分类预测 | MATLAB实现SSA-CNN-LSTM-Attention数据分类预测(SE注意力机制)

news2024/11/9 2:02:40

分类预测 | MATLAB实现SSA-CNN-LSTM-Attention数据分类预测(SE注意力机制)

目录

    • 分类预测 | MATLAB实现SSA-CNN-LSTM-Attention数据分类预测(SE注意力机制)
      • 分类效果
      • 基本描述
      • 模型描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.MATLAB实现SSA-CNN-LSTM-Attention数据分类预测,运行环境Matlab2021b及以上;
2.基于麻雀优化算法(SSA)、卷积神经网络(CNN)和长短期记忆网络(LSTM)的数据分类预测程序;
3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用;SSA优化算法优化学习率、卷积核大小、神经元个数,这3个关键参数,以测试集精度最高为目标函数
程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图;
4.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行,可在下载区获取数据和程序内容。
5.适用领域:适用于各种数据分类场景,如滚动轴承故障、变压器油气故障、电力系统输电线路故障区域、绝缘子、配网、电能质量扰动,等领域的识别、诊断和分类。
使用便捷:直接使用EXCEL表格导入数据,无需大幅修改程序。内部有详细注释,易于理解。

模型描述

注意力机制模块:
SEBlock(Squeeze-and-Excitation Block)是一种聚焦于通道维度而提出一种新的结构单元,为模型添加了通道注意力机制,该机制通过添加各个特征通道的重要程度的权重,针对不同的任务增强或者抑制对应的通道,以此来提取有用的特征。该模块的内部操作流程如图,总体分为三步:首先是Squeeze 压缩操作,对空间维度的特征进行压缩,保持特征通道数量不变。融合全局信息即全局池化,并将每个二维特征通道转换为实数。实数计算公式如公式所示。该实数由k个通道得到的特征之和除以空间维度的值而得,空间维数为H*W。其次是Excitation激励操作,它由两层全连接层和Sigmoid函数组成。如公式所示,s为激励操作的输出,σ为激活函数sigmoid,W2和W1分别是两个完全连接层的相应参数,δ是激活函数ReLU,对特征先降维再升维。最后是Reweight操作,对之前的输入特征进行逐通道加权,完成原始特征在各通道上的重新分配。

1
2

程序设计

  • 完整程序和数据获取方式:私信博主回复MATLAB实现SSA-CNN-LSTM-Attention数据分类预测(SE注意力机制)
%%  优化算法参数设置
SearchAgents_no = 8;                   % 数量
Max_iteration = 5;                    % 最大迭代次数
dim = 3;                               % 优化参数个数
lb = [1e-3,10 1e-4];                 % 参数取值下界(学习率,隐藏层节点,正则化系数)
ub = [1e-2, 30,1e-1];                 % 参数取值上界(学习率,隐藏层节点,正则化系数)

fitness = @(x)fical(x,num_dim,num_class,p_train,t_train,T_train);

[Best_score,Best_pos,curve]=SSA(SearchAgents_no,Max_iteration,lb ,ub,dim,fitness)
Best_pos(1, 2) = round(Best_pos(1, 2));   
best_hd  = Best_pos(1, 2); % 最佳隐藏层节点数
best_lr= Best_pos(1, 1);% 最佳初始学习率
best_l2 = Best_pos(1, 3);% 最佳L2正则化系数
 
%% 建立模型
lgraph = layerGraph();                                                   % 建立空白网络结构
tempLayers = [
    sequenceInputLayer([num_dim, 1, 1], "Name", "sequence")              % 建立输入层,输入数据结构为[num_dim, 1, 1]
    sequenceFoldingLayer("Name", "seqfold")];                            % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中
tempLayers = [
    convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1]16个特征图
    reluLayer("Name", "relu_1")                                          % Relu 激活层

lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中

tempLayers = [
    sequenceUnfoldingLayer("Name", "sequnfold")                      % 建立序列反折叠层
    flattenLayer("Name", "flatten")                                  % 网络铺平层
    bilstmLayer(best_hd, "Name", "bilstm", "OutputMode","last")              % BiLSTM层
    fullyConnectedLayer(num_class, "Name", "fc")                     % 全连接层
    softmaxLayer("Name", "softmax")                                  % softmax激活层
    classificationLayer("Name", "classification")];                  % 分类层
lgraph = addLayers(lgraph, tempLayers);                              % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1");             % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); 

%% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法
    'MaxEpochs', 500,...                 % 最大训练次数 
    'InitialLearnRate', best_lr,...          % 初始学习率为0.001
    'L2Regularization', best_l2,...         % L2正则化参数
    'LearnRateSchedule', 'piecewise',...  % 学习率下降
    'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1
    'LearnRateDropPeriod', 400,...        % 经过训练后 学习率为 0.001*0.1
    'Shuffle', 'every-epoch',...          % 每次训练打乱数据集
    'ValidationPatience', Inf,...         % 关闭验证
    'Plots', 'training-progress',...      % 画出曲线
    'Verbose', false);

%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1114359.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ikuai路由器通过curl模拟功能操作

模拟登录 通过调试进行分析ikuai登录流程,并进行模拟登录 ikuai_ip 该参数为ikuai路由器的ipusername 登录的用户password 登录密码 #!/bin/bash # # ikuai_ip10.66.0.1 usernameadmin passwordadminpwd.. cookie_nameikuai_cookie.txt useragent"User-Ag…

IPETRONIK数采与第三方软件集成

一 第三方软件 IPETRONIK公司提供IPEmotion用于车辆测试,但在某些特殊领域也有一些专业的软件,例如标定,则需要IPETRONIK数采来进行压力、温度、转速等信号的采集。 IPETRONIK提供了INCA和CANape插件,且这两款软件均可直接识别到…

克隆的虚拟机,查不到IP号

文章目录 问题解决描述解决步骤重新生成MAC地址修改一修改二 相关操作查看当前所有网卡修改网络配置文件文件内容修改修改文件名 问题解决 描述 使用克隆的虚拟机,网卡和原虚拟机的相同,会导致克隆虚拟机的网卡不可用,从而使用ip addr查看不…

起猛了!4090显卡对华禁售出现反转,国产显卡发展现状到底如何?

10月18号,英伟达向美国证券交易委员会,提交的最新公开文件显示: 除了H100/A100/H800/A800这类高性能计算卡,消费级旗舰显卡RTX 4090也被列入到出口管制范围内,对华禁售。 尽管此规定对一般人影响不大,但对…

AcWing算法分享系列——二分图

这是AcWing算法分享系列的第一篇文章,我们先从图论的知识下手(因为我觉得图论的只是好理解些)。 这次我们主要讲的就是二分图,二分图这次我们主要讲的就是最基础的两个板块: 二分图的判定(染色法)二分图的完美匹配(匈牙利算法)我们这一篇文章先从二分图的概念开始入手…

msvcp120.dll丢失的解决方法,有效的两种msvcp120.dll修复方法分享

如果您在打开某些软件或游戏时遇到了“计算机中缺少msvcp120.dll,无法启动程序”的错误提示,那么您遇到了一个非常常见的问题。MSVCP120.dll是Windows操作系统中的一个关键的动态链接库文件,它封装了许多C运行库函数。如果这个文件丢失或损坏…

多目标优化怎么偏向某个目标?通过参考点的方式可以解决

通过参考点的方式可以使算法偏向某个目标,其中这些参考点的某些性质符合你所需要偏向的这个目标, 例如决策者偏好的分子是活性较好的分子,那么优化后的分子也会是这个偏好 一、基于参照点集合的方法概述 近年来出现了一类基于参照点集的超多…

还用axure?一款产品经理可直接用的前端无代码工具,像设计原型那样直接搭建复杂的前端应用!— UIOTOS

先抛出问题 axure既然能画高保真模型,为什么不技术上优化代码,直接用于前端? 关于不能用于前端,有知友说代码不精简,有些不能实现,但是这些技术上应该是可以优化和解决的。那么为什么不和Dreamweaver类似…

python基础知识笔记

参考视频和资料:2022新版黑马程序员python教程,8天python从入门到精通,学python看这套就够了_哔哩哔哩_bilibili 最后有知识的思维导图! Python入门学习 Day1 解释器:pycharm 一、Pycharm快捷键和基础 注释多行…

如何写代码实现VRP问题中车辆容量限制及时间窗要求(python)

