目录
选择题和填空题
编程题
1. 输出单链表倒数第K个结点值
单链表
双指针
2. 数组元素移动
3. 多项式相加
4. 数组的循环左移
选择题和填空题
编程题
1. 输出单链表倒数第K个结点值
【问题描述】
输入一个单向链表,输出该链表中倒数第k个结点,链表的最后一个结点是倒数第1个节点。
【输入形式】
输入第一位为K值,其后接一串以空格分隔的整型值。
【输出形式】
输出为倒数第K个结点的值,若无,则输出Not Found
【样例输入】
3 13 45 54 32 1 4 98 2
【样例输出】
4
【样例说明】
K值为3,则输出链表倒数第3个结点的值,为4;数据输入间以空格隔开
【评分标准】
本题要综合输出正确性及使用的数据结构。需由输入数据构建单链表。不使用链表的将不得分。
单链表
#include <stdio.h>
#include <stdlib.h>
typedef struct Node {
int num;
struct Node* next;
} Node, * LinkList;
int main() {
LinkList head = NULL;
LinkList tail = NULL;
int k;
scanf("%d", &k);
int n;
while (scanf("%d", &n) != EOF) {
LinkList newNode = (LinkList)malloc(sizeof(Node));
newNode->num = n;
newNode->next = NULL;
if (head == NULL) {
head = newNode;
tail = newNode;
} else {
tail->next = newNode;
tail = tail->next;
}
}
LinkList p = head;
int count = 0;
while (p != NULL) {
count++;
p = p->next;
}
if (k <= 0 || k > count) {
printf("Not Found\n");
} else {
p = head;
for (int i = 0; i < count - k; i++) {
p = p->next;
}
printf("%d\n", p->num);
}
p = head;
while (p != NULL) {
LinkList temp = p;
p = p->next;
free(temp);
}
return 0;
}
双指针
#include <stdio.h>
#include <stdlib.h>
typedef struct Node {
int num;
struct Node* next;
} Node, * LinkList;
int main() {
LinkList head = NULL;
LinkList tail = NULL;
int k;
scanf("%d", &k);
int n;
while (scanf("%d", &n) != EOF) {
LinkList newNode = (LinkList)malloc(sizeof(Node));
newNode->num = n;
newNode->next = NULL;
if (head == NULL) {
head = newNode;
tail = newNode;
} else {
tail->next = newNode;
tail = tail->next;
}
}
LinkList p = head;
LinkList temp=head;
if (k <= 0) {
printf("Not Found\n");
} else {
p = head;
temp=head;
while(k && temp){
temp=temp->next;
k--;
}
while(temp){
temp=temp->next;
p=p->next;
}
if(k > 0){
printf("Not Found\n");
return 0;
}
printf("%d\n", p->num);
}
return 0;
}
2. 数组元素移动
【问题描述】
将整数数组A[0..n],将其分为两部分,左边所有元素为奇数,右边所有元素为偶数。数组元素个数不超过1000。
【输入形式】
以逗号隔开的所有元素
【输出形式】
依次打印调整后的数组元素,元素间以逗号隔开。奇数序列和偶数序列分别按原序列中的顺序依次输出
【样例输入】
1,2,33,8,5
【样例输出】
1,33,5,2,8
【评分标准】
#include <stdio.h>
#include <stdlib.h>
int main() {
int n;
int arr[1000];
int size = 0;
while (scanf("%d,", &n) != EOF) {
arr[size] = n;
size++;
}
int *arr1 = (int*) malloc(size * sizeof(int));
int *arr2 = (int*) malloc(size * sizeof(int));
int size1 = 0, size2 = 0;
for (int i = 0; i < size; i++) {
if (arr[i] % 2 != 0) {
arr1[size1] = arr[i];
size1++;
} else {
arr2[size2] = arr[i];
size2++;
}
}
for (int i = 0; i < size1; i++) {
printf("%d", arr1[i]);
if (i < size1 - 1) {
printf(",");
}
}
if(size1>=1&&size2!=0){
printf(",");
}
for (int i = 0; i < size2; i++) {
printf("%d", arr2[i]);
if (i < size2 - 1) {
printf(",");
}
}
free(arr1);
free(arr2);
return 0;
}
3. 多项式相加
【问题描述】
编写一个程序用单链表存储多项式,并实现两个一元多项式A与B相加的函数。A,B刚开始是无序的,A与B之和按降序排列。例如:
多项式A: 1.2X^0 2.5X^1 3.2X^3 -2.5X^5
多项式B: -1.2X^0 2.5X^1 3.2X^3 2.5X^5 5.4X^10
多项式A与B之和:5.4X^10 6.4X^3 5X^1
【输入形式】
任意两个多项式A和B
【输出形式】
多项式中某一项的系数与指数,系数保留一位小数
【输入样例】
1.2 0 2.5 1 3.2 3 -2.5 5 -1.2 0 2.5 1 3.2 3 2.5 5 5.4 10 2
