网络协议--动态选路协议

news2025/1/10 17:01:34

10.1 引言

在前面各章中,我们讨论了静态选路。在配置接口时,以默认方式生成路由表项(对于直接连接的接口),并通过route命令增加表项(通常从系统自引导程序文件),或是通过ICMP重定向生成表项(通常是在默认方式出错的情况下)。

在网络很小,且与其他网络只有单个连接点且没有多余路由时(若主路由失败,可以使用备用路由),采用这种方法是可行的。如果上述三种情况不能全部满足,通常使用动态选路。

本章讨论动态选路协议,它用于路由器间的通信。我们主要讨论RIP,即选路信息协议(Routing Infromation Protocol),大多数TCP/IP实现都提供这个应用广泛的协议。然后讨论两种新的选路协议,OSPF和BGP。本章的最后研究一种名叫无分类域间选路的新的选路技术,现在Internet上正在开始采用该协议以保持B类网络的数量。

10.2 动态选路

当相邻路由器之间进行通信,以告知对方每个路由器当前所连接的网络,这时就出现了动态选路。路由器之间必须采用选路协议进行通信,这样的选路协议有很多种。路由器上有一个进程称为路由守护程序(routing daemon),它运行选路协议,并与其相邻的一些路由器进行通信。正如图9-1所示,路由守护程序根据它从相邻路由器接收到的信息,更新内核中的路由表。

动态选路并不改变我们在9.2节中所描述的内核在IP层的选路方式。这种选路方式称为选路机制(routing mechanism)。内核搜索路由表,查找主机路由、网络路由以及默认路由的方式并没有改变。仅仅是放置到路由表中的信息改变了—当路由随时间变化时,路由是由路由守护程序动态地增加或删除,而不是来自于自引导程序文件中的route命令。

正如前面所描述的那样,路由守护程序将选路策略(routing policy)加入到系统中,选择路由并加入到内核的路由表中。如果守护程序发现前往同一信宿存在多条路由,那么它(以某种方法)将选择最佳路由并加入内核路由表中。如果路由守护程序发现一条链路已经断开(可能是路由器崩溃或电话线路不好),它可以删除受影响的路由或增加另一条路由以绕过该问题。

在像Internet这样的系统中,目前采用了许多不同的选路协议。Internet是以一组自治系统(AS,Autonomous System)的方式组织的,每个自治系统通常由单个实体管理。常常将一个公司或大学校园定义为一个自治系统。NSFNET的Internet骨干网形成一个自治系统,这是因为骨干网中的所有路由器都在单个的管理控制之下。

每个自治系统可以选择该自治系统中各个路由器之间的选路协议。这种协议我们称之为内部网关协议IGP(Interior Gateway Protocol)或域内选路协议(intradomain routing protocol)。最常用的IGP是选路信息协议RIP。一种新的IGP是开放最短路径优先OSPF(Open Shortest Path First)协议。它意在取代RIP。另一种1986年在原来NSFNET骨干网上使用的较早的IGP协议——HELLO,现在已经不用了。

外部网关协议EGP(Exterier Gateway Protocol)或域内选路协议的分隔选路协议用于不同自治系统之间的路由器。在历史上,(令人容易混淆)改进的EGP有着一个与它名称相同的协议:EGP。新EGP是当前在NSFNET骨干网和一些连接到骨干网的区域性网络上使用的是边界网关协议BGP(Border Gateway Protocol)。BGP意在取代EGP。

10.3 Unix选路守护程序

Unix系统上常常运行名为routed路由守护程序。几乎在所有的TCP/IP实现中都提供该程序。该程序只使用RIP进行通信,我们将在下一节中讨论该协议。这是一种用于小型到中型网络中的协议。

另一个程序是gated。IGP和EGP都支持它。[Fedor 1998]描述了早期开发的gated。图10-1对routed和两种不同版本的gated所支持的不同选路协议进行了比较。大多数运行路由守护程序的系统都可以运行routed,除非它们需要支持gated所支持的其他协议。
在这里插入图片描述

