Elasticsearch向量检索的演进与变革:从基础到应用

news2024/11/17 5:20:39

Elasticsearch向量检索的演进与变革:从基础到应用

1.引言

向量检索已经成为现代搜索和推荐系统的核心组件。

通过将复杂的对象(例如文本、图像或声音)转换为数值向量,并在多维空间中进行相似性搜索,它能够实现高效的查询匹配和推荐。

Elasticsearch 作为一款流行的开源搜索引擎,其在向量检索方面的发展也一直备受关注。本文将回顾 Elasticsearch 向量检索的发展历史,重点介绍各个阶段的特点和进展。以史为鉴,方便大家建立起 Elasticsearch 向量检索的全量认知。

2. 初步尝试:简单向量检索的引入

Elasticsearch 最初并未专门针对向量检索进行设计。然而,随着机器学习和人工智能的兴起,对于高维向量空间的查询需求逐渐增长。

在 Elasticsearch 的 5.x 版本中,Elastic 爱好者们开始尝试通过插件和基本的数学运算实现简单的向量检索功能。如:一些早期的插件如 elasticsearch-vector-scoring、fast-elasticsearch-vector-scoring 就是为了满足这样的需求。

https://github.com/MLnick/elasticsearch-vector-scoring

https://github.com/lior-k/fast-elasticsearch-vector-scoring

这一阶段的向量检索主要用于基本的相似度查询,例如文本相似度计算。虽然功能相对有限,但为后续的发展奠定了基础。

扩展说明:关于机器学习功能,如果大家对 Elasticsearch 版本更迭感兴趣,印象中当时 6.X 版本推出,非常振奋人心。不过受限于非开源功能,国内的真实受众还相对较少。

3. 官方支持:进一步发展

到 Elasticsearch 7.0 版本,正式开始增加对向量字段的支持,例如通过 dense_vector 类型。这标志着 Elasticsearch 正式进入向量检索领域,不再只依赖于插件。

dense_vector 最早的发起时间:2018 年 12 月 13 日,7.6 版本标记为 GA。

https://github.com/elastic/elasticsearch/pull/33022

https://github.com/elastic/elasticsearch-net/issues/3836

关于 dense_vector 类型的使用,推荐阅读:高维向量搜索:在 Elasticsearch 8.X 中利用 dense_vector 的实战探索。

这一阶段的主要挑战是如何有效地在传统的倒排索引结构中支持向量检索。通过与现有的全文搜索功能相结合,Elasticsearch 能够提供一种灵活而强大的解决方案。

从最初的插件和基本运算,到后来的官方支持和集成,这一阶段为 Elasticsearch 在向量检索方面的进一步创新和优化奠定了坚实的基础。

4.专门优化:增强的相似度计算

随着需求的增长,Elasticsearch 团队开始深入研究并优化向量检索性能。这涉及了引入更复杂的相似度计算方法,例如余弦相似度、欧几里得距离等,以及对查询执行的优化。

从 Elasticsearch 7.3 版本开始,官方引入了更复杂的相似度计算方法。特别是 script_score 查询的增强,使用户可以通过 Painless 脚本自定义更丰富的相似度计算。

/guide/en/elasticsearch/reference/7.3/query-dsl-script-score-query.html#vector-functions

核心功能在于允许通过向量之间的夹角计算相似度,用 k 最近邻 (k-NN) 的余弦相似度距离指标,从而为相似度搜索引擎提供支持。广泛用于文本分析和推荐系统。

主要用于解决:复杂相似度需求,提供了更灵活和强大的相似度计算选项,能够满足更多的业务需求。

应用场景体现在:

  • (1)个性化推荐:通过余弦相似度分析用户的行为和兴趣,提供更个性化的推荐内容;

  • (2)图像识别和搜索:使用欧几里得距离快速检索与给定图像相似的图像;

  • (3)声音分析:在声音文件之间寻找相似模式,用于语音识别和分析。

值得一提的是:初始的时候,向量检索支持的维度为:1024,直到 Elasticsearch 8.8 版本,支持维度变更为:2048(这是呼声很高的一个需求)。

https://github.com/elastic/elasticsearch/pull/95257

/t/vector-knn-search-with-more-than-1024-dimensions/332819

Elasticsearch 7.x 版本的增强相似度计算功能标志着向量检索能力的显著进展。通过引入更复杂的相似度计算方法和查询优化,Elasticsearch 不仅增强了其在传统搜索场景中的功能,还为新兴的机器学习和 AI 应用打开了新的可能性。