问题研究背景 使用遗传模拟退火算法求解如下10个卸货点的VRPTW问题。为了使研究的问题更加有意义,本人将时间限理解为服务点一天的具体可以允许配送的时间。 如果不要求车辆从配送中心出发的时间是统一的并且为0时刻,那么就默认第一个配送节点是一定能赶…

Pandas与数据库交互详解

Pandas 是一个强大的数据分析库,可以与各种数据库进行交互,从而可以方便地从数据库中读取数据、分析数据,并将结果写回数据库中。以下是使用 Pandas 与数据库交互的一般步骤: 一 、数据库交互 安装必要的库:首先&…

性能测试jmeter命令行运行+html测试报告解读

windows下打开jmeter的运行窗口,可以看到提示不要用GUI模式进行负载测试,如果要用负载测试,用cli模式,因为GUI模式运行jmeter比较消耗性能。 命令行模式 windows下找到jemeter所在文件夹,打开cmd输入命令。 jmeter -n…

【分享】7-Zip压缩包的密码可以取消吗?

7-Zip压缩包设置了“密码保护”,后面又不想要了,可以取消吗? 首先,我们要分两种情况来看,是记得密码,但不想每次打开压缩包都要输入密码,所以想取消密码,还是把密码忘记了所以想取消…

TDengine小知识-数据文件命名规则

TDengine 时序数据库对数据文件有自己的命名规则,文件名中包含了vnodeID、时间范围、版本、文件类型等多种信息。了解数据文件命名规则,可以让运维工作更简单。 废话不多说,直接上图: v4:文件所属 Vgroup 组&#xf…

基于epoll封装非阻塞的reactor框架(附源码)

C++常用功能源码系列 文章目录 C++常用功能源码系列前言一、reactor架构二、client端reactor代码三、server端reactor代码四、单reactor架构可以实现百万并发总结前言 本文是C/C++常用功能代码封装专栏的导航贴。部分来源于实战项目中的部分功能提炼,希望能够达到你在自己的项…

【MATLAB第79期】基于MATLAB的数据抽样合集(sobol、LHS拉丁超立方抽样、Halton、正交/均匀设计、随机rand函数)

【MATLAB第79期】基于MATLAB的数据抽样合集(sobol、LHS拉丁超立方抽样、Halton、正交/均匀设计、随机rand函数) 一、传统函数 1.指定区间随机生成数据(小数) [a b]区间随机数生成: Aa(b-a)rand(m,n) m:待生成矩阵A…

C语言实现用递归方法求 () = ∑ (^2)

完整代码&#xff1a; // 用递归方法求 ??(??) ∑ (??^2) #include<stdio.h>int func(int n){if (n1){return 1;}else{return n*nfunc(n-1);} }int main() {int n;printf("请输入一个整数");scanf("%d",&n);printf("%d",func(…

【C++】-还在玩普通的类吗,这里面有好几种特殊的类的设计,快进来看看

&#x1f496;作者&#xff1a;小树苗渴望变成参天大树&#x1f388; &#x1f389;作者宣言&#xff1a;认真写好每一篇博客&#x1f4a4; &#x1f38a;作者gitee:gitee✨ &#x1f49e;作者专栏&#xff1a;C语言,数据结构初阶,Linux,C 动态规划算法&#x1f384; 如 果 你 …

【代码随想录】算法训练营 第八天 第四章 字符串 Part 1

344. 反转字符串 题目 思路 我的思路是&#xff0c;用双指针&#xff0c;一个指左&#xff0c;一个指右&#xff0c;循环互换即可。 代码随想录的更简单精妙&#xff0c;直接用一个for循环搞定&#xff0c;里面用swap来互换。 代码 我的解法 class Solution { public:voi…

【IEEE】1区TOP仅1个月见刊(附IEEE旗下SCI实时影响因子汇总)

IEEE出版的SCI期刊有近200本&#xff0c;本期我们主要关注IEEE旗下被SCIE收录期刊的实时IF2023&#xff0c;所有期刊按照字母顺序排列。为方便对比&#xff0c;我们还给出了IF2022&#xff08;即今年6月公布的最新影响因子&#xff09;&#xff0c;供大家参考。 备注&#xff…