【输出样例】
6.4 3
【样例说明】
第一个多项式的系数与指数对,以空格隔开
第二个多项式的系数与指数对,以空格隔开
输出第2项的系数与指数,系数与指数间用空格隔开,系数保留一位小数
【评分标准】
必须用链表实现
#include <stdio.h>
#include <stdlib.h>
typedef struct Node {
float coef;
int exp;
struct Node* next;
} Node;
Node* createNode(float coef, int exp) {
Node* newNode = (Node*)malloc(sizeof(Node));
newNode->coef = coef;
newNode->exp = exp;
newNode->next = NULL;
return newNode;
}
void insertNode(Node** head, float coef, int exp) {
Node* newNode = createNode(coef, exp);
if (*head == NULL || (*head)->exp < exp) {
newNode->next = *head;
*head = newNode;
} else {
Node* temp = *head;
while (temp->next != NULL && temp->next->exp >= exp) {
temp = temp->next;
}
newNode->next = temp->next;
temp->next = newNode;
}
}
Node* addPolynomials(Node* poly1, Node* poly2) {
Node* result = NULL;
while (poly1 && poly2) {
if (poly1->exp > poly2->exp) {
insertNode(&result, poly1->coef, poly1->exp);
poly1 = poly1->next;
} else if (poly1->exp < poly2->exp) {
insertNode(&result, poly2->coef, poly2->exp);
poly2 = poly2->next;
} else {
float sum = poly1->coef + poly2->coef;
if (sum) {
insertNode(&result, sum, poly1->exp);
}
poly1 = poly1->next;
poly2 = poly2->next;
}
}
while (poly1 || poly2) {
if (poly1) {
insertNode(&result, poly1->coef, poly1->exp);
poly1 = poly1->next;
}
if (poly2) {
insertNode(&result, poly2->coef, poly2->exp);
poly2 = poly2->next;
}
}
return result;
}
int main() {
Node* poly1 = NULL;
Node* poly2 = NULL;
float coef;
int exp;
char ch;
while (scanf("%f %d%c", &coef, &exp, &ch)) {
insertNode(&poly1, coef, exp);
if (ch == '\n') break;
}
while (scanf("%f %d%c", &coef, &exp, &ch)) {
insertNode(&poly2, coef, exp);
if (ch == '\n') break;
}
Node* result = addPolynomials(poly1, poly2);
int pos;
scanf("%d", &pos);
int i;
for (i = 1; i < pos; i++) {
if (result) {
result = result->next;
}
}
if (result) {
printf("%.1f %d\n", result->coef, result->exp);
}
return 0;
}
4. 数组的循环左移
【问题描述】
设将n(n>1)个整数存放在一维数组R中。试设计一个在时间和空间两方面都尽可能高效的算法。将R中保存的序列循环左移P(P>0)个位置。
例如,假设P<n,将R中的数据(X0,X1,..Xn-1)循环左移P个位置后,变换为(Xp, XP+1,..Xn-1,X0,X1,..Xp-1)
【输入形式】
循环移动的位数,数组中数据的个数,循环前的数组
【输出形式】
循环后的数组
【样例输入】
3 5 1 2 3 4 5
【样例输出】
4 5 1 2 3
【样例说明】
请大家注意,循环位移的位数可能超过数组中元素个数;输入与输出的数据均以空格分割,其中输入的数据中第一个是循环移位的位数,第二个是数组中数据的个数,后面的是数组中的数据。
【评分标准】
除了提交之后自动判分之外,还会根据代码的时间复杂度酌情给分,请大家尽量降低空间、时间复杂度
#include <stdio.h>
#include <stdlib.h>
void reverseArr(int *arr, int start, int end) {
while (start < end) {
int temp = arr[start];
arr[start] = arr[end];
arr[end] = temp;
start++;
end--;
}
}
void leftRotate(int *arr, int p, int n) {
reverseArr(arr, 0, p - 1);
reverseArr(arr, p, n - 1);
reverseArr(arr, 0, n - 1);
}
int main() {
int p, num, i;
scanf("%d", &p);
scanf("%d", &num);
p = p % num;
int *arr = (int *)malloc(num * sizeof(int));
for (i = 0; i < num; i++) {
scanf("%d", &arr[i]);
}
leftRotate(arr, p, num);
for (i = 0; i < num; i++) {
printf("%d", arr[i]);
if (i < num - 1) {
printf(" ");
}
}
printf("\n");
free(arr);
return 0;
}