但,这个时候你会发现,如果要实现复杂的向量搜索功能,自己实现的还很多。如果把后面马上提到的深度学习的集成和大模型的出现比作:飞行的汽车,当前的阶段还是 “拉驴车”,功能是有的,但用起来很费劲。

5.深度学习集成与未来展望

大模型时代,向量检索和多模态搜索成为 “兵家” 必争之地。

多模态检索是一种综合各种数据模态(如文本、图像、音频、视频等)的检索技术。换句话说,它不仅仅是根据文字进行搜索,还可以根据图像、声音或其他模态的输入来搜索相关内容。

为了更通俗地理解多模态检索,我们可以通过以下比喻和示例来加深认识:想象你走进一个巨大的图书馆,这里不仅有书籍,还有各种图片、录音和视频。你可以向图书馆员展示一张照片,她会为你找到与这张照片相关的所有书籍、音频和视频。或者,你可以哼一段旋律,图书馆员能找到相关的资料,或者提供类似的歌曲或视频。这就是多模态检索的魔力!

随着深度学习技术的不断发展和应用,Elasticsearch 已开始探索将深度学习模型直接集成到向量检索过程中。这不仅允许更复杂、更准确的相似度计算,还开辟了新的应用领域,例如基于图像或声音的搜索。尤其在 Elasticsearch 的 8.x 版本,这一方向得到了显著的推进。

5.1 向量化是前提

如下图所示,先从左往右看是写入,图像、文档、音频转化为向量特征表示,在 Elasticsearch 中通过 dense_vector 类型存储。

从右往左看是检索,先将检索语句转化为向量特征表示,然后借助 K 近邻检索算法(在 Elasticsearch 中借助 Knn search 实现),获取相似的结果。

看中间,Results 部分就是向量检索的结果。

综上,向量检索打破了传统倒排索引仅支持文本检索的缺陷,可以扩展支持文本、语音、图像、视频多种模态。

图片来自:Elasticsearch 官方文档

相信你到这里,应该理解了向量检索和多模态。没有向量化的这个过程,多模态检索无从谈起。

5.2 模型是核心

深度学习模型集成总共可分为三步:

  • 第一步:模型导入和管理:Elasticsearch 8.x 支持导入预训练的深度学习模型,并提供相应的模型管理工具,方便模型的部署和更新。

  • 第二步:向量表示与转换:通过深度学习模型,可以将非结构化数据如图像和声音转换为向量表示,从而进行有效的检索。

  • 第三步:自定义相似度计算:8.x 版本提供了基于深度学习模型的自定义相似度计算接口,允许用户根据实际需求开发和部署专门的相似度计算方法。

关于深度学习,可以是自训练模型,也可以是第三方模型库中的模型,举例:咱们图搜图案例中就是用的 HuggingFace 里的:clip-ViT-B-32-multilingual-v1 模型。

Elasticsearch 支持的第三方模型列表:

名称模型释义
BERT双向 Transformer 模型
BART序列到序列模型
DPR bi-encoders双向编码器检索模型
DistilBERT轻量化 BERT
ELECTRA对抗性预训练模型
MobileBERT针对移动设备的 BERT
RoBERTa优化版 BERT
RetriBERT检索 - focused BERT
MPNet混合并行网络
SentenceTransformers bi-encoders句子转换双向编码器
XLM-RoBERTa多语言版 RoBERTa

包括如下的 Hugging Face 模型库也都是支持的。

模型是 Elasticsearch 与深度学习集成的核心,它能将复杂的数据转化为 “指纹” 向量,使搜索更高效和智能。借助模型,Elasticsearch 可以理解和匹配各种非结构化数据,如图像和声音,提供更为准确和个性化的搜索结果,同时适应不断变化的数据和需求。“没有了模型,我们还需要黑暗中摸索很久”。

第三方模型官网介绍:/guide/en/machine-learning/8.9/ml-nlp-model-ref.html#ml-nlp-model-ref-text-embedding

