【Note】CNN与现代卷积神经网络part4(附PyTorch代码)

news2024/11/15 17:25:27

文章目录

    • 2.2 残差网络(ResNet)
      • 2.2.1 函数类
      • 2.2.2 残差块
      • 2.2.3 ResNet模型
      • 2.2.4 训练模型
      • 2.2.5 Summary

本《CNN与现代卷积神经网络》Note系列会共分为4个part,本文为part4。本Markdown共4k字。

2.2 残差网络(ResNet)

随着我们设计越来越深的网络,深刻理解“新添加的层如何提升神经网络的性能”变得至关重要。更重要的是设计网络的能力,在这种网络中,添加层会使网络更具表现力, 为了取得质的突破,我们需要一些数学基础知识。

2.2.1 函数类

在这里插入图片描述
针对这一问题,何恺明等人提出了残差网络(ResNet) (He et al., 2016)。 它在2015年的ImageNet图像识别挑战赛夺魁,并深刻影响了后来的深度神经网络的设计。 残差网络的核心思想是:每个附加层都应该更容易地包含原始函数作为其元素之一。 于是,残差块(residual blocks)便诞生了,这个设计对如何建立深层神经网络产生了深远的影响。 凭借它,ResNet赢得了2015年ImageNet大规模视觉识别挑战赛。

2.2.2 残差块

在残差块中,输入可通过跨层数据线路更快地向前传播。
在这里插入图片描述
一个正常块(左图)和一个残差块(右图)

ResNet沿用了VGG完整的 3 × 3 3\times 3 3×3卷积层设计。 残差块里首先有2个有相同输出通道数的 3 × 3 3\times 3 3×3卷积层。 每个卷积层后接一个批量规范化层和ReLU激活函数。 然后我们通过跨层数据通路,跳过这2个卷积运算,将输入直接加在最后的ReLU激活函数前。 这样的设计要求2个卷积层的输出与输入形状一样,从而使它们可以相加。 如果想改变通道数,就需要引入一个额外的 1 × 1 1\times 1 1×1卷积层来将输入变换成需要的形状后再做相加运算。 残差块的实现如下:

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l

class Residual(nn.Module):  #@save
    def __init__(self, input_channels, num_channels,
                 use_1x1conv=False, strides=1):
        super().__init__()
        self.conv1 = nn.Conv2d(input_channels, num_channels,
                               kernel_size=3, padding=1, stride=strides)
        self.conv2 = nn.Conv2d(num_channels, num_channels,
                               kernel_size=3, padding=1)
        if use_1x1conv:
            self.conv3 = nn.Conv2d(input_channels, num_channels,
                                   kernel_size=1, stride=strides)
        else:
            self.conv3 = None
        self.bn1 = nn.BatchNorm2d(num_channels)
        self.bn2 = nn.BatchNorm2d(num_channels)

    def forward(self, X):
        Y = F.relu(self.bn1(self.conv1(X)))
        Y = self.bn2(self.conv2(Y))
        if self.conv3:
            X = self.conv3(X)
        Y += X
        return F.relu(Y)

如图所示,此代码生成两种类型的网络:一种是当use_1x1conv=False时,应用ReLU非线性函数之前,将输入添加到输出。另一种是当use_1x1conv=True时,添加通过 1 × 1 1\times 1 1×1卷积调整通道和分辨率。

在这里插入图片描述
包含以及不包含 1 × 1 1\times 1 1×1卷积层的残差块

下面我们来查看输入和输出形状一致的情况。

blk = Residual(3,3)
X = torch.rand(4, 3, 6, 6)
Y = blk(X)
Y.shape

在这里插入图片描述
我们也可以在增加输出通道数的同时,减半输出的高和宽。

blk = Residual(3,6, use_1x1conv=True, strides=2)
blk(X).shape

在这里插入图片描述

2.2.3 ResNet模型

ResNet的前两层跟GoogLeNet中的一样: 在输出通道数为64、步幅为2的 7 × 7 7\times 7 7×7 卷积层后,接步幅为2的 3 × 3 3\times 3 3×3 的最大汇聚层。不同之处在于ResNet每个卷积层后增加了批量规范化层。

b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
                   nn.BatchNorm2d(64), nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

GoogLeNet在后面接了4个由Inception块组成的模块。 ResNet则使用4个由残差块组成的模块,每个模块使用若干个同样输出通道数的残差块。 第一个模块的通道数同输入通道数一致。 由于之前已经使用了步幅为2的最大汇聚层,所以无须减小高和宽。 之后的每个模块在第一个残差块里将上一个模块的通道数翻倍,并将高和宽减半。

下面我们来实现这个模块。注意,我们对第一个模块做了特别处理。

def resnet_block(input_channels, num_channels, num_residuals,
                 first_block=False):
    blk = []
    for i in range(num_residuals):
        if i == 0 and not first_block:
            blk.append(Residual(input_channels, num_channels,
                                use_1x1conv=True, strides=2))
        else:
            blk.append(Residual(num_channels, num_channels))
    return blk

