Elasticsearch实践:ELK+Kafka+Beats对日志收集平台的实现

news2024/11/17 15:55:56

可以在短时间内搜索和分析大量数据。

Elasticsearch 不仅仅是一个全文搜索引擎,它还提供了分布式的多用户能力,实时的分析,以及对复杂搜索语句的处理能力,使其在众多场景下,如企业搜索,日志和事件数据分析等,都有广泛的应用。

本文将介绍 ELK+Kafka+Beats 对日志收集平台的实现。


文章目录

        • 1、关于ELK与BKELK
          • 1.1、ELK架构及其影响
          • 1.2、基于BKLEK架构的日志分析系统实现
        • 2、利用ELK+Kafka+Beats来实现一个统一日志平台
          • 2.1、应用场景
          • 2.2、环境准备
          • 2.3、基于Docker的ES部署
          • 2.4、基于Docker的kibana部署
          • 2.5、基于Docker的Zookeeper部署
          • 2.6、基于Docker的Kafka部署
          • 2.7、基于Docker的Logstash部署
          • 2.8、基于Docker的Filebeat部署


1、关于ELK与BKELK
1.1、ELK架构及其影响

当我们在开源日志分析系统的领域,谈及 ELK 架构可谓是家喻户晓。然而,这个生态系统并非 Elastic 有意为之,毕竟 Elasticsearch 的初衷是作为一个分布式搜索引擎。其广泛应用于日志系统,实则是一种意料之外,这是社区用户的推动所致。如今,众多云服务厂商在推广自己的日志服务时,往往以 ELK 作为参照标准,由此可见,ELK 的影响力之深远。

ELK 是 Elasticsearch、Logstash 和 Kibana 的首字母缩写,这三个产品都是 Elastic 公司的开源项目,通常一起使用以实现数据的搜索、分析和可视化。

  1. Elasticsearch:一个基于 Lucene 的搜索服务器。它提供了一个分布式、多租户的全文搜索引擎,具有 HTTP 网络接口和无模式 JSON 文档。

  2. Logstash:是一个服务器端数据处理管道,它可以同时从多个来源接收数据,转换数据,然后将数据发送到你选择的地方。

  3. Kibana:是一个用于 Elasticsearch 的开源数据可视化插件。它提供了查找、查看和交互存储在 Elasticsearch 索引中的数据的方式。你可以使用它进行高级数据分析和可视化你的数据等。

这三个工具通常一起使用,以便从各种来源收集、搜索、分析和可视化数据。

1.2、基于BKLEK架构的日志分析系统实现

实际上,在流行的架构中并非只有 ELKB。当我们利用 ELKB 构建一套日志系统时,除了 Elasticsearch、Logstash、Kibana、beats 之外,还有一个被广泛应用的工具 —— Kafka。在这个体系中,Kafka 的角色尤为重要。作为一个中间件和缓冲区,它能够提升吞吐量,隔离峰值影响,缓存日志数据,快速落盘。同时,通过 producer/consumer 模式,使得 Logstash 能够进行横向扩展,还能用于数据的多路分发。因此,大多数情况下,我们看到的实际架构,按照数据流转的顺序排列,应该是 BKLEK 架构。

image-20231021004441222

BKLEK 架构即 ELK+Kafka+Beats ,这是一种常见的大数据处理和分析架构。在这个架构中:

  1. Beats:是一种轻量级的数据采集器,用于从各种源(如系统日志、网络流量等)收集数据,并将数据发送到 Kafka 或 Logstash。

  2. Kafka:是一个分布式流处理平台,用于处理和存储实时数据。在这个架构中,Kafka 主要用于作为一个缓冲区,接收来自 Beats 的数据,并将数据传输到 Logstash。

  3. Logstash:是一个强大的日志管理工具,可以从 Kafka 中接收数据,对数据进行过滤和转换,然后将数据发送到 Elasticsearch。

  4. Elasticsearch:是一个分布式的搜索和分析引擎,用于存储、搜索和分析大量数据。

  5. Kibana:是一个数据可视化工具,用于在 Elasticsearch 中搜索和查看存储的数据。

这种架构的优点是:

  • 可以处理大量的实时数据。
  • Kafka 提供了一个强大的缓冲区,可以处理高速流入的数据,保证数据的完整性。
  • Logstash 提供了强大的数据处理能力,可以对数据进行各种复杂的过滤和转换。
  • Elasticsearch 提供了强大的数据搜索和分析能力。
  • Kibana 提供了直观的数据可视化界面。

这种架构通常用于日志分析、实时数据处理和分析、系统监控等场景。


2、利用ELK+Kafka+Beats来实现一个统一日志平台
2.1、应用场景

利用 ELK+Kafka+Beats 来实现一个统一日志平台,这是一个专门针对大规模分布式系统日志进行统一采集、存储和分析的 APM 工具。在分布式系统中,众多服务部署在不同的服务器上,一个客户端的请求可能会触发后端多个服务的调用,这些服务可能会互相调用或者一个服务会调用其他服务,最终将请求结果返回并在前端页面上展示。如果在这个过程中的任何环节出现异常,开发和运维人员可能会很难准确地确定问题是由哪个服务调用引起的。统一日志平台的作用就在于追踪每个请求的完整调用链路,收集链路上每个服务的性能和日志数据,从而使开发和运维人员能够快速发现并定位问题。

统一日志平台通过采集模块、传输模块、存储模块、分析模块实现日志数据的统一采集、存储和分析,结构图如下:

img

为了实现海量日志数据的收集和分析,首先需要解决的是如何处理大量的数据信息。在这个案例中,我们使用 Kafka、Beats 和 Logstash 构建了一个分布式消息队列平台。具体来说,我们使用 Beats 采集日志数据,这相当于在 Kafka 消息队列中扮演生产者的角色,生成消息并发送到 Kafka。然后,这些日志数据被发送到 Logstash 进行分析和过滤,Logstash 在这里扮演消费者的角色。处理后的数据被存储在 Elasticsearch 中,最后我们使用 Kibana 对日志数据进行可视化展示。

2.2、环境准备

本地

  • Kafka
  • ES
  • Kibana
  • filebeat
  • Java Demo 项目

我们使用 Docker 创建以一个 名为 es-net 的网络

在 Docker 中,网络是连接和隔离 Docker 容器的方式。当你创建一个网络,我们定义一个可以相互通信的容器的网络环境。

docker network create es-net

docker network create 是 Docker 命令行界面的一个命令,用于创建一个新的网络。在这个命令后面,你需要指定你想要创建的网络的名称,在这个例子中,网络的名称是 “es-net”。

所以,docker network create es-net 这句命令的意思就是创建一个名为 “es-net” 的 Docker 网络。

2.3、基于Docker的ES部署

加载镜像:

docker pull elasticsearch:7.12.1

运行容器:

docker run -d \
	--name es \
    -e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \
    -e "discovery.type=single-node" \
    --privileged \
    --network es-net \
    -p 9200:9200 \
    -p 9300:9300 \
    
    
    
elasticsearch:7.12.1
    -v es-data:/Users/lizhengi/elasticsearch/data \
    -v es-plugins:/Users/lizhengi/elasticsearch/plugins \

这个命令是使用 Docker 运行一个名为 “es” 的 Elasticsearch 容器。具体参数的含义如下:

  • docker run -d:使用 Docker 运行一个新的容器,并且在后台模式(detached mode)下运行。

  • --name es:设置容器的名称为 “es”。

  • -e "ES_JAVA_OPTS=-Xms512m -Xmx512m":设置环境变量 ES_JAVA_OPTS,这是 JVM 的参数,用于控制 Elasticsearch 使用的最小和最大内存。这里设置的是最小和最大内存都为 512MB。

  • -e "discovery.type=single-node":设置环境变量 discovery.type,这是 Elasticsearch 的参数,用于设置集群发现类型。这里设置的是单节点模式。

  • -v es-data:/Users/lizhengi/elasticsearch/data-v es-plugins:/Users/lizhengi/elasticsearch/plugins:挂载卷(volume)。这两个参数将主机上的 es-dataes-plugins 目录挂载到容器的 /Users/lizhengi/elasticsearch/data/Users/lizhengi/elasticsearch/plugins 目录。