我们在下一节中描述RIP版本1,10.5节描述它与RIP版本2的不同点,10.6节描述OSPF,10.7节描述BGP。

10.4 RIP:选路信息协议

本节对RIP进行了描述,这是因为它是最广为使用(也是最受攻击)的选路协议。对于RIP的正式描述文件是RFC 1058 [Hedrick 1988a],但是该RFC是在该协议实现数年后才出现的。

10.4.1 报文格式

RIP报文包含中在UDP数据报中,如图10-2所示(在第11章中对UDP进行更为详细的描述)。
在这里插入图片描述

图10-3给出了使用IP地址时的RIP报文格式。

命令字段为1表示请求,2表示应答。还有两个舍弃不用的命令(3和4),两个非正式的命令:轮询(5)和轮询表项(6)。请求表示要求其他系统发送其全部或部分路由表。应答则包含发送者全部或部分路由表。

版本字段通常为1,而第2版RIP(10.5节)将此字段设置为2。

紧跟在后面的20字节指定地址系列(address family)(对于IP地址来说,其值是2)、IP地址以及相应的度量。在本节的后面可以看出,RIP的度量是以跳计数的。

采用这种20字节格式的RIP报文可以通告多达25条路由。上限25是用来保证RIP报文的总长度为20×25+4=504,小于512字节。由于每个报文最多携带25个路由,因此为了发送整个路由表,经常需要多个报文。
在这里插入图片描述

10.4.2 正常运行

让我们来看一下采用RIP协议的routed程序正常运行的结果。RIP常用的UDP端口号是520。

  1. 初始化:在启动一个路由守护程序时,它先判断启动了哪些接口,并在每个接口上发送一个请求报文,要求其他路由器发送完整路由表。在点对点链路中,该请求是发送给其他终点的。如果网络支持广播的话,这种请求是以广播形式发送的。目的UDP端口号是520(这是其他路由器的路由守护程序端口号)。 这种请求报文的命令字段为1,但地址系列字段设置为0,而度量字段设置为16。这是一种要求另一端完整路由表的特殊请求报文。
  2. 接收到请求。如果这个请求是刚才提到的特殊请求,那么路由器就将完整的路由表发送给请求者。否则,就处理请求中的每一个表项:如果有连接到指明地址的路由,则将度量设置成我们的值,否则将度量置为16(度量为16是一种称为“无穷大”的特殊值,它意味着没有到达目的的路由)。然后发回响应。
  3. 接收到响应。使响应生效,可能会更新路由表。可能会增加新表项,对已有的表项进行修改,或是将已有表项删除。
    定期选路更新。每过30秒,所有或部分路由器会将其完整路由表发送给相邻路由器。发送路由表可以是广播形式的(如在以太网上),或是发送给点对点链路的其他终点的。
  4. 触发更新。每当一条路由的度量发生变化时,就对它进行更新。不需要发送完整路由表,而只需要发送那些发生变化的表项。

每条路由都有与之相关的定时器。如果运行RIP的系统发现一条路由在3分钟内未更新,就将该路由的度量设置成无穷大(16),并标注为删除。这意味着已经在6个30秒更新时间里没收到通告该路由的路由器的更新了。再过60秒,将从本地路由表中删除该路由,以保证该路由的失效已被传播开。

10.4.3 度量

RIP所使用的度量是以跳(hop)计算的。所有直接连接接口的跳数为1。考虑图10-4所示的路由器和网络。画出的4条虚线是广播RIP报文。
在这里插入图片描述

路由器R1通过发送广播到N1通告它与N2之间的跳数是1(发送给N1的广播中通告它与N1之间的路由是无用的)。同时也通过发送广播给N2通告它与N1之间的跳数为1。同样,R2通告它与N2的度量为1,与N3的度量为1。

如果相邻路由器通告它与其他网络由的跳数为1,那么我们与那个网络的度量就是2,这是因为为了发送报文到该网络,我们必须经过那个路由器。在我们的例子中,R2到N1的度量是2,与R1到N3的度量一样。

由于每个路由器都发送其路由表给邻站,因此,可以判断在同一个自治系统AS内到每个网络的路由。如果在该AS内从一个路由器到一个网络有多条路由,那么路由器将选择跳数最小的路由,而忽略其他路由。

