嵌入式linux系统中设备树基础知识

news2024/11/15 13:56:47

笔记整理自百问网+正点原子

前言

之前分享的笔记:【Linux笔记】总线设备驱动模型中在platform_device部分有简单说明描述设备有两种方法:一种是使用platform_device结构体来指定;另一种是使用设备树来描述。

本篇笔记我们就来简单地学习一下设备树的一些知识。

什么是设备树

图片

设备树简单理解就是描述设备信息(资源)的一棵树。设备树(Device Tree)用代码体现如下:

图片

这些代码被保存在.dts/dtsi后缀文件中,也即设备树源文件 DTS(DeviceTree Source)

这些源文件同我们的C代码一样,并不能直接使用的,而是得经过一个编译过程生成机器可运行的二进制文件,如:

图片

dts文件使用dtc工具编译生成dtb文件,这个dtb文件就是内核可以使用的文件。例如我们的板子跑起来之后,我们系统使用的设备树文件就存在目录/boot下:

图片

Linux为什么会引入设备树?

在上一个实验:【Linux笔记】LED驱动实验(总线设备驱动模型)中我们使用了platform_device结构体来描述led设备(硬件资源)。既然已经有了描述设备的方法了,为什么还要引入设备树呢?

因为Linux内核中有很多BSP(板级支持包),不同的BSP会包含着不同的描述设备的代码(.c或.h文件)。

随着芯片的发展,Linux内核中就包含着越来越多这些描述设备的代码,导致Linux内核代码会很臃肿。

这导致Linux之父Linus 大发雷霆:"this whole ARM thing is a f*cking pain in the ass"。

因此引入了设备树文件,从而可精简一些臃肿的C代码。除此之外,.dts编译生成.dtb文件的过程要比.c编译生成驱动模块、加载驱动模块的过程要简单很多,也更方面我们进行开发。

设备树的语法

设备树源文件也是需要根据一定规则来编写的,同C语言一样,也要遵循一些语法规则。下面简单看一下设备树的源码结构及语法。

先看一个设备树示例:

图片

1、节点格式

label: node-name@unit-address

其中:

label:标号

node-name:节点名字

unit-address:单元地址

label 是标号,可以省略。label 的作用是为了方便地引用 node。比如:

图片

可以使用下面 2 种方法来修改 uart@fe001000 这个 node:

图片

2、属性格式

简单地说, properties 就是“name=value”, value 有多种取值方式。示例:

  • 一个32位的数据,用尖括号包围起来,如

interrupts = <17 0xc>;   
  • 一个64位数据(使用2个32位数据表示),用尖括号包围起来,如:

clock-frequency = <0x00000001 0x00000000>;   
  • 有结束符的字符串,用双引号包围起来,如:

compatible = "simple-bus";   
  • 字节序列,用中括号包围起来,如:

local-mac-address = [00 00 12 34 56 78]; // 每个byte使用2个16进制数来表示   
local-mac-address = [000012345678];      // 每个byte使用2个16进制数来表示   
  • 可以是各种值的组合,用逗号隔开,如:

compatible = "ns16550", "ns8250";   
example = <0xf00f0000 19>, "a strange property format";   

3、一些标准属性

(1) compatible 属性

“compatible”表示“兼容”,对于某个LED,内核中可能有A、B、C三个驱动都支持它,那可以这样写:

led {   
 compatible = “A”, “B”, “C”;   
};  

内核启动时,就会为这个LED按这样的优先顺序为它找到驱动程序:A、B、C。

(2)model 属性

model属性与compatible属性有些类似,但是有差别。compatible属性是一个字符串列表,表示可以你的硬件兼容A、B、C等驱动;model用来准确地定义这个硬件是什么。

比如根节点中可以这样写:

/ {   
    compatible = "samsung,smdk2440", "samsung,mini2440";   
    model = "jz2440_v3";   
};  

它表示这个单板,可以兼容内核中的“smdk2440”,也兼容“mini2440”。

从compatible属性中可以知道它兼容哪些板,但是它到底是什么板?用model属性来明确。

(3)status 属性

status 属性看名字就知道是和设备状态有关的, status 属性值也是字符串,字符串是设备的状态信息,可选的状态如下所示:

图片

(4)#address-cells 和#size-cells 属性

格式:

address-cells:address要用多少个32位数来表示;   
size-cells:size要用多少个32位数来表示。 

比如一段内存,怎么描述它的起始地址和大小?

