文章目录
- ECBSR(Edge-oriented Convolution Block for Real-timeMM21_ECBSR)
- 1. 作者目的是开发一个高效的适合移动端的超分网络。
- 2. 作者决定使用plain net ,但是效果不好,因此利用重参数化方法,丰富特征表示。
- 3. re-parameterization for efficient inference
- 4. 结果
- edge-SR
- 1.转置卷积上采样 和 pixel shuffle的区别
- 2.pooling or downsample 可能有aliasing artifacts
- 3.单层网络eSR-MAX
- 4.eSR-TM, eSR-TR, eSR-CNN
ECBSR(Edge-oriented Convolution Block for Real-timeMM21_ECBSR)
1. 作者目的是开发一个高效的适合移动端的超分网络。
多分支结构,以及dense connections 可以丰富特征提取和表示, 虽然不会引入太多 FLOPs, 但是会牺牲并行化速度,以及受到DDR 低带宽的影响。
另外一些 delite conv等其他卷积方法也有被提出来提高 网络性能,但是在GPU,NPU上可能没有被很好的优化。
因此作者计划 使用平坦 的网络结构 和 常规的卷积方法。
2. 作者决定使用plain net ,但是效果不好,因此利用重参数化方法,丰富特征表示。
主要结构如下图所示,
-
一个单独的conv-3x3
-
conv-1x1 + conv-3x3: expanding-and-squeezing
-
conv-1x1 + sobelx
-
conv-1x1 + sobely(图中和代码不一致)
-
conv-1x1 + laplasian 显示提取图像的边缘特征
训练的时候网络右五个分支组成,在inference的时候可以利用re-parameteize技术合并为一个conv-3x3,这样推理的速度和效率都得到提高,精度基本上没有损失。
3. re-parameterization for efficient inference
整体网络结构:ecb模块 和 一个pixel shuffle
## parameters for ecbsr
scale: 2
colors: 1
m_ecbsr: 4
c_ecbsr: 16
idt_ecbsr: 0
act_type: 'prelu'
pretrain: null
1 + 4 个 conv
1 个 pixel shuffle
class ECBSR(nn.Module):
def __init__(self, module_nums, channel_nums, with_idt, act_type, scale, colors):
super(ECBSR, self).__init__()
self.module_nums = module_nums
self.channel_nums = channel_nums
self.scale = scale
self.colors = colors
self.with_idt = with_idt
self.act_type = act_type
self.backbone = None
self.upsampler = None
backbone = []
backbone += [ECB(self.colors, self.channel_nums, depth_multiplier=2.0, act_type=self.act_type, with_idt = self.with_idt)]
for i in range(self.module_nums):
backbone += [ECB(self.channel_nums, self.channel_nums, depth_multiplier=2.0, act_type=self.act_type, with_idt = self.with_idt)]
backbone += [ECB(self.channel_nums, self.colors*self.scale*self.scale, depth_multiplier=2.0, act_type='linear', with_idt = self.with_idt)]
self.backbone = nn.Sequential(*backbone)
self.upsampler = nn.PixelShuffle(self.scale)
def forward(self, x):
y = self.backbone(x) + x
y = self.upsampler(y)
return y
ecb模块:包括五个卷积分支的定义
class ECB(nn.Module):
def __init__(self, inp_planes, out_planes, depth_multiplier, act_type='prelu', with_idt = False):
super(ECB, self).__init__()
self.depth_multiplier = depth_multiplier
self.inp_planes = inp_planes
self.out_planes = out_planes
self.act_type = act_type
if with_idt and (self.inp_planes == self.out_planes):
self.with_idt = True
else:
self.with_idt = False
self.conv3x3 = torch.nn.Conv2d(self.inp_planes, self.out_planes, kernel_size=3, padding=1)
self.conv1x1_3x3 = SeqConv3x3('conv1x1-conv3x3', self.inp_planes, self.out_planes, self.depth_multiplier)
self.conv1x1_sbx = SeqConv3x3('conv1x1-sobelx', self.inp_planes, self.out_planes, -1)
self.conv1x1_sby = SeqConv3x3('conv1x1-sobely', self.inp_planes, self.out_planes, -1)
self.conv1x1_lpl = SeqConv3x3('conv1x1-laplacian', self.inp_planes, self.out_planes, -1)
if self.act_type == 'prelu':
self.act = nn.PReLU(num_parameters=self.out_planes)
elif self.act_type == 'relu':
self.act = nn.ReLU(inplace=True)
elif self.act_type == 'rrelu':
self.act = nn.RReLU(lower=-0.05, upper=0.05)
elif self.act_type == 'softplus':
self.act = nn.Softplus()
elif self.act_type == 'linear':
pass
else:
raise ValueError('The type of activation if not support!')