跳数的最大值是15,这意味着RIP只能用在主机间最大跳数值为15的AS内。度量为16表示到无路由到达该IP地址。

10.4.4 问题

这种方法看起来很简单,但它有一些缺陷。首先,RIP没有子网地址的概念。例如,如果标准的B类地址中16 bit的主机号不为0,那么RIP无法区分非零部分是一个子网号,或者是一个主机地址。有一些实现中通过接收到的RIP信息,来使用接口的网络掩码,而这有可能出错。

其次,在路由器或链路发生故障后,需要很长的一段时间才能稳定下来。这段时间通常需要几分钟。在这段建立时间里,可能会发生路由环路。在实现RIP时,必须采用很多微妙的措施来防止路由环路的出现,并使其尽快建立。RFC 1058 [Hedrick 1988a]中指出了很多实现RIP的细节。

采用跳数作为路由度量忽略了其他一些应该考虑的因素。同时,度量最大值为15则限制了可以使用RIP的网络的大小。

10.4.5 举例

我们将使用ripquery程序来查询一些路由器中的路由表,该程序可以从gated中得到。ripquery程序通过发送一个非正式请求(图10-3中命令字段为5的“poll”)给路由器,要求得到其完整的路由表。如果在5秒内未收到响应,则发送标准的RIP请求(command字段为1)(前面提到过的,将地址系列字段置为0,度量字段置为16的请求,要求其他路由器发送其完整路由表)。

图10-5给出了将从sun主机上查询其路由表的两个路由器。如果在主机sun上执行ripquery程序,以得到其下一站路由器netb的选路信息,那么可以得到下面的结果:
在这里插入图片描述

正如我们所猜想的那样,netb告诉我们子网的度量为1。另外,与netb相连的位于机端的以太网(140.252.1.0)的metric也是1(-n参数表示直接打印IP地址而不需要去查看其域名)。在本例中,将netb配置成认为所有位于140.252.13子网的主机都与其直接相连—即,netb并不知道哪些主机真正与140.252.13子网相连。由于与140.252.13子网只有一个连接点,因此,通告每个主机的度量实际上没有太大意义。

图10-6给出了使用tcpdump交换的报文。采用-i s10选项指定SLIP接口。
在这里插入图片描述

第1个请求发出一个RIP轮询命令(第1行)。这个请求在5秒后超时,发出一个常规的RIP请求(第2行)。第1行和第2行最后的24表示请求报文的长度:4个字节的RIP首部(包括命令和版本),然后是单个20字节的地址和度量。

第3行是第一个应答报文。该行最后的25表示包含了25个地址和度量对,我们在前面已经计算过,其字节数为504。这是上面的ripquery程序所打印出来的结果。我们为tcpdump程序指定-s600选项,以让它从网络中读取600个字节。这样,它可以接收整个UDP数据报(而不是报文的前半部),然后打印出RIP响应的内容。该输出结果省略了。
在这里插入图片描述

第4行是来自路由器的第二个响应报文,它包含后面的12个地址和度量对。可以计算出该报文的长度为12×20+4=244,这正是ripquery程序所打印出来的结果。

如果越过netb路由器,到gateway,那么可以预测到我们子网(140.252.13.0)的度量为2。可以运行下面的命令来进行验证:
在这里插入图片描述

这里,位于图10-5上面的以太网(140.252.1.0)的度量依然是1,这是因为该以太网直接与gateway和netb相连。而我们的子网140.252.13.0正如预想的一样,其度量为2。

10.4.6 另一个例子

现在察看以太网上所有非主动请求的RIP更新,以看一看RIP定期给其邻站发送的信息。图10-7是noao.edu网络的多种排列情况。为了简化,我们不用本文其他地方所采用的路由器表示方式,而以Rn来代表路由器,其中n是子网号。以虚线表示点对点链路,并给出了这些链路对端的IP地址。
在这里插入图片描述

在主机solaris上运行Solaris 2.x的snoop程序,它与tcpdump相类似。我们可以在不需要超用户权限的条件下运行该程序,但它只捕获广播报文、多播报文以及发送给主机的报文。图10-8给出了在60秒内所捕获的报文。在这里,我们将大部分正式的主机名以Rn来表示。

