1a; 无法加载文件 venv\Scripts\activa…

HTTPSConnectionPool(host=‘huggingface.co‘, port=443)解决

huggingface&#xff0c;也就是抱抱脸&#xff0c;应该都很熟悉了吧 好用是很好用&#xff0c;就是有一个问题&#xff0c;国内的IP地址总是不灵是吧 今天我就碰到这么个问题 请看图&#xff1a; 。。。。图找不到了&#xff0c;我的问题忘记记录了 我给你们贴上文字吧 (M…

reactNative导入excel文件

组件内导入 import {TouchableOpacity,PermissionsAndroid} from react-native; import RNFS from react-native-fs; import XLSX from xlsx; import DocumentPicker from react-native-document-picker; import {Buffer} from buffer;// 需要安装一下三个,Buffer和react-nati…