值得一提的是:Elasticsearch 导入大模型需要专属 Python 客户端工具 Eland。

Eland 是一个 Python Elasticsearch 客户端,让用户能用类似 Pandas 的 API 来探索和分析 Elasticsearch 中的数据,还支持从常见机器学习库上传训练好的模型到 Elasticsearch。

Eland 是为了与 Elasticsearch 协同工作而开发的库。它不是 Elasticsearch 的一个特定版本产物,而是作为一个独立的项目来帮助 Python 开发者更方便地在 Elasticsearch 中进行数据探索和机器学习任务。

Eland 更多参见:

/guide/en/elasticsearch/client/eland/current/index.html

https://github.com/elastic/eland

5.3 ESRE 是 Elastic 的未来

前一段时间在分别给两位阿里云、腾讯云大佬聊天的时候,都提到了 Elasticsearch Relevance Engine (ESRE) 才是 Elastic 未来。

ESRE 官方介绍如下:——Elasticsearch Relevance Engine 将 AI 的最佳实践与 Elastic 的文本搜索进行了结合。ESRE 为开发人员提供了一整套成熟的检索算法,并能够与大型语言模型 (LLM) 集成。借助 ESRE,我们可以应用具有卓越相关性的开箱即用型语义搜索,与外部大型语言模型集成,实现混合搜索,并使用第三方或我们自己的模型。

ESRE 集成了高级相关性排序如 BM25f、强大的矢量数据库、自然语言处理技术、与第三方模型如 GPT-3 和 GPT-4 的集成,并支持开发者自定义模型与应用。其特点在于提供深度的语义搜索,与专业领域的数据整合,以及无缝的生成式 AI 整合,让开发者能够构建更吸引人、更准确的搜索体验。

在 Elasticsearch 8.9 版本上新了:Semantic search 语义检索功能,对官方文档熟悉的同学,你会发现如下截图内容,早期版本是没有的。

语义搜索不是根据搜索词进行字面匹配,而是根据搜索查询的意图和上下文含义来检索结果。

更进一步讲:语义搜索不仅仅是匹配你输入的关键字,而是试图理解你的真正意图,给你带来更准确、更有上下文的搜索结果。简单来说,如果你在英国搜索 “football”,系统知道你可能想要搜橄榄球,而不是足球(在美国 football 是足球)。

这种智能搜索方式,得益于强大的文本向量化等技术背景,使我们的在线搜索体验更加直观、方便和满意。

  • 在文本里检索 connection speed requirement, 这点属于早期的倒排索引检索方式,或者叫全文检索中的短语 match_phrase 检索匹配 或者分词 match 检索匹配。这种可以得到结果。

  • 但是,中后半段视频显示,要是咱们要检索:“How fast should my internet be” 怎么办?

其实这里转换为向量检索,fast 和 speed 语义相近,should be 和 required、needs 语义相近,internet 和 connection、wifi 语义相近。所以依然能召回结果。

这突破了传统同义词的限制,体现了语义检索的妙处!

更进一步,我们给出语义检索和传统分词检索的区别,以期望大家更好的理解语义搜索。

项目语义搜索传统分词搜索
核心技术基于矢量搜索,机器学习和人工智能基于文本匹配和查询扩展
搜索目的理解查询的深层意义和上下文直接匹配关键词或扩展的词汇
处理上下文能够根据搜索者的地理位置、搜索历史等信息调整结果通常不考虑这些额外的上下文信息
搜索结果的相关性根据查询的意图和上下文排名结果主要基于关键词的频率和位置匹配
处理同义词和多义词能够理解词语在不同上下文中的意义,并据此返回结果通常使用同义词表或词汇扩展工具,可能不总是理解上下文中的真正意义
对查询的理解能够区分如 “chocolate milk” 和“milk chocolate”这样的查询,即使关键词顺序或形式相同可能只是简单地匹配关键词,而不理解它们的真正意思
学习和适应能力通过机器学习不断改进,根据用户的反馈和行为适应通常基于固定的算法和规则,没有持续学习和适应的能力
用户体验提供更准确和有上下文的结果,从而提高用户满意度依赖于用户精确输入,可能返回与用户实际意图不匹配的结果