  • --privileged:以特权模式运行容器。这将允许容器访问宿主机的所有设备,并且容器中的进程可以获取任何 AppArmor 或 SELinux 的权限。

  • --network es-net:将容器连接到 es-net 网络。

  • -p 9200:9200-p 9300:9300:端口映射。这两个参数将容器的 9200 和 9300 端口映射到主机的 9200 和 9300 端口。

  • elasticsearch:7.12.1:要运行的 Docker 镜像的名称和标签。这里使用的是版本为 7.12.1 的 Elasticsearch 镜像。

运行结果验证:随后便可以去访问 IP:9200,结果如图:

image-20231021103821702

2.4、基于Docker的kibana部署

加载镜像:

docker pull kibana:7.12.1

运行容器:

docker run -d \
		--name kibana \
		-e ELASTICSEARCH_HOSTS=http://es:9200 \
		--network=es-net \
		-p 5601:5601  \
kibana:7.12.1

这是一个 Docker 命令,用于运行一个 Kibana 容器。下面是每个参数的解释:

  • docker run -d:使用 Docker 运行一个新的容器,并且在后台模式(detached mode)下运行。

  • --name kibana:设置容器的名称为 “kibana”。

  • -e ELASTICSEARCH_HOSTS=http://es:9200:设置环境变量 ELASTICSEARCH_HOSTS,这是 Kibana 的参数,用于指定 Elasticsearch 服务的地址。这里设置的是 http://es:9200,表示 Kibana 将连接到同一 Docker 网络中名为 “es” 的容器的 9200 端口。

  • --network=es-net:将容器连接到 es-net 网络。

  • -p 5601:5601:端口映射。这个参数将容器的 5601 端口映射到主机的 5601 端口。

  • kibana:7.12.1:要运行的 Docker 镜像的名称和标签。这里使用的是版本为 7.12.1 的 Kibana 镜像。

kibana启动一般比较慢,需要多等待一会,可以通过命令:

docker logs -f kibana

查看运行日志,当查看到下面的日志,说明成功:

image-20231021104654758

运行结果验证:随后便可以去访问 IP:9200,结果如图:

也可以浏览器访问:

image-20231021104755229

2.5、基于Docker的Zookeeper部署

加载镜像:

docker pull zookeeper:latest

运行容器:

以下是一个基本的 Docker 命令,用于运行一个 Zookeeper 容器:

docker run -d \
    --name zookeeper \
    --network=es-net \
    -p 2181:2181 \
zookeeper:latest

这个命令的参数解释如下:

  • docker run -d:使用 Docker 运行一个新的容器,并且在后台模式(detached mode)下运行。
  • --name zookeeper:设置容器的名称为 “zookeeper”。
  • --network=es-net:将容器连接到 es-net 网络。
  • -p 2181:2181:端口映射。这个参数将容器的 2181 端口映射到主机的 2181 端口。
  • zookeeper:latest:要运行的 Docker 镜像的名称和标签。这里使用的是最新版本的 Zookeeper 镜像。
2.6、基于Docker的Kafka部署

加载镜像:

docker pull confluentinc/cp-kafka:latest

运行容器:

以下是一个基本的 Docker 命令,用于运行一个 Kafka 容器:

docker run -d \
    --name kafka \
    --network=es-net \
    -p 9092:9092 \
    -e KAFKA_ZOOKEEPER_CONNECT=zookeeper:2181 \
    -e KAFKA_ADVERTISED_LISTENERS=PLAINTEXT://kafka:9092 \
confluentinc/cp-kafka:latest

这个命令的参数解释如下:

  • docker run -d:使用 Docker 运行一个新的容器,并且在后台模式(detached mode)下运行。
  • --name kafka:设置容器的名称为 “kafka”。
  • --network=es-net:将容器连接到 es-net 网络。
  • -p 9092:9092:端口映射。这个参数将容器的 9092 端口映射到主机的 9092 端口。
  • -e KAFKA_ZOOKEEPER_CONNECT=zookeeper:2181:设置环境变量 KAFKA_ZOOKEEPER_CONNECT,这是 Kafka 的参数,用于指定 Zookeeper 服务的地址。这里设置的是 zookeeper:2181,表示 Kafka 将连接到同一 Docker 网络中名为 “zookeeper” 的容器的 2181 端口。
  • -e KAFKA_ADVERTISED_LISTENERS=PLAINTEXT://localhost:9092:设置环境变量 KAFKA_ADVERTISED_LISTENERS,这是 Kafka 的参数,用于指定 Kafka 服务对外公布的地址和端口。这里设置的是 PLAINTEXT://localhost:9092
  • confluentinc/cp-kafka:latest:要运行的 Docker 镜像的名称和标签。这里使用的是最新版本的 Confluent 平台的 Kafka 镜像。
2.7、基于Docker的Logstash部署

加载镜像:

docker pull docker.elastic.co/logstash/logstash:7.12.1

创建配置文件:

首先,你需要创建一个 Logstash 配置文件,例如 logstash.conf,内容如下:

input {
  kafka {
    bootstrap_servers => "kafka:9092"
    topics => ["logs_topic"]
  }
}

output {
  elasticsearch {
    hosts => ["es:9200"]
    index => "logs_index"
  }
}

这个配置文件定义了 Logstash 的输入和输出。输入是 Kafka,连接到 kafka:9092,订阅的主题是 your_topic。输出是 Elasticsearch,地址是 es:9200,索引名是 logs_index

运行容器:

然后,我们使用以下命令运行 Logstash 容器:

docker run -d \
    --name logstash \
    --network=es-net \
    -v /Users/lizhengi/test/logstash.conf:/usr/share/logstash/pipeline/logstash.conf \
docker.elastic.co/logstash/logstash:7.12.1

这个命令的参数解释如下:

  • docker run -d:使用 Docker 运行一个新的容器,并且在后台模式(detached mode)下运行。
  • --name logstash:设置容器的名称为 “logstash”。
  • --network=es-net:将容器连接到 es-net 网络。
  • -v /path/to/your/logstash.conf:/usr/share/logstash/pipeline/logstash.conf:挂载卷(volume)。这个参数将主机上的 logstash.conf 文件挂载到容器的 /usr/share/logstash/pipeline/logstash.conf
  • docker.elastic.co/logstash/logstash:latest:要运行的 Docker 镜像的名称和标签。这里使用的是最新版本的 Logstash 镜像。

请注意,你需要将 /path/to/your/logstash.conf 替换为你的 logstash.conf 文件所在的实际路径。

2.8、基于Docker的Filebeat部署

加载镜像:

docker pull docker.elastic.co/beats/filebeat:7.12.1

运行容器:

首先,你需要创建一个 Filebeat 配置文件,例如 filebeat.yml,内容如下:

filebeat.inputs:
- type: log
  enabled: true
  paths:
    - /usr/share/filebeat/logs/*.log

output.kafka:
  enabled: true
  hosts: ["kafka:9092"]
  topic: "logs_topic"

这个配置文件定义了 Filebeat 的输入和输出。输入是文件 /usr/share/filebeat/Javalog.log,输出是 Kafka,连接到 kafka:9092,主题是 logs_topic

然后,你可以使用以下命令运行 Filebeat 容器:

docker run -d \
    --name filebeat \
    --network=es-net \
    -v /Users/lizhengi/test/logs:/usr/share/filebeat/logs \
    -v /Users/lizhengi/test/filebeat.yml:/usr/share/filebeat/filebeat.yml \
docker.elastic.co/beats/filebeat:7.12.1

这个命令的参数解释如下:

  • docker run -d:使用 Docker 运行一个新的容器,并且在后台模式(detached mode)下运行。

  • --name filebeat:设置容器的名称为 “filebeat”。

  • --network=es-net:将容器连接到 es-net 网络。

  • -v /Users/lizhengi/test/Javalog.log:/usr/share/filebeat/Javalog.log:挂载卷(volume)。这个参数将主机上的 /Users/lizhengi/test/Javalog.log 文件挂载到容器的 /usr/share/filebeat/Javalog.log