接着在ResNet加入所有残差块,这里每个模块使用2个残差块。

b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))

最后,与GoogLeNet一样,在ResNet中加入全局平均汇聚层,以及全连接层输出。

net = nn.Sequential(b1, b2, b3, b4, b5,
                    nn.AdaptiveAvgPool2d((1,1)),
                    nn.Flatten(), nn.Linear(512, 10))

每个模块有4个卷积层(不包括恒等映射的 1 × 1 1\times 1 1×1卷积层)。加上第一个 7 × 7 7\times 7 7×7卷积层和最后一个全连接层,共有18层。因此,这种模型通常被称为ResNet-18。 通过配置不同的通道数和模块里的残差块数可以得到不同的ResNet模型,例如更深的含152层的ResNet-152。 虽然ResNet的主体架构跟GoogLeNet类似,但ResNet架构更简单,修改也更方便。这些因素都导致了ResNet迅速被广泛使用。下图描述了完整的ResNet-18。

在这里插入图片描述
ResNet-18 架构

在训练ResNet之前,让我们观察一下ResNet中不同模块的输入形状是如何变化的。 在之前所有架构中,分辨率降低,通道数量增加,直到全局平均汇聚层聚集所有特征。

X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__,'output shape:\t', X.shape)

在这里插入图片描述

2.2.4 训练模型

同之前一样,我们在Fashion-MNIST数据集上训练ResNet。

lr, num_epochs, batch_size = 0.05, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

在这里插入图片描述
在这里插入图片描述

2.2.5 Summary

  • 学习嵌套函数(nested function)是训练神经网络的理想情况。在深层神经网络中,学习另一层作为恒等映射(identity function)较容易(尽管这是一个极端情况)。
  • 残差映射可以更容易地学习同一函数,例如将权重层中的参数近似为零。
  • 利用残差块(residual blocks)可以训练出一个有效的深层神经网络:输入可以通过层间的残余连接更快地向前传播。
  • 残差网络(ResNet)对随后的深层神经网络设计产生了深远影响。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1107046.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

文心一言 4.0 ERNIE-Bot 4.0 :ERNIE-Bot 4.0 大模型深度测试体验报告

本心、输入输出、结果 文章目录 文心一言 4.0 ERNIE-Bot 4.0 :ERNIE-Bot 4.0 大模型深度测试体验报告前言相关跳转文心一言 4.0 ERNIE-Bot 4.0 接口简介Bash 请求示例代码Windows 模式使用 Python 请求如果直接使用官方提供的代码文心一言 4.0 ERNIE-Bot 4.0 API 在…

GEE19:基于Landsat8的常见的植被指数逐年获取

植被指数逐年获取 1. 常见的植被指数1.1 比值植被指数(Ratio vegetation index,RVI)1.2 归一化植被指数(Normalized Difference Vegetation Index,NDVI)1.3 增强植被指数(Enhanced Vegetation I…

nuxt3+ts:集成 百度-爱番番 客服

一、本文目标 nuxt3 ts 集成百度爱番番(客服) 百度爱番番—企业的一站式智能营销管家 二、百度爱番番客服能力 三、爱番番后台基础配置 3.1、设置中心 登录后点右上角设置中心 3.2、沟通与触达 -- > 站点设置 -- > 新建站点 填写信息 3.3、获…

jQuery的使用,下载以及一些小案例

24.jQuery的使用 1.官网地址 https://jquery.com/ 版本: ●1X:兼容E678等低版本浏览器,官网不再更新 ●2x:不兼容IE678等低版本浏览器,官网不再更新 ●3x:不兼容E678等低版本浏览器,是官方主要更新维护的版本 2 jQuery的使用步…

【MySQL】面试题

引言 :MySQL面试题及答案 【最新版】 目录 1、NOW()和CURRENT_DATE()有什么区别?2、CHAR和VARCHAR的区别?3、主键索引与唯一索引的区别4、MySQL中有哪些不同的表格?5、SQL的生命周期…

优化大型机床装配调度:项目管理软件的应用方法

最近,Zoho Projects项目管理软件的一位资深客户,跟我们分享了他是如何把Projects应用于大型机床装配的复杂调度。小Z觉得特别有必要,把各行各业的成功应用和实践经验发布出来。在取得这位资深用户同意后,我们推出了本篇文章&#…

NIO IN:技术蔚来的首次「大阅兵」

宝山,上海第一钢铁厂旧址。 上周,蔚来在这里点亮金色炉台,2500 立方米高炉,浓重的工业气质与古典凝重的光影交织,蔚来 NIO IN 用科技的进步呼应那个火红的年代。 这是蔚来第一次开科技发布会,为了全方位展…