总体而言,深度学习集成已经成为 Elasticsearch 向量检索能力的有力补充,促使它在搜索和分析领域的地位更加牢固,同时也为未来的发展提供了广阔的空间。

6.小结

Elasticsearch 的向量检索从最初的简单实现发展到现在的高效、多功能解决方案,反映了现代搜索和推荐系统的需求和挑战。随着技术的不断演进,我们可以期待 Elasticsearch 在向量检索方面将继续推动创新和卓越。

说一下最近的感触,向量检索、大模型等新技术的出现有种感觉 “学不完,根本学不完”,并且很容易限于 “皮毛论”(我自创的词)——所有技术都了解一点点,但经不起提问;浅了说,貌似啥都懂,深了说,一问三不知。

这种情况怎么办?我目前的方法是:以实践为目的去深入理解理论,必要时理解算法,然后不定期将所看、所思、所想梳理成文,以备忘和知识体系化。这个过程很慢、很累,但我相信时间越长、价值越大。

欢迎大家就向量检索等问题进行留言讨论交流,你的问题很可能就是下一次文章的主题哦!

7.参考

1、/cn/blog/text-similarity-search-with-vectors-in-elasticsearch

2、/guide/en/elasticsearch/reference/7.3/query-dsl-script-score-query.html#vector-functions-cosine

3、https://zhuanlan.zhihu.com/p/552249981

更多优质内容请关注公号:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1113429.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

内衣专用洗衣机怎么样?选购内衣裤洗衣机的方法

有的小伙伴在问内衣洗衣机有没有必要入手,答案是有必要的,贴身衣物一定要和普通衣服分开来洗,而且用手来清洗衣物真的很耗时间而且还清洗不干净,有了内衣洗衣机,我们不仅可以解放双手,在清洗过程中还能更加…

数据结构与算法(九):分治与回溯算法

参考引用 Hello 算法 Github:hello-algo 1. 分治算法 分治(divide and conquer),全称分而治之,是一种非常重要且常见的算法策略。分治通常基于递归实现,包括 “分” 和 “治” 两个步骤 分(划分…

【c++Leetcode】141. Linked List Cycle

问题入口 思想:Floyds Tortoise and Hare 这个算法简单来说就是设置一个慢指针(一次移动一个位置)和一个快指针(一次移动两个位置)。在遍历过程中,如果慢指针和快指针都指向同一个元素,证明环…

pycharm无法加载第三方库问题解决

pycharm无法加载第三方库 1、问题展示 2、在下面窗口点击转到工具窗口,pycharm社区版没有这个选项 3、在设置中添加镜像源 4、应用即可,然后就可以在第3步中搜索需要的库了

如何在一个CSS文件中引入其他CSS文件

import 规则可以在一个CSS文件中引用另一个CSS文件。它的语法如下所示: import url("path/to/another.css");在这个例子中,我们使用 import 规则将另一个名为”another.css”的CSS文件引入到当前的CSS文件中。可以使用相对路径或绝对路径指定…

C# 使用 LibUsbDotNet 实现 USB 设备检测

国庆节回来后的工作内容,基本都在围绕着各种各样的硬件展开,这无疑让本就漫长的 “七天班” ,更加平添了三分枯燥,我甚至在不知不觉中学会了,如何给打印机装上不同尺寸的纸张。华为的 Mate 60 发布以后,人群…

RabbitMQ 消息模型

参考 ​​​​​​【RabbitMQ】RabbitMQ架构模型_rabbitmq结构模型-CSDN博客 之前的学习都只是知道名字,但并没有真正的理解,每次看还是不懂,所以今日理解透 ! RabbitMQ 收发消息过程如下: 首先从消费者开始&#xff1…

云南毕业旅游攻略

第一站:长沙-大理 大理景点推荐 苍山:大理的最佳观景台,拥有变幻万千的云景和素负盛名的大理“风花雪月”四景之一的苍山雪景。可以乘坐索道上山,观赏珍珑棋局、清碧溪、七龙女池、苍山大峡谷、玉带云游路等。洱海:大理…

文件的逻辑结构(顺序文件,索引文件)

所谓的“逻辑结构”,就是指在用户看来,文件内部的数据应该是如何组织起来的。 而“物理结构”指的是在操作系统看来,文件的数据是如何存放在外存中的。 1.无结构文件 无结构文件:文件内部的数据就是一系列二进制流或字符流组成。无明显的逻…