下例中,address-cells为1,所以reg中用1个数来表示地址,即用0x80000000来表示地址;size-cells为1,所以reg中用1个数来表示大小,即用0x20000000表示大小:

/ {   
    # address-cells = <1>;   
    # size-cells = <1>;   
    memory {   
     reg = <0x80000000 0x20000000>;   
    };   
};   
(5)reg 属性

reg属性的值,是一系列的“address size”,用多少个32位的数来表示address和size,由其父节点的# address-cells、#size-cells决定。示例:

/dts-v1/;   
/ {   
    # address-cells = <1>;   
    # size-cells = <1>;   
    memory {   
     reg = <0x80000000 0x20000000>;   
    };   
};   
(7)name 属性

过时了,建议不用。它的值是字符串,用来表示节点的名字。在跟platform_driver匹配时,优先级最低。compatible属性在匹配过程中,优先级最高。

(8)device_type 属性

过时了,建议不用。它的值是字符串,用来表示节点的类型。在跟platform_driver匹配时,优先级为中。compatible属性在匹配过程中,优先级最高。

3、常用的节点

(1)根节点

用 / 标识根节点,如:

/dts-v1/;   
/ {   
    model = "SMDK24440";   
    compatible = "samsung,smdk2440";   

    # address-cells = <1>;   
    # size-cells = <1>;   
};   
(2)CPU节点

一般不需要我们设置,在 dtsi 文件中都定义好了,如:

cpus {   
    # address-cells = <1>;   
    # size-cells = <0>;   

    cpu0: cpu@0 {   
     .......   
    }   
};   
(3)memory 节点

芯片厂家不可能事先确定你的板子使用多大的内存,所以 memory 节点需要板厂设置,比如:

memory {   
 reg = <0x80000000 0x20000000>;   
}; 
(4)chosen 节点

我们可以通过设备树文件给内核传入一些参数,这要在chosen节点中设置bootargs属性:

chosen {   
 bootargs = "noinitrd root=/dev/mtdblock4 rw init=/linuxrc console=ttySAC0,115200";   
};   

操作设备树的函数

Linux 内核给我们提供了一系列的函数来获取设备树中的节点或者属性信息,这一系列的函数都有一个统一的前缀“of_”(“open firmware”即开放固件。),所以在很多资料里面也被叫做 OF 函数。

1、节点相关操作函数

Linux 内核使用 device_node 结构体来描述一个节点,此结构体定义在文件 include/linux/of.h 中,定义如下:

图片

与查找节点有关的 OF 函数有 5 个:

(1) of_find_node_by_name 函数

of_find_node_by_name 函数通过节点名字查找指定的节点,函数原型如下:

struct device_node *of_find_node_by_name(struct device_node *from,
const char *name);
(2) of_find_node_by_type 函数

of_find_node_by_type 函数通过 device_type 属性查找指定的节点,函数原型如下:

struct device_node *of_find_node_by_type(struct device_node *from, const char *type);
(3) of_find_compatible_node 函数

of_find_compatible_node 函数根据 device_type 和 compatible 这两个属性查找指定的节点,函数原型如下:

struct device_node *of_find_compatible_node(struct device_node *from,const char *type,
const char *compatible);
(4)of_find_matching_node_and_match 函数

of_find_matching_node_and_match 函数通过 of_device_id 匹配表来查找指定的节点,函数原型如下:

struct device_node *of_find_matching_node_and_match(struct device_node *from,const struct of_device_id *matches,const struct of_device_id **match);
(5)of_find_node_by_path 函数

of_find_node_by_path 函数通过路径来查找指定的节点,函数原型如下:

inline struct device_node *of_find_node_by_path(const char *path);

2、提取属性值的 OF 函数

Linux 内核中使用结构体 property 表示属性,此结构体同样定义在文件 include/linux/of.h 中,内容如下:

Linux 内核也提供了提取属性值的 OF 函数 :

(1) of_find_property 函数

of_find_property 函数用于查找指定的属性,函数原型如下:

property *of_find_property(const struct device_node *np,const char *name,int *lenp);
(2)of_property_count_elems_of_size 函数

of_property_count_elems_of_size 函数用于获取属性中元素的数量,比如 reg 属性值是一个数组,那么使用此函数可以获取到这个数组的大小,此函数原型如下:

int of_property_count_elems_of_size(const struct device_node *np,const char *propname,int elem_size);
(3)读取 u8、 u16、 u32 和 u64 类型的数组数据