【Leetcode每日一题 2530】「贪心|模拟|优先队列」执行K次操作后的最大分数

2023.10.18 本题重点&#xff1a; 1.优先队列的使用 2.ceil()函数的使用相同的还有floor()函数的使用 题目介绍&#xff1b; 给你一个下标从 0 开始的整数数组 nums 和一个整数 k 。你的 起始分数 为 0 。 在一步 操作 中&#xff1a; 选出一个满足 0 < i < nums.l…

latex:使用中文字体

解决方案 我这里使用的是gbsn&#xff08;其他的字体我不知道&#xff0c;如果有补充请评价&#xff09;&#xff0c;详细说明如下&#xff1a;

vscode调试container(进行rocksdb调试)+vscode比较git项目不同分支和fork的哪个分支

vscode调试container&#xff08;进行rocksdb调试&#xff09; 参考链接&#xff1a; https://blog.csdn.net/qq_29809823/article/details/128445308#t5 https://blog.csdn.net/qq_29809823/article/details/121978762#t7 使用vscode中的插件dev containners->点击左侧的…

【算法练习Day22】 组合总和组合总和 II分割回文串

​&#x1f4dd;个人主页&#xff1a;Sherry的成长之路 &#x1f3e0;学习社区&#xff1a;Sherry的成长之路&#xff08;个人社区&#xff09; &#x1f4d6;专栏链接&#xff1a;练题 &#x1f3af;长路漫漫浩浩&#xff0c;万事皆有期待 文章目录 组合总和组合总和 II分割回…

多继承vs查看类结构

多继承里面的虚函数 类A有两个虚函数&#xff0c;类B重写了其中一个&#xff0c;类C重写了两个&#xff1b; 类C里面可以重写所有继承到的虚函数&#xff08;类A、类B里面的虚函数&#xff09; class A { public:virtual void init() { std::cout << "A init !&qu…

uniapp collapse动态生成多个折叠面板手动展开收起(包括uni-ui版)

前言 官方文档没有暴露出相关api&#xff0c;那就看看组件源码。 以下示例均通过 vue-cli 创建的 uni-app h5 项目 uView&#xff08;1.x&#xff09;版本 源码 node_modules\uview-ui\components\u-collapse-item\u-collapse-item.vue 这个方法是用来改变折叠面板子组件收起还…

Jmeter接口测试 —— jmeter对图片验证码的处理

jmeter对图片验证码的处理 在web端的登录接口经常会有图片验证码的输入&#xff0c;而且每次登录时图片验证码都是随机的&#xff1b;当通过jmeter做接口登录的时候要对图片验证码进行识别出图片中的字段&#xff0c;然后再登录接口中使用&#xff1b; 通过jmeter对图片验证码…

亲,手撸图文博文太累了?试试这个神器!

这一篇博客有关如何使用[InternLM-XComposer]来写图文并茂的博文。InternLM-XComposer是一个基于人工智能的创作工具&#xff0c;它可以根据你的输入生成不同类型的内容&#xff0c;例如文章、诗歌、歌词、代码等。你可以使用它来创作有趣和有创意的博客&#xff0c;同时也可以…

【MySQL】数据库——表操作

文章目录 1. 创建表2. 查看表3. 修改表修改表名add ——增加modify——修改drop——删除修改列名称 4. 删除表 1. 创建表 语法&#xff1a; create table 表名字 ( 列名称 列类型 ) charset set 字符集 collate 校验规则 engine 存储引擎 ; charset set字符集 &#xff0c;若…

Unity SRP 管线【第二讲:Draw Call】

参考&#xff1a; https://edu.uwa4d.com/lesson-detail/282/1309/0?isPreview0 文章目录 参考&#xff1a;一、Shader1.HLSL引入2.获取Unity提供的标准输入3.Unity提供的运算库SpaceTransform库的宏对应补充&#xff1a; 4.标准库Common.hlsl5.SpaceTransforms库引入Commo…

Flutter视图原理之三棵树的建立过程

目录 三棵树的关系树的构建过程1.updateChild函数&#xff08;element的复用&#xff09;2.inflateWidget函数3.mount函数3.1 componentElement的实现3.2 RenderObjectElement的实现3.2.1 attachRenderObject函数 4.performRebuild函数 总结三棵树创建流程 三棵树的关系 Flutt…

【数组的使用续篇】

文章目录 以数组的形式打印数组打印方法&#xff1a;Arrays.toString(数组名) 数组排序大小排序方法是 Arrays.sort(数组名) 创建一个自己的打印数组的方法自己创建一个冒泡排序两数之间交换方法 逆置数组打印核心思路还是 i 和 j 交换 总结 以数组的形式打印数组 打印方法&am…

LeCun和Bengio“吵”起来了,人工智能是“潘多拉魔盒”吗?

作者 | 谢年年 上周末&#xff0c;深度学习领域最有影响力的三巨头之二Yann LeCun和Yoshua Bengio就AI的潜在风险和安全问题引发了一场激烈辩论&#xff0c;人工智能是“潘多拉魔盒”吗&#xff1f;这场辩论引来众多AI知名人士围观。 LeCun在Facebook上发起了这场辩论&#xff…