推导原理基本很简单:
已知AB, BC两条线段,且交于B点,求倒角半径为 L,AB,BC的倒角
以最短边(假定为AB)长 LAB,
在BC中,以B为起点,找出与LAB同长度的点D,
即BD的长度等于AB的长度
(或 以B为圆心,LAB为半径, 绘制一个圆,
圆与AB交于A点, 于BC交于D点)
连接AD, 找出AD的中点P,
连接BP,
则BP为ABC夹角的角平分线
此时构成的 ABD,为一个等腰三角形
可轻松得出 垂直于BP的线, 到AB与BD的距离相等,即AP = PD
可样可用直角三角形法则得出 BP上的任意点,到AB的垂线,与到BC的垂线相等
即 XM = XN = L 圆弧半径
以X点作圆心,XM作半径,绘制圆,
该圆与AB, BC分别相切,
则圆弧 MN 则为AB与BC的倒角,倒角半径为L = XM
加上角度,长度,坐标的标记,如下:
python算法:
import numpy as np
import math
# 求单位向量
def unit_vector(vector):
""" Returns the unit vector of the vector. """
return vector / np.linalg.norm(vector)
# 角度
def angle_between(v1, v2):
""" Returns the angle in radians between vectors 'v1' and 'v2'::
>>> angle_between((1, 0, 0), (0, 1, 0))
1.5707963267948966
>>> angle_between((1, 0, 0), (1, 0, 0))
0.0
>>> angle_between((1, 0, 0), (-1, 0, 0))
3.141592653589793
"""
v1_u = unit_vector(v1)
v2_u = unit_vector(v2)
return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0))
# 点乘
def dotproduct(v1, v2):
return sum((a * b) for a, b in zip(v1, v2))
# 向量的长度
def length(v):
return math.sqrt(dotproduct(v, v))
# 向量角度
def angle(v1, v2):
return math.acos(dotproduct(v1, v2) / (length(v1) * length(v2)))
def funcChamfer(ptA, ptB, ptC, lR):
# ABC点 组成的部分向量
vBA = [ptA[0] - ptB[0], ptA[1] - ptB[1]]
vBC = [ptC[0] - ptB[0], ptC[1] - ptB[1]]
# 求ABC的夹角
aABC = angle_between(vBA, vBC)
print(f'ABC的夹角 Radius {aABC}, Angle:{180.0 / math.pi * aABC}')
# 向量 BA BC的长度
lBA = length(vBA)
lBC = length(vBC)
print(f'向量 BA BC的长度 lBA:{lBA}, lBC:{lBC}')
# 获得 BA BC 最短边边长 lShort
# 以及需要长边的端点 ptLast, 用于计算D点
lShort = 0 # 存储 AB BC中, 短边的边长
ptShortS = None # 存储短边的起始点
vShort = None # 存储短边的向量
vLong = None # 存储长边的向量
if(lBA <= lBC):
lShort = lBA
ptShortS = ptA
vShort = vBA
vLong = vBC
else:
lShort = lBC
ptShortS = ptC
vShort = vBC
vLong = lBA
# --------------------求D点方式1(三角函数,复杂,仅做示范):
# 和X轴的夹角
aShort = angle_between([1, 0], vShort)
aLong = angle_between([1, 0], vLong)
print(f'短边和X轴的夹角: Radius: {aShort}, Angle:{180.0 / math.pi * aShort}')
print(f'长边和X轴的夹角: Radius: {aLong}, Angle:{180.0 / math.pi * aLong}')
test = dotproduct(vBC, [1, 0])
print(f'Test {test}')
ptD = []
ptD.append(ptB[0] + lShort * math.cos(math.pi * 2 - aLong))
ptD.append(ptB[1] + lShort * math.sin(math.pi * 2 - aLong))
print(f'point D:({ptD[0]}, {ptD[1]})')
# --------------------求D点方式2(向量法):
# BC (长边)转单位向量:
vNBC = unit_vector(vLong)
x = [ptB[0], ptB[1]] + (vNBC * lShort)
print(f'{vNBC}, ptD: {x}')
# --------------------
# AD点的中点P
ptPX = (ptD[0] + ptShortS[0]) * 0.5
ptPY = (ptD[1] + ptShortS[1]) * 0.5
print(f'point P:({ptPX}, {ptPY})')
# BP向量
vBP = [ptPX - ptB[0], ptPY - ptB[1]]
# 假定点为 X, X到AB的垂线为 XM,且XM = lR
# 角ABP度数为 ABC的一半, 已知角度与XM的长度,
# 则可求出 BX 长度 lBX
lBX = lR / math.sin(aABC * 0.5)
ptX = ptB + unit_vector(vBP) * lBX
print(f'ptX: {ptX}')
return ptX
if __name__ == '__main__':
# AB,BC两线段交于B点 A,B,C如下
ptA = [707, 181]
ptB = [850, 640] # 公共点
ptC = [1578, 167]
lR = 130.0 # 倒角圆半径
ptX = funcChamfer(ptA, ptB, ptC, lR)
print(f'以此点: {ptX} 为圆心,绘制圆弧')
ABC的夹角 Radius 1.2966305334118693, Angle:74.29145715229679
向量 BA BC的长度 lBA:480.7598152924181, lBC:868.1664586932624
短边和X轴的夹角: Radius: 1.8728126012699295, Angle:107.30425787168404
长边和X轴的夹角: Radius: 0.5761820678580603, Angle:33.01280071938726
Test 728
point D:(1253.1405982438891, 378.0693640530776)
[ 0.83854887 -0.54482639], ptD: [1253.14059824 378.06936405]
point P:(980.0702991219446, 279.5346820265388)
ptX: [923.07255377 437.49319016]
以此点: [923.07255377 437.49319016] 为圆心,绘制圆弧
cpp算法:
待补充