推荐系统离线评估方法和评估指标,以及在推荐服务器内部实现A/B测试和解决A/B测试资源紧张的方法。还介绍了如何在TensorFlow中进行模型离线评估实践。

news2024/11/24 6:52:04

文章目录

  • 🌟 离线评估:常用的推荐系统离线评估方法有哪些?
    • 🍊 1. RMSE/MSE
    • 🍊 2. MAE
    • 🍊 3. Precision/Recall/F1-score
    • 🍊 4. Coverage
    • 🍊 5. Personalization
    • 🍊 6. AUC
  • 🌟 评估指标:我们可以用哪些指标来衡量模型的好坏?
    • 🍊 1. Precision/Recall/F1-score
    • 🍊 2. MAP
    • 🍊 3. NDCG
    • 🍊 4. Hit Rate
    • 🍊 5. Coverage
  • 🌟 特别加餐|TensorFlow的模型离线评估实践怎么做?
    • 🍊 1. 数据准备
    • 🍊 2. 模型训练
    • 🍊 3. 模型评估
    • 🍊 4. 指标衡量
  • 🌟 在线测试:如何在推荐服务器内部实现A/B测试?
    • 🍊 1. 划分用户
    • 🍊 2. 实现对比
    • 🍊 3. 统计结果
    • 🍊 4. 结论和改进
  • 🌟 评估体系:如何解决A/B测试资源紧张的窘境?
    • 🍊 1. 多臂老虎机算法
    • 🍊 2. 仿真技术
    • 🍊 3. 分层测试
    • 🍊 4. 统计学方法

📕我是廖志伟,一名Java开发工程师、Java领域优质创作者、CSDN博客专家、51CTO专家博主、阿里云专家博主、清华大学出版社签约作者、产品软文创造者、技术文章评审老师、问卷调查设计师、个人社区创始人、开源项目贡献者。🌎跑过十五公里、徒步爬过衡山、🔥有过三个月减肥20斤的经历、是个喜欢躺平的狠人。

📘拥有多年一线研发和团队管理经验,研究过主流框架的底层源码(Spring、SpringBoot、Spring MVC、SpringCould、Mybatis、Dubbo、Zookeeper),消息中间件底层架构原理(RabbitMQ、RockerMQ、Kafka)、Redis缓存、MySQL关系型数据库、 ElasticSearch全文搜索、MongoDB非关系型数据库、Apache ShardingSphere分库分表读写分离、设计模式、领域驱动DDD、Kubernetes容器编排等。🎥有从0到1的高并发项目经验,利用弹性伸缩、负载均衡、报警任务、自启动脚本,最高压测过200台机器,有着丰富的项目调优经验。

以梦为马,不负韶华

希望各位读者大大多多支持用心写文章的博主,现在时代变了,信息爆炸,酒香也怕巷子深,博主真的需要大家的帮助才能在这片海洋中继续发光发热,所以,赶紧动动你的小手,点波关注❤️,点波赞👍,点波收藏⭐,甚至点波评论✍️,都是对博主最好的支持和鼓励!

  • 💂 博客主页: 我是廖志伟
  • 👉开源项目:java_wxid
  • 🌥 哔哩哔哩:我是廖志伟
  • 🎏个人社区:幕后大佬
  • 🔖个人微信号SeniorRD

📥博主的人生感悟和目标

探寻内心世界,博主分享人生感悟与未来目标

  • 🍋程序开发这条路不能停,停下来容易被淘汰掉,吃不了自律的苦,就要受平庸的罪,持续的能力才能带来持续的自信。我本是是一个很普通程序员,放在人堆里,除了与生俱来的盛世美颜,就剩180的大高个了,就是我这样的一个人,默默写博文也有好多年了。
  • 📺有句老话说的好,牛逼之前都是傻逼式的坚持,希望自己可以通过大量的作品、时间的积累、个人魅力、运气、时机,可以打造属于自己的技术影响力。
  • 💥内心起伏不定,我时而激动,时而沉思。我希望自己能成为一个综合性人才,具备技术、业务和管理方面的精湛技能。我想成为产品架构路线的总设计师,团队的指挥者,技术团队的中流砥柱,企业战略和资本规划的实战专家。
  • 🎉这个目标的实现需要不懈的努力和持续的成长,但我必须努力追求。因为我知道,只有成为这样的人才,我才能在职业生涯中不断前进并为企业的发展带来真正的价值。在这个不断变化的时代,我必须随时准备好迎接挑战,不断学习和探索新的领域,才能不断地向前推进。我坚信,只要我不断努力,我一定会达到自己的目标。

CSDN

📙经过多年在CSDN创作上千篇文章的经验积累,我已经拥有了不错的写作技巧。同时,我还与清华大学出版社签下了四本书籍的合约,并将陆续在明年出版。这些书籍包括了基础篇、进阶篇、架构篇的📌《Java项目实战—深入理解大型互联网企业通用技术》📌,以及📚《解密程序员的思维密码–沟通、演讲、思考的实践》📚。具体出版计划会根据实际情况进行调整,希望各位读者朋友能够多多支持!