def forward(self, x):
if self.training:
y = self.conv3x3(x) + \
self.conv1x1_3x3(x) + \
self.conv1x1_sbx(x) + \
self.conv1x1_sby(x) + \
self.conv1x1_lpl(x)
if self.with_idt:
y += x
else:
RK, RB = self.rep_params()
y = F.conv2d(input=x, weight=RK, bias=RB, stride=1, padding=1)
if self.act_type != 'linear':
y = self.act(y)
return y
def rep_params(self):
K0, B0 = self.conv3x3.weight, self.conv3x3.bias
K1, B1 = self.conv1x1_3x3.rep_params()
K2, B2 = self.conv1x1_sbx.rep_params()
K3, B3 = self.conv1x1_sby.rep_params()
K4, B4 = self.conv1x1_lpl.rep_params()
RK, RB = (K0+K1+K2+K3+K4), (B0+B1+B2+B3+B4)
if self.with_idt:
device = RK.get_device()
if device < 0:
device = None
K_idt = torch.zeros(self.out_planes, self.out_planes, 3, 3, device=device)
for i in range(self.out_planes):
K_idt[i, i, 1, 1] = 1.0
B_idt = 0.0
RK, RB = RK + K_idt, RB + B_idt
return RK, RB
关于重参数化具体实现
class SeqConv3x3(nn.Module):
def __init__(self, seq_type, inp_planes, out_planes, depth_multiplier):
super(SeqConv3x3, self).__init__()
self.type = seq_type
self.inp_planes = inp_planes
self.out_planes = out_planes
if self.type == 'conv1x1-conv3x3':
self.mid_planes = int(out_planes * depth_multiplier)
conv0 = torch.nn.Conv2d(self.inp_planes, self.mid_planes, kernel_size=1, padding=0)
self.k0 = conv0.weight
self.b0 = conv0.bias
conv1 = torch.nn.Conv2d(self.mid_planes, self.out_planes, kernel_size=3)
self.k1 = conv1.weight
self.b1 = conv1.bias
elif self.type == 'conv1x1-sobelx':
conv0 = torch.nn.Conv2d(self.inp_planes, self.out_planes, kernel_size=1, padding=0)
self.k0 = conv0.weight
self.b0 = conv0.bias
# init scale & bias
scale = torch.randn(size=(self.out_planes, 1, 1, 1)) * 1e-3
self.scale = nn.Parameter(scale)
# bias = 0.0
# bias = [bias for c in range(self.out_planes)]
# bias = torch.FloatTensor(bias)
bias = torch.randn(self.out_planes) * 1e-3
bias = torch.reshape(bias, (self.out_planes,))
self.bias = nn.Parameter(bias)
# init mask
self.mask = torch.zeros((self.out_planes, 1, 3, 3), dtype=torch.float32)
for i in range(self.out_planes):
self.mask[i, 0, 0, 0] = 1.0
self.mask[i, 0, 1, 0] = 2.0
self.mask[i, 0, 2, 0] = 1.0
self.mask[i, 0, 0, 2] = -1.0
self.mask[i, 0, 1, 2] = -2.0
self.mask[i, 0, 2, 2] = -1.0
self.mask = nn.Parameter(data=self.mask, requires_grad=False)
elif self.type == 'conv1x1-sobely':
conv0 = torch.nn.Conv2d(self.inp_planes, self.out_planes, kernel_size=1, padding=0)
self.k0 = conv0.weight
self.b0 = conv0.bias
# init scale & bias
scale = torch.randn(size=(self.out_planes, 1, 1, 1)) * 1e-3
self.scale = nn.Parameter(torch.FloatTensor(scale))
# bias = 0.0
# bias = [bias for c in range(self.out_planes)]
# bias = torch.FloatTensor(bias)
bias = torch.randn(self.out_planes) * 1e-3
bias = torch.reshape(bias, (self.out_planes,))
self.bias = nn.Parameter(torch.FloatTensor(bias))
# init mask
self.mask = torch.zeros((self.out_planes, 1, 3, 3), dtype=torch.float32)
for i in range(self.out_planes):
self.mask[i, 0, 0, 0] = 1.0
