前言:个人实验记录,仅供学习参考,实验报告别用我图
文章目录
- 一、基础知识
- 1,为什么要进行插值:
- 2,双线性插值原理:
- 3,最邻近插值:
- 二、实验要求:
- 1.分别编程实现最近邻插值和双线性插值。
- 2.任意读入一幅图像,通过上诉两种插值方法,将图像放大2及2.5倍。
- 3. 显示结果,并进行比较。
- 三、实验记录:
- 1,双线性:
- 2、最邻近:
- 3,主程序:
- 四、结果展示
- 1,原图:
- 2,长宽各放大2倍:
- 3,长宽各放大2.5倍:
- 五、反思总结与收获
- 1,注意数据类型
- 2,比较双线性插值与最邻近插值
一、基础知识
1,为什么要进行插值:
有的时候我们要对图像进行放大,当然这里的放大是指放大图像的尺寸,例如把一个100x100大小的图像放大成200x200大小。其实在计算机里面,这个也就相当于把一个100x100的二维矩阵放大成一个200x200的矩阵。而插值,就是将矩阵上的这些位置填上数。缩小同理。
2,双线性插值原理:
我举例说明,如下图,我们要将下面的3x3矩阵放大成4x4的矩阵,这里算放大后矩阵的(2,2)出值应该是多少。
1)求出放大后图对应原图的位置:
我们不难得知:缩放图像素位置/对应原图上像素位置 = 缩放图尺寸/原图尺寸 = 缩放比例
于是可以求得:对应原图像素位置 = 缩放图像素位置x(原图尺寸/缩放图尺寸)
2)公式计算:
这里的i+u,j+v是上面通过计算后的原图的对应像素的横纵坐标。一般这个坐标都不是整数,我们通过matlab中的fix()函数(向下取整)来获取i,j的数据,再带入公式计算
像上图中的(2,2)位置,通过计算后可以得到它对应原图的下标是(1.5,1.5)。1.5向下取整是1,1.5-1=0.5,u,v都是0.5所以也就变成了:
等于20.75,也就是我们在缩放图的(2,2)位置插入20.75,由于是图像,我们就要将其转为uint8数据
对图像的缩放就是从它的缩放图上遍历每个像素来插值。
3,最邻近插值:
这个就简单了,先求出缩放图像素的原图对应像素下标,对下标四舍五入,然后将四舍五入后的下标带入原图,插入缩放图像素就行了。
二、实验要求:
1.分别编程实现最近邻插值和双线性插值。
2.任意读入一幅图像,通过上诉两种插值方法,将图像放大2及2.5倍。
3. 显示结果,并进行比较。
三、实验记录:
1,双线性:
双线性插值函数double_line_value():
function [value] = double_line_value(S,i,j,k,maxi,maxj)
%此函数用于算双线性插值
%i,j表示坐标
u = i-fix(i);
i = fix(i);
%这里判断下标是否越界
if i < 1
i = 1;
elseif i>maxi-1
i = maxi-1;
end
v = j-fix(j);
j = fix(j);
if j < 1
j = 1;
elseif j>maxj-1
j = maxj-1;
end
%公式计算
%这里要注意,S图像里的值都是无符号数,
%要先转变数据类型再算
a = double(S(i,j,k));
b = double(S(i+1,j,k));
c = double(S(i,j+1,k));
d = double(S(i+1,j+1,k));
value = (1-u)*(1-v)*a+u*(1-v)*b+(1-u)*v*c+u*v*d;
end
对整个图像进行双线性插值函数img_to_double_line():
function [S1] = img_to_double_line(S,aim_height,aim_width)
% 这个函数用于对图像进行双线性插值
% 输入 图像S,目标高度,目标宽度
% 输出 图像Sd
[src_height,src_width,src_z] = size(S)
aim_z = src_z;
S1 = -1*ones(aim_height,aim_width,aim_z); %初始化结果图,将其中数据全变为-1
%遍历结果图,进行插值
for z = 1:aim_z
for aimy = 1:aim_height
for aimx=1:aim_width
% 计算原图对应像素下标
srcx = aimx*(src_width/aim_width);
srcy = aimy*(src_height/aim_height);
S1(aimy,aimx,z) = double_line_value(S,srcy,srcx,z,src_height,src_width);
end
end
end
[h,w,z]=size(S1);
S1 = uint8(S1);% 将其中数据转为uint8类型
end
2、最邻近:
最邻近插值函数recently_value():
function [value] = recently_value(S,i,j,k,maxi,maxj)
%最邻近插值法
%以下为先四舍五入,再插值
i = round(i);
if i < 1
i = 1;
elseif i>maxi-1
i = maxi-1;
end
j = round(j);
if j < 1
j = 1;
elseif j>maxj-1
j = maxj-1;
end
value = S(i,j,k);
end
对图像进行最邻近插值函数img_to_recently_value():
function [S2] = img_to_recently_value(S,aim_height,aim_width)
% 这个函数用于对图像进行最邻近插值
% 输入 原图片,目标高度,目标宽度
% 输出 图片S2
[src_height,src_width,src_z] = size(S)
aim_z = src_z;
S2 = -1*ones(aim_height,aim_width,aim_z);%初始化矩阵S2
for z = 1:aim_z
for aimy = 1:aim_height
for aimx=1:aim_width
srcx = aimx*(src_width/aim_width);
srcy = aimy*(src_height/aim_height);
S2(aimy,aimx,z) = recently_value(S,srcy,srcx,z,src_height,src_width);
end
end
end
S2 = uint8(S2);
end
3,主程序:
clc;
clear;
% 实验四,双向线性插值和最邻近插值
S = imread('stone.jpg');
% S = rgb2gray(S);
[src_height,src_width,src_z] = size(S);%获得原图尺寸
figure;
imshow(S);title('原图');
for i=0:0.5:0.5
c = 2+i;%放大比例
%对放大后的尺寸四舍五入化为整数
aim_height = round(c*src_height);
aim_width = round(c*src_width);
aim_z = src_z;
S1 = img_to_double_line(S,aim_height,aim_width);
S2 = img_to_recently_value(S,aim_height,aim_width);
figure;
imshow(S1);title(['双线性插值后图,放大',num2str(c),'倍']);
figure;
imshow(S2);title(['最近邻插值后图,放大',num2str(c),'倍']);
end
四、结果展示
1,原图:
2,长宽各放大2倍:
3,长宽各放大2.5倍:
五、反思总结与收获
1,注意数据类型
uint8还是很坑的,当我们进行有小数的运算时,最好将其数据转为double类型,最后再转回来。
2,比较双线性插值与最邻近插值
很明显,最邻近插值实现起来很简单,但是在图像上有边缘锯齿化表现,效果不佳。
双线性插值效果相对来说很好,生成的图像给人一种很圆润,很平滑的感觉。