🌾阅读前,快速浏览目录和章节概览可帮助了解文章结构、内容和作者的重点。了解自己希望从中获得什么样的知识或经验是非常重要的。建议在阅读时做笔记、思考问题、自我提问,以加深理解和吸收知识。阅读结束后,反思和总结所学内容,并尝试应用到现实中,有助于深化理解和应用知识。与朋友或同事分享所读内容,讨论细节并获得反馈,也有助于加深对知识的理解和吸收。

🔔如果您需要转载或者搬运这篇文章的话,非常欢迎您私信我哦~

💡在这个美好的时刻,本人不再啰嗦废话,现在毫不拖延地进入文章所要讨论的主题。接下来,我将为大家呈现正文内容。

CSDN

🌟 离线评估:常用的推荐系统离线评估方法有哪些?

在推荐系统中,离线评估是评估推荐算法效果的一种常见方法。离线评估是指在离线数据集上测试推荐算法,并使用评估指标来衡量其效果。常用的推荐系统离线评估方法有以下几种:

🍊 1. RMSE/MSE

RMSE(Root Mean Square Error)和MSE(Mean Square Error)是最常见的衡量推荐系统预测准确度的方法。RMSE和MSE都是衡量预测值和真实值之间的误差平方和的平均值。

🍊 2. MAE

MAE(Mean Absolute Error)是另一种衡量推荐系统预测准确度的方法。MAE是预测值和真实值之间的绝对误差的平均值。

🍊 3. Precision/Recall/F1-score

在推荐系统中,Precision(准确率)、Recall(召回率)和F1-score是衡量推荐系统的重要指标。Precision是推荐结果中正确的数量与推荐结果的总数量之比。Recall是正确的推荐结果数量与真实结果总数之比。F1-score是 Precision 和 Recall 的调和平均值,用于综合评估推荐系统的准确度和召回率。

🍊 4. Coverage

Coverage表示在所有可能的推荐物品中,有多少被推荐算法所推荐。Coverage的值越高,表示推荐算法能够覆盖更多的物品,提高了推荐系统的多样性。

🍊 5. Personalization

Personalization用于衡量推荐系统的个性化程度。一个好的推荐系统需要考虑用户的个性化需求,而不是只推荐热门的物品。

🍊 6. AUC

AUC(Area Under Curve)是用于衡量二分类模型好坏的指标,也可以用于推荐系统中衡量排序模型的好坏。

🌟 评估指标:我们可以用哪些指标来衡量模型的好坏?

在推荐系统中,评估指标是衡量模型好坏的重要标准。以下是常用的推荐系统评估指标:

🍊 1. Precision/Recall/F1-score

Precision(准确率)、Recall(召回率)和F1-score是衡量推荐系统的重要指标。Precision是推荐结果中正确的数量与推荐结果的总数量之比。Recall是正确的推荐结果数量与真实结果总数之比。F1-score是 Precision 和 Recall 的调和平均值,用于综合评估推荐系统的准确度和召回率。

🍊 2. MAP

MAP(Mean Average Precision)是一种综合考虑推荐系统排序质量的指标。它是通过计算每个用户的平均准确率(Average Precision)来计算的。

🍊 3. NDCG

NDCG(Normalized Discounted Cumulative Gain)是一种衡量推荐列表排序质量的指标。它将用户真实反馈和推荐结果的顺序关系考虑在内,通过计算DCG(Discounted Cumulative Gain)和IDCG(Ideal Discounted Cumulative Gain)的比值来计算。

🍊 4. Hit Rate

Hit Rate表示推荐系统中,在所有的推荐列表中,至少有一个正确物品的比例。

🍊 5. Coverage

Coverage表示在所有可能的推荐物品中,有多少被推荐算法所推荐。Coverage的值越高,表示推荐算法能够覆盖更多的物品,提高了推荐系统的多样性。

🌟 特别加餐|TensorFlow的模型离线评估实践怎么做?