self.mask[i, 0, 0, 1] = 2.0
self.mask[i, 0, 0, 2] = 1.0
self.mask[i, 0, 2, 0] = -1.0
self.mask[i, 0, 2, 1] = -2.0
self.mask[i, 0, 2, 2] = -1.0
self.mask = nn.Parameter(data=self.mask, requires_grad=False)
elif self.type == 'conv1x1-laplacian':
conv0 = torch.nn.Conv2d(self.inp_planes, self.out_planes, kernel_size=1, padding=0)
self.k0 = conv0.weight
self.b0 = conv0.bias
# init scale & bias
scale = torch.randn(size=(self.out_planes, 1, 1, 1)) * 1e-3
self.scale = nn.Parameter(torch.FloatTensor(scale))
# bias = 0.0
# bias = [bias for c in range(self.out_planes)]
# bias = torch.FloatTensor(bias)
bias = torch.randn(self.out_planes) * 1e-3
bias = torch.reshape(bias, (self.out_planes,))
self.bias = nn.Parameter(torch.FloatTensor(bias))
# init mask
self.mask = torch.zeros((self.out_planes, 1, 3, 3), dtype=torch.float32)
for i in range(self.out_planes):
self.mask[i, 0, 0, 1] = 1.0
self.mask[i, 0, 1, 0] = 1.0
self.mask[i, 0, 1, 2] = 1.0
self.mask[i, 0, 2, 1] = 1.0
self.mask[i, 0, 1, 1] = -4.0
self.mask = nn.Parameter(data=self.mask, requires_grad=False)
else:
raise ValueError('the type of seqconv is not supported!')
def forward(self, x):
if self.type == 'conv1x1-conv3x3':
# conv-1x1
y0 = F.conv2d(input=x, weight=self.k0, bias=self.b0, stride=1)
# explicitly padding with bias
y0 = F.pad(y0, (1, 1, 1, 1), 'constant', 0)
b0_pad = self.b0.view(1, -1, 1, 1)
y0[:, :, 0:1, :] = b0_pad
y0[:, :, -1:, :] = b0_pad
y0[:, :, :, 0:1] = b0_pad
y0[:, :, :, -1:] = b0_pad
# conv-3x3
y1 = F.conv2d(input=y0, weight=self.k1, bias=self.b1, stride=1)
else:
y0 = F.conv2d(input=x, weight=self.k0, bias=self.b0, stride=1)
# explicitly padding with bias
y0 = F.pad(y0, (1, 1, 1, 1), 'constant', 0)
b0_pad = self.b0.view(1, -1, 1, 1)
y0[:, :, 0:1, :] = b0_pad
y0[:, :, -1:, :] = b0_pad
y0[:, :, :, 0:1] = b0_pad
y0[:, :, :, -1:] = b0_pad
# conv-3x3
y1 = F.conv2d(input=y0, weight=self.scale * self.mask, bias=self.bias, stride=1, groups=self.out_planes)
return y1
def rep_params(self):
device = self.k0.get_device()
if device < 0:
device = None
if self.type == 'conv1x1-conv3x3':
# re-param conv kernel
RK = F.conv2d(input=self.k1, weight=self.k0.permute(1, 0, 2, 3))
# re-param conv bias
RB = torch.ones(1, self.mid_planes, 3, 3, device=device) * self.b0.view(1, -1, 1, 1)
RB = F.conv2d(input=RB, weight=self.k1).view(-1,) + self.b1
else:
tmp = self.scale * self.mask
k1 = torch.zeros((self.out_planes, self.out_planes, 3, 3), device=device)
for i in range(self.out_planes):
k1[i, i, :, :] = tmp[i, 0, :, :]
b1 = self.bias
# re-param conv kernel
RK = F.conv2d(input=k1, weight=self.k0.permute(1, 0, 2, 3))
# re-param conv bias
RB = torch.ones(1, self.out_planes, 3, 3, device=device) * self.b0.view(1, -1, 1, 1)
RB = F.conv2d(input=RB, weight=k1).view(-1,) + b1
return RK, RB
4. 结果
edge-SR
1.转置卷积上采样 和 pixel shuffle的区别
2.pooling or downsample 可能有aliasing artifacts
using an anti–aliasing low–pass filter and then downsamples the image.