  • -v /path/to/your/filebeat.yml:/usr/share/filebeat/filebeat.yml:挂载卷(volume)。这个参数将主机上的 filebeat.yml 文件挂载到容器的 /usr/share/filebeat/filebeat.yml

  • docker.elastic.co/beats/filebeat:latest:要运行的 Docker 镜像的名称和标签。这里使用的是最新版本的 Filebeat 镜像。

请注意,你需要将 /path/to/your/filebeat.yml 替换为你的 filebeat.yml 文件所在的实际路径。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1117833.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于PCA主成分分析的BP神经网络回归预测研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

医疗领域的数字化浪潮:互联网医院平台的关键作用

数字化浪潮正在迅速改变医疗领域的方式和效率。互联网医院平台作为数字化医疗的关键元素,正在为医疗行业带来巨大的变革。本文将探讨互联网医院平台的关键作用,并提供一个示例,使用Python编写一个简单的医疗预约系统。 互联网医院平台的关键…

C++11的for循环

在C03/98中&#xff0c;不同的容器和数组&#xff0c;遍历的方法不尽相同&#xff0c;写法不统一&#xff0c;也不够简洁&#xff0c;而C11基于范围的for循环以统一&#xff0c;简洁的方式来遍历容器和数组&#xff0c;用起来更方便了。 for循环的新用法 #include <iostre…

可视化模拟航线

目录 效果图 前言 新社区 将模拟航线引入到自己的html页面中 创建容器 初始化echarts实例对象 配置项给echarts 效果图 前言 模拟航线为echarts社区里面的大佬制作&#xff0c;由于2022.7.28&#xff0c;echarts的社区停止了&#xff0c;所以本文是为了方便直接使用&…

微信收款码提现要手续费吗

目前不管是微信商户或者支付宝商户最低费率可以达到0.2%费率&#xff1b;市面上普通个体商户或者企业商家的收款费率一般在0.6左右&#xff0c;一些使用第三方聚合支付平台的也有使用0.38的&#xff0c;总体也就是10000块钱的费率是38-60块钱&#xff0c;对于一些流水比较大的商…

I2C——笔记

使用I2C&#xff0c;可以实现多设备的数据通信&#xff0c;这些设备通过两根线连接&#xff0c;SCL和SDA。 SCL控制时钟&#xff0c;SDA控制数据。这些设备有着共同的时钟总线&#xff0c;因此I2C是同步的。 他们虽然可以相互传递数据&#xff0c;但是只有一条数据线进行数据传…

使用pytorch实现高斯混合模型分类器

本文是一个利用Pytorch构建高斯混合模型分类器的尝试。我们将从头开始构建高斯混合模型(GMM)。这样可以对高斯混合模型有一个最基本的理解&#xff0c;本文不会涉及数学&#xff0c;因为我们在以前的文章中进行过很详细的介绍。 本文将使用这些库 import torchimport numpy as…

2020年江西省职业院校技能大赛高职组“信息安全管理与评估”赛项任务书样题

2020年江西省职业院校技能大赛高职组 “信息安全管理与评估”赛项任务书 样题 赛项时间 9:00-12:00&#xff0c;共计3小时。 赛项信息 赛项内容 竞赛阶段 任务阶段 竞赛任务 竞赛时间 分值 第一阶段 平台搭建与安全设备配置防护 任务1 网络平台搭建 9:00-12:00 1…

Python超入门(5)__迅速上手操作掌握Python

# 20.列表# 一维列表 names [Hash, Bob, Nick] print(names) # 全打印 print(names[:]) # 全打印 print(names[1:3]) # 打印1到2号索引 print(names[:2]) # 打印0到1号索引[Hash, Bob, Nick] [Hash, Bob, Nick] [Bob, Nick] [Hash, Bob]# 二维列表:一维列表中嵌套一维列表…