图片

(4)读取 u8、 u16、 u32 和 u64 类型属性值

图片

(5)of_property_read_string 函数

of_property_read_string 函数用于读取属性中字符串值,函数原型如下:

int of_property_read_string(struct device_node *np,const char *propname,const char **out_string)

以上就是关于设备树的一些基础知识的整理学习,下一篇笔记我们再来一起学一下设备树的一些具体实验。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1126016.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

系列三、其他流

一、缓冲流 1.1、概述 缓冲流也叫高效流&#xff0c;是对最基本的FileInputStream、FileOutputStream、FileReader、FileWriter的增强&#xff0c;所以也是4个流&#xff0c;按照数据类型分为如下种类 字节缓冲流&#xff1a;BufferedInputStream、BufferedOutputStream字符…

一、C++入门

1 C关键字 C语言中有32个关键字&#xff0c;而在C中有63个关键字。 当前我们不对关键字进行具体了解&#xff0c;等后续要用到的时候再学习该如何使用。 2 命名空间 在C和C中&#xff0c;变量、函数和后面要学到的类都是大量存在的&#xff0c;这些变量、函数和类的名称将都…

pr加马赛克怎么加?

PR是常用的视频剪辑和处理软件&#xff0c;能够对视频进行一些美化、编辑处理等&#xff0c;大家都知道视频处理一个比较常见的操作那就是添加马赛克。那么&#xff0c;pr加马赛克能不能操作呢&#xff1f;其实是很简单的处理方式&#xff0c;下边&#xff0c;我们就一起看看如…

Redis实战之年会抽奖

前言&#x1f50d; 上一篇&#xff1a;Redis实战之微博点赞 本篇涉及相关命令&#xff1a;Sadd、Spop 示例基于SpringBoot 2.7.14 Sadd Sadd 命令将一个或多个成员元素加入到集合中&#xff0c;已经存在于集合的成员元素将被忽略。假如集合 key 不存在&#xff0c;则创建一…

小程序 this.setData is not a function解决办法

报错是因为函数中有 wx.showModal 或者 wx.request等请求&#xff0c;放在请求体里面时会报错。 this组用域的问题&#xff0c;success函数包实际上是一个闭包&#xff0c;无法通过this来直接setData 怎样修改呢&#xff1f; 我们需要将当&#xff0c;前对象赋予给一个新的对…

Flappy bird项目

一、功能分析 1、小鸟自动向右滑行 2、按下空格小鸟上升&#xff0c;不按下落 3、显示小鸟需要穿过的管道 4、管道自动左移和创建 5、小鸟和管道碰撞&#xff0c;游戏结束 6、技术 7、 项目框图 8、Ncurses 1&#xff09;创建窗口界面&#xff0c;移动光标&#xff0c;产…

Linux系统CH347应用—I2C功能

Linux/安卓系统使用CH347转接I2C功能有三种应用方式&#xff1a; 1. 使用CH34X_MPHSI_Master总线驱动为系统扩展原生I2C Master&#xff0c;此方式无需进行单独的应用层编程&#xff1b; 2. 使用CH341PAR_LINUX字符设备驱动&#xff0c;此方式需要配合使用厂商提供的库文件&a…

数据要素安全流通:挑战与解决方案

文章目录 数据要素安全流通&#xff1a;挑战与解决方案一、引言二、数据要素安全流通的挑战数据泄露风险数据隐私保护数据跨境流动监管 三、解决方案加强数据安全防护措施实施数据隐私保护技术建立合规的数据跨境流动机制 四、数据安全流通的未来趋势01 数据价值与产业崛起02 多…

CUDA学习笔记(十四) Constant Memory

转载至https://www.cnblogs.com/1024incn/tag/CUDA/ CONSTANT MEMORY constant Memory对于device来说只读但是对于host是可读可写。constant Memory和global Memory一样都位于DRAM&#xff0c;并且有一个独立的on-chip cache&#xff0c;比直接从constant Memory读取要快得多…

iPhone开发--Xcode15下载iOS 17.0.1 Simulator Runtime失败解决方案

爆句粗口&#xff0c;升级后公司网络下载iOS 17.0.1 Simulator Runtime一直出错&#xff0c;每次出错后都得重新开始下载&#xff0c;oh&#xff0c;f**k。上一次在在家里的网络升级成功。 解决办法一&#xff1a; 进入网址&#xff1a;https://developer.apple.com/download…