This process is implemented in tensor processing frameworks with strided convolutional
layers where the kernel or weight parameters correspond to the low–pass filter coefficients.
3.单层网络eSR-MAX
一个卷积,一个pixel shuffle, 一个max
卷积输出的通道数: sxsxchannel
out_channels=self.stride[0]*self.stride[1]*self.channels,
4.eSR-TM, eSR-TR, eSR-CNN
直接看代码更好理解:
class edgeSR_TM(nn.Module):
def __init__(self, model_id):
self.model_id = model_id
super().__init__()
assert self.model_id.startswith('eSR-TM_')
parse = self.model_id.split('_')
self.channels = int([s for s in parse if s.startswith('C')][0][1:])
self.kernel_size = (int([s for s in parse if s.startswith('K')][0][1:]), ) * 2
self.stride = (int([s for s in parse if s.startswith('s')][0][1:]), ) * 2
self.pixel_shuffle = nn.PixelShuffle(self.stride[0])
self.softmax = nn.Softmax(dim=1)
self.filter = nn.Conv2d(
in_channels=1,
out_channels=2*self.stride[0]*self.stride[1]*self.channels,
kernel_size=self.kernel_size,
stride=1,
padding=(
(self.kernel_size[0]-1)//2,
(self.kernel_size[1]-1)//2
),
groups=1,
bias=False,
dilation=1
)
nn.init.xavier_normal_(self.filter.weight, gain=1.)
self.filter.weight.data[:, 0, self.kernel_size[0]//2, self.kernel_size[0]//2] = 1.
def forward(self, input):
filtered = self.pixel_shuffle(self.filter(input))
value, key = torch.split(filtered, [self.channels, self.channels], dim=1)
return torch.sum(
value * self.softmax(key),
dim=1, keepdim=True
)
class edgeSR_TR(nn.Module):
def __init__(self, model_id):
self.model_id = model_id
super().__init__()
assert self.model_id.startswith('eSR-TR_')
parse = self.model_id.split('_')
self.channels = int([s for s in parse if s.startswith('C')][0][1:])
self.kernel_size = (int([s for s in parse if s.startswith('K')][0][1:]), ) * 2
self.stride = (int([s for s in parse if s.startswith('s')][0][1:]), ) * 2
self.pixel_shuffle = nn.PixelShuffle(self.stride[0])
self.softmax = nn.Softmax(dim=1)
self.filter = nn.Conv2d(
in_channels=1,
out_channels=3*self.stride[0]*self.stride[1]*self.channels,
kernel_size=self.kernel_size,
stride=1,
padding=(
(self.kernel_size[0]-1)//2,
(self.kernel_size[1]-1)//2
),
groups=1,
bias=False,
dilation=1
)
nn.init.xavier_normal_(self.filter.weight, gain=1.)
self.filter.weight.data[:, 0, self.kernel_size[0]//2, self.kernel_size[0]//2] = 1.
def forward(self, input):
filtered = self.pixel_shuffle(self.filter(input))
value, query, key = torch.split(filtered, [self.channels, self.channels, self.channels], dim=1)
return torch.sum(
value * self.softmax(query*key),
dim=1, keepdim=True
)