-P标志以非混杂模式捕获报文,-tr打印出相应的时戳,而udp port 520只捕获信源或信宿端口号为520的UDP数据报。

来自R6、R4、R2、R7、R8和R3的前6个报文,每个报文只通告一个网络。查看这些报文,可以发现R2通告前往140.252.6.0的跳数为1的一条路由,R4通告前往140.252.4.0的跳数为1的一条路由,等等。

但是,gateway路由器却通告了15条路由。我们可以通过运行snoop程序时加上-v参数来查看RIP报文的全部内容(这个标志输出全部报文的全部内容:以太网首部、IP首部、UDP首部以及RIP报文。我们只保留了RIP信息而删除了其他信息)。图10-9给出了输出结果。
在这里插入图片描述

把这些子网140.252.1上通告报文经过的路由与图10-7中的拓扑结构进行比较。

使人迷惑不解的一个问题是为什么图10-8输出结果中,R10通告其有4个网络而在图10-7中显示的只有3个。如果查看带snoop的RIP报文,就会得到以下通告路由:
在这里插入图片描述

前往B类网络140.251的路由是假的,不应该通告它(它属于其他机构而不是noao.edu)。
在这里插入图片描述

图10-8中,对于R10发送的RIP报文,snoop输出“BROADCAST”符号,它表示目的IP地址是有限的广播地址255.255.255.255(12.2节),而不是其他路由器用来指向子网的广播地址(140.252.1.255)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1122924.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[SQL开发笔记]SELECT DISTINCT语句:返回唯一不同的值

一、功能描述: 使用场景:在表中,一个列可能会包含多个重复值,希望仅仅列出不同(distinct)的值,我们需要怎么办呢?可以SELECT DISTINCT语句用于返回唯一不同的值 二、SELECT Distinc…

【Unity ShaderGraph】| 快速制作一个 钛金化不锈钢效果

前言 本文将使用ShaderGraph制作一个 钛金化不锈钢 效果,可以直接拿到项目中使用。对ShaderGraph还不了解的小伙伴可以参考这篇文章:【Unity ShaderGraph】| Shader Graph入门介绍 | 简介 | 配置环境 | 窗口介绍 | 简单案例下面就开始看一下具体的制作流…

多元高斯分布全解析

大纲 公式推导参数估计高斯分布运算高斯分布性质高斯过程(Gaussian process) 概念区分 边缘分布(marginal distribution)和联合分布概率密度函数和概率分布函数 1. 多元高斯分布公式推导 首先我们知道一元高斯分布是: N ( x ∣ u , σ 2…

2023年【北京市安全员-B证】考试试卷及北京市安全员-B证模拟考试题

题库来源:安全生产模拟考试一点通公众号小程序 北京市安全员-B证考试试卷考前必练!安全生产模拟考试一点通每个月更新北京市安全员-B证模拟考试题题目及答案!多做几遍,其实通过北京市安全员-B证在线考试很简单。 1、【多选题】《…

轻松合并Excel工作表:Java批量操作优化技巧

摘要:本文由葡萄城技术团队于CSDN原创并首发。转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具、解决方案和服务,赋能开发者。 前言 在Excel中设计表单时,我们经常需要对收集的信息进行统计分析。例如&a…

web自动化测试——跨平台设备管理方案Selenium Grid

跨平台设备管理方案Selenium Grid 一、Selenium Grid简介二、使用场景场景一: 实现分布式执行测试,提高执行效率场景二: 解决浏览器兼容性问题新特性 三、Selenium Grid4原理分析四、环境安装五、运行方式:单机运行 - 独立模式1. …

SpringCloud之OpenFeign调用解读

目录 基本介绍 引进 OpenFeign概述 OpenFeign作用 FeignClient EnableFeignClients Java代码实战 实战架构 父工程pom文件 teacher-service服务 student-service服务 测试 自定义配置 基本介绍 引进 如果我们利用RestTemplate发起远程调用的代码时会存在一些…

docker部署nginx并设置挂载

前言: 最近在学习docker和nginx,因为容器在运行过程中,相关的配置文件及日志都会存在容器内。对容器以来较高,当容器不存在的时候。所有的文件也就都没有了。并且当需要查看日志,修改配置文件的时候必须进入到容器内部…