【产品设计】B端SaaS产品原则

B端产品设计并不是一个人的事情&#xff0c;往往是一个团队共同完成的。在整个团队中&#xff0c;会涉及到四个环节&#xff1a;需求环节、设计环节、研发环节和运营环节。在这些环节中&#xff0c;需要遵循一些原则&#xff0c;共同推动整个产品建设。 本文针对产品的需求环节…

Pyside6 QMenuBar

Pyside6 QMenuBar QMenuBar使用QMenuBar常用函数QMenuBar常用信号QMenuBar添加菜单项QMenuBar添加图标QMenuBar添加菜单点击事件 Pyside6 QMenuBar类提供了一个水平菜单栏&#xff0c;更多关于QMenuBar的使用可以参考下面的文档。 https://doc.qt.io/qtforpython-6/PySide6/QtW…

Java中,如何在字符串后面补全空格

笔者在字符串有多个空格如何截取一文中写道了如何对字符串的多个空格进行截取&#xff0c;那么反过来&#xff0c;在调用三方接口&#xff0c;需要按照对方的报文格式&#xff0c;给左右的属性进行填充空格&#xff0c;以便对齐格式 例如这样&#xff1a; 那么我们应该怎么做…

《红蓝攻防对抗实战》六.常规反弹之利用NC在windows系统执行反弹shell

目录 一.利用NC工具在windows系统执行反弹shell 1. Windows正向连接shell 2.Windows反向连接shell 前文推荐&#xff1a; 《红蓝攻防对抗实战》一. 隧道穿透技术详解《红蓝攻防对抗实战》二.内网探测协议出网之TCP/UDP协议探测出网《红蓝攻防对抗实战》三.内网探测协议出网…

SpringBoot项目中使用MybatisPlus

MybatisPlus的优点 使用时注意事项: 首先需要在spring boot启动类中添加MapperScan注解&#xff0c;扫描Mapper文件夹。 并且在POM文件引入坐标的时候不要同时引入Mybatis和Mybatis-Plus的坐标。容易出现版本差异不兼容。 日志配置 由于SQL的执行是不可见的&#xff0c;所以…

高通平台USB 2.0和USB 3.0接口充电器识别原理

1 BC 1.2 1.1 充电器类型探测 1&#xff09;DCD&#xff1a;DP上有150mV&#xff08; 10uA x 15K欧姆下拉电阻&#xff09;的电压&#xff0c;DM上电压为0 2&#xff09;Primary Det&#xff08;DP发起检测DM&#xff09;&#xff1a; - DP上加载0.6V电压&#xff0c;DM上电压为…

Plonky2:最好的SNARKs和STARKs

1. 引言 Plonky2为Polygon团队2022年1月发起的项目。其定位为ZKP证明系统。 开源代码实现见&#xff1a; https://github.com/0xPolygonZero/plonky2&#xff08;Rust 汇编&#xff09; Plonky2可解锁当今2大主流ZKP类型——SNARKs和STARKs的扩容优势。 每个ZKP证明系统都有…

Selenium自动化测试中常见的异常详解

概要 开发人员在编写代码时总是会考虑到不同的应用场景&#xff0c;但也可能会出现实现效果不如预期的情况。同样的原则也适用于测试代码&#xff0c;编写测试代码的主要目的是测试现有产品的功能、发现错误并使产品100%无错误。 有句话说得好&#xff1a;"真相总是比小说…

SpringBoot使用@Value获取不到yaml中配置的值

在最近的开发中遇到一个问题,使用Value获取yml文件中配置的属性时始终获取不到值,一开始我以为是没有注入的问题,或者没有写setter方法的问题,后来我发现这些都都写了然后开始百度发现获取不到属性值有这么几个原因 获取不到值的原因 1.没有使用Component注解,也就是没有注入…

J2EE的N层体系结构

J2EE平台采用了多层分布式应用程序模型&#xff0c;实现不同逻辑功能的应用程序被封装到不同的构件中&#xff0c;处于不同层次的构件可被分别部署到不同的机器中。 RMI/IIOP&#xff1a;RMI&#xff08;Remote Method Invocation&#xff0c;远程方法调用&#xff09;是Java的…