S4系统编辑屏幕报错 报错 RFC callback call rejected by whitelist

点击 Dialog 的布局 直接报错 经过检查&#xff0c;发现正式机和开发机在 SM59 TCP/IP链接 的 EU_SCRP_WN32不一样 把开发机的数据维护到生产机&#xff0c;就可以用了 RS_SCRP_GF_PROCESS_640RFC_GET_FUNCTION_INTERFACERS_SCRP_GF_PROCESS_640RS_SCRP_GF_RBUILDINFORS_SC…

为百度翻译花了3元,感觉还是值得的

这几天熟悉了一下百度翻译。因为我的测试量大&#xff0c;而且有BUG要反复处理&#xff0c;所以翻译量也很大。测试太多了百度就告诉我要充值&#xff0c;消息格式如下&#xff1a; {"error_code":"54004","error_msg":"Please recharge&q…

Python 自动化测试框架unittest与pytest的区别!

引言 这篇文章主要讲unittest与pytest的区别&#xff0c;pytest相对unittest而言&#xff0c;代码简洁&#xff0c;使用便捷灵活&#xff0c;并且插件很丰富。 Unittest vs Pytest 主要从用例编写规则、用例的前置和后置、参数化、断言、用例执行、失败重运行和报告这几个方面…

数字档案一体化解决方案

数字档案一体化解决方案是通过整合数字化技术、信息化系统和管理模式&#xff0c;实现档案数字化、信息化、网络化和智能化的档案管理方式。专久智能数字档案一体化解决方案包括以下几个方面&#xff1a; 1. 数字化技术&#xff1a;采用数字化技术对档案进行扫描、转换、存储和…

C++-json(2)-unsigned char-unsigned char*-memcpy-strcpy-sizeof-strlen

1.类型转换&#xff1a; //1.赋值一个不知道长度的字符串unsigned char s[] "kobe8llJfFwFSPiy"; //1.用一个字符串初始化变量 unsigned int s_length strlen((char*)s); //2.获取字符串长度//2.字符串里有双引号"" 需要…

聊聊精益需求的产生过程

这是鼎叔的第七十八篇原创文章。行业大牛和刚毕业的小白&#xff0c;都可以进来聊聊。 欢迎关注本公众号《敏捷测试转型》&#xff0c;星标收藏&#xff0c;大量原创思考文章陆续推出。本人新书《无测试组织-测试团队的敏捷转型》​​​​​​​​​​​​​​已出版&#xff…

Python中if not使用教程

大家早好、午好、晚好吖 ❤ ~欢迎光临本文章 如果有什么疑惑/资料需要的可以点击文章末尾名片领取源码 python中判断变量是否为None三种写法&#xff1a; 1、if x is None 2、if not x 3、if not x is None 理解成 if not (x is None) 结果是和1相反的 python中None、fals…

AST反混淆实战|某国外混淆框架一小段混淆js还原分析

关注它&#xff0c;不迷路。 本文章中所有内容仅供学习交流&#xff0c;不可用于任何商业用途和非法用途&#xff0c;否则后果自负&#xff0c;如有侵权&#xff0c;请联系作者立即删除&#xff01; 1. 需求 我相信做币圈爬虫的兄弟&#xff0c;或多或少的见过类似下面的…

触想五代强固型工业一体机在近海船舶上的应用

1、行业发展背景 近海船舶的发展紧密关联着海上运输、渔业贸易、旅游开发、能源探测等多领域&#xff0c;带动区域经济、文化繁荣发展。 随着现代科学与信息技术在各行各业的作用增强&#xff0c;工业4.0带动的产业升级逐步渗透进船舶领域&#xff0c;在此背景下&#xff0c;船…

【网络安全 --- xss-labs靶场通关(1-10关)】详细的xss-labs靶场通关思路及技巧讲解,让你对xss漏洞的理解更深刻

靶场安装&#xff1a; 靶场安装请参考以下博客&#xff0c;既详细有提供工具&#xff1a; 【网络安全 --- xss-labs靶场】xss-labs靶场安装详细教程&#xff0c;让你巩固对xss漏洞的理解及绕过技巧和方法&#xff08;提供资源&#xff09;-CSDN博客【网络安全 --- xss-labs通…