JavaWeb配置Servle

在Java Web开发中,数据流主要遵循以下流程: 用户在浏览器中输入URL或点击链接,发送HTTP请求到服务器。服务器接收到请求后,根据请求的URL找到对应的Servlet。Servlet处理请求,可能需要查询数据库或执行其他业务逻辑。…

Docker笔记-docker搭建nginx及移植

从官网找到对应的镜像: ​​​​​​https://hub.docker.com/_/nginx/tags 查看镜像 docker images 运行容器,然后将配置文件等拷贝到主机上: docker run --name nginx -d nginx 拷贝路径: docker cp nginx:/etc/nginx/nginx…

[SQL开发笔记]SELECT 语句:读取数据表的信息

一、功能描述: 用于从数据库中读取数据 二、SELECT语法详解: 1)查询整个表的信息: SELECT * FROM table_name; 2)查询表中的字段或多个字段: SELECT column1, column2, ...FROM table_name; 参数说明…

面试中被问到:Netty中的零拷贝机制是怎么样的?

零拷贝(Zero-copy), CPU不需要为数据在内存之间的拷贝消耗资源。而它通常是指计算机在网络上发送文件时,不需要将文件内容拷贝到用户空间(User Space)而直接在内核空间(Kernel Space)中传输到网络的方式。Zero Copy的模…

雪数据同化系统Snow Data Assimilation System数据集

雪数据同化系统(SNODAS) 雪资料同化系统(SNODAS)是国家水文遥感业务中心(NOHRSC)精心开发的综合建模和资料同化系统。其主要目标是提供高度准确的积雪和相关参数估计,作为水文建模和分析的重要…

分类预测 | MATLAB实现SSA-CNN-BiLSTM麻雀算法优化卷积双向长短期记忆神经网络数据分类预测

分类预测 | MATLAB实现SSA-CNN-BiLSTM麻雀算法优化卷积双向长短期记忆神经网络数据分类预测 目录 分类预测 | MATLAB实现SSA-CNN-BiLSTM麻雀算法优化卷积双向长短期记忆神经网络数据分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.MATLAB实现SSA-CNN-BiLSTM数据…

【RocketMQ】RocketMQ 5.0新特性(三)- Controller模式

在RocketMQ 5.0以前,有两种集群部署模式,分别为主从模式(Master-Slave模式)和Dledger模式。 主从模式 主从模式中分为Master和Slave两个角色,集群中可以有多个Master节点,一个Master节点可以有多个Slave节…

优雅的用户体验:微信小程序中的多步骤表单引导

前言 在微信小程序中,实现一个多步骤表单引导界面既可以提供清晰的任务指引,又可以增加用户体验的互动性。本文将探讨如何使用微信小程序的特性,构建一个流程引导界面,帮助用户一步步完成复杂任务。我们将从设计布局和样式开始&am…

彻底弄懂base64的编码与解码原理

背景 base64的编码原理网上讲解较多,但解码原理讲解较少,并且没有对其中的内部实现原理进行剖析。想要彻底了解base64的编码与解码原理,请耐心看完此文,你一定会有所收获。 涉及算法与逻辑运算概念 在探究base64编码原理和解码…

macrodata数据集在Python统计建模和计量经济学中的应用

目录 一、数据介绍二、应用三、statsmodels 统计模块四、使用 statsmodels 统计模块分析 macrodata.csv 数据集参考 一、数据介绍 macrodata.csv是一个示例数据集,通常用于统计分析和计量经济学中的教育和训练目的。这个数据集通常包括以下列: year&am…

17.3 实现无管道反向CMD

WSASocket无管道反向CMD,与无管道正向CMD相反,这种方式是在远程主机上创建一个TCP套接字,并绑定到一个本地地址和端口上。然后在本地主机上,使用WSASocket函数连接到远程主机的套接字,并将标准输入、输出和错误输出重定…

深入 Meven:构建杰出的软件项目的完美工具

掌握 Meven:构建更强大、更智能的应用程序的秘诀 Maven1.1 初识Maven1.1.1 什么是Maven1.1.2 Maven的作用 02. Maven概述2.1 Maven介绍2.2 Maven模型2.3 Maven仓库2.4 Maven安装2.4.1 下载2.4.2 安装步骤 03. IDEA集成Maven3.1 配置Maven环境3.1.1 当前工程设置3.1.…