ChatGPT的狂飙之路

ChatGPT的狂飙之路 第一章:AI顶流-闪耀互联网世界的新宠 根据UBS发布的研究报告显示,ChatGPT在1月份的月活跃用户数已达1亿,成为史上用户数增长最快的消费者应用。TikTok在全球上线后花了大约9个月的时间才增加了1亿用户,而Inst…

冰箱监控温度需要安装温度采集器需要什么条件

冰箱监控温度需要安装一个温度采集器在冰箱内部,以实时监测冰箱的温度。采集器可以是数字温度传感器、热敏电阻或其他类型的温度传感器。 当然也需要安装信号中继器也就是我们的智能网关,用于接收和记录温度采集器的数据。这一套系统就是温度监控系统&am…

【毕设必备】手把手带你用Python搭建一个简单的后端服务- API的创建,前后端交互的数据传递,GET,POST,JSON,FLASK

目录 Python 介绍Python的特性Python的使用场景python基本语法 FlaskViewModelControlhtmlsimple api连接数据库 跨域 Mojo比python快68000倍相关链接 Python 介绍 Python是一种流行的高级编程语言,具有易于学习和使用的特性,被广泛应用于各种领域。 P…

移动硬盘被格式化了如何恢复数据?四步教你如何恢复

在日常生活中,我们常常会使用各种存储设备来保存和备份我们的重要数据。移动硬盘作为一种便携式的存储设备,被广泛应用于数据的存储和传输。然而,有时候我们会不小心将移动硬盘格式化,从而丢失了里面的数据。本文将介绍移动硬盘格…

如何通过沉浸式投影技术提升文旅夜游的互动体验?

伴随着国民经济的提升,文旅夜游市场也开始通过各类创新设计形式,来吸引更多的游客前来打卡游玩,使其逐渐成为了当下热度较高的一种游玩模式,其中在收集各类用户的体验反馈时,沉浸式投影依靠新颖的视觉体验以及沉浸式观…

安装Apache2.4

二、安装配置Apache: 中文官网:Apache 中文网 官网 (p2hp.com) 我下的是图中那个版本,最新的64位 下载下后解压缩。如解压到D:\Program Files\Apache\Apache24 PS:特别要注意使用的场景和64位还是32位版本 2、修改Apcahe配置文…

2023.10.18

头文件 #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QDebug>QT_BEGIN_NAMESPACE namespace Ui { class Widget; } QT_END_NAMESPACEclass Widget : public QWidget {Q_OBJECTpublic:Widget(QWidget *parent nullptr);~Widget();private slot…

电商数据采集的10个经典方法

电商数据采集的网页抓取数据、淘宝、天猫、京东等平台的电商数据抓取&#xff0c;网页爬虫、采集网站数据、网页数据采集软件、python爬虫、HTM网页提取、APP数据抓包、APP数据采集、一站式网站采集技术、BI数据的数据分析、数据标注等成为大数据发展中的热门技术关键词。那么电…

什么是零拷贝

普通拷贝流程 在实际应用中&#xff0c;如果我们需要把磁盘中的某个文件内容发送到远程服务器上&#xff0c;那么它必须要经过几个拷贝的过程&#xff0c;。从磁盘中读取目标文件内容拷贝到内核缓冲区&#xff0c;CPU 控制器再把内核缓冲区的数据赋值到用户空间的缓冲区中&…

全志R128外设模块配置——ADC按键配置方法

ADC 按键配置方法 FreeRTOS平台上使用的按键为ADC-KEY&#xff0c;采用的ADC模块为GPADC。 按键功能驱动的实现是通过ADC分压&#xff0c;使每个按键检测的电压值不同&#xff0c;从而实现区分不同的按键。按下或者弹起中断之后&#xff0c;通过中断触发&#xff0c;主动检测…

电子技术基础之一(电容和电感)

Electronic Techonolgy 1、电容和电感1.1、电容(Capacitor)1.1.1、滤波功能1.1.2、储能功能 1.2、电感(Inductor)1.2.1、楞次定律1.2.2、储能作用 1、电容和电感 先讲一个概念&#xff0c;电流分为直流电和交流电&#xff0c;其中直流电再分为稳定直流电和脉动直流电。 直流电…