TensorFlow是一种广泛应用于深度学习的工具,能够对推荐系统使用的模型进行训练和评估。以下是TensorFlow的模型离线评估实践步骤:

🍊 1. 数据准备

为了进行模型评估,需要准备可用于评估的数据集。可以使用已经分割好的训练集和测试集进行评估。

🍊 2. 模型训练

使用TensorFlow训练推荐模型,并输出模型。

🍊 3. 模型评估

使用测试集评估模型效果。可以使用TensorFlow中的评估函数,如tf.compat.v1.metrics.mean_squared_errortf.compat.v1.metrics.precision等。

🍊 4. 指标衡量

计算评估指标并输出结果。可以使用上述的评估指标对模型进行评估,并得出模型效果的结果。

🌟 在线测试:如何在推荐服务器内部实现A/B测试?

在推荐系统中,A/B测试是一种常见的测试方法,用来比较不同版本的推荐算法或推荐策略的效果。以下是如何在推荐服务器内部实现A/B测试的步骤:

🍊 1. 划分用户

将用户随机分配到不同的测试组中。每个测试组使用不同的算法或策略。

🍊 2. 实现对比

在推荐服务器中实现测试组的算法或策略,并对比测试组与控制组的效果。

🍊 3. 统计结果

统计测试结果,比较测试组和控制组的效果差异。可以使用各种评估指标来衡量效果,如上文提到的Precision、Recall等指标。

🍊 4. 结论和改进

根据测试结果得出结论,并进行系统优化。如果测试结果不尽如人意,可以根据测试结果对算法或策略进行改进。

🌟 评估体系:如何解决A/B测试资源紧张的窘境?

在推荐系统中实施A/B测试时,当资源有限并且测试组数量较多时,可能会出现资源紧张的窘境。以下是解决A/B测试资源紧张的方法:

🍊 1. 多臂老虎机算法

多臂老虎机算法是一种常见的解决A/B测试资源紧张的方法。这种算法可以对推荐算法进行连续优化,从而在不断优化算法的过程中减少资源开销。

🍊 2. 仿真技术

仿真技术可以用于推荐系统的A/B测试,通过模拟多种算法和策略的效果来减少资源消耗。

🍊 3. 分层测试

分层测试是将用户按照不同特征分为不同组,然后进行A/B测试。这种方法可以减少测试组数量,从而减少资源开销。

🍊 4. 统计学方法

在A/B测试中,使用统计学方法可以减少测试数量,从而减少资源开销。使用统计学方法可以确定需要测试的测试组数量,以便得出准确的结果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1098087.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ChatGPT当导购员!全球最大超市,全面应用生成式AI

全球最大连锁超市沃尔玛(Walmart)在官网宣布,将在电商平台试用3款生成式AI,帮助用户改善购物体验提升效率。 据悉,沃尔玛使用了一种类ChatGPT的产品,可根据文本提示自动生成购物建议、搜索建议和评论摘要等…

客流人数管理新趋势:景区客流采集分析系统的功能特点

随着旅游业的蓬勃发展,越来越多的人选择前往景区进行休闲和旅游。然而,人流量的增加也给景区管理带来了一系列的挑战。为了更好地管理和运营景区,景区客流采集分析系统应运而生。 一、案例展示 二、产品卖点 该系统利用先进的人工智能算法和…

今天面了一个来华为要求月薪23K,明显感觉他背了很多面试题...

最近有朋友去华为面试,面试前后进行了20天左右,包含4轮电话面试、1轮笔试、1轮主管视频面试、1轮hr视频面试。 据他所说,80%的人都会栽在第一轮面试,要不是他面试前做足准备,估计都坚持不完后面几轮面试。 其实&…

IDEA初始配置

1. 详细设置 安装完IDEA之后的简单配置。 1.1 如何打开详细配置界面 1、显示工具栏 2、选择详细配置菜单或按钮 1.2 系统设置 1、默认启动项目配置 启动IDEA时,默认自动打开上次开发的项目?还是自己选择? 如果去掉Reopen projects on …

ABB REM615 REM611 人工智能和机器学习

ABB REM615 REM611 人工智能和机器学习 自从围绕ChatGPT的炒作开始,每个人都在谈论生成性AI。德国人工智能公司Aleph Alpha的ChatGPT、DALL-E或Luminous等系统今天已经能够支持文本写作、编程和设计。 Aleph Alpha在汉诺威工业博览会上更进一步:该公司将与惠普公司…

许战海战略文库|2023,小鹏危矣!蔚小理之江湖点评

摘要:“性价比”与“主流化”之路的竞争关键是产业链整体优势,中国拥有新能源产业链优势的整车企业,只有比亚迪和长城汽车。 1 月 18 日,何小鹏在小鹏汽车内部喊出“如果不破,小鹏只是早死和晚死的区别。要么跟大家一起足够精彩,要…

Go编程:使用 Colly 库下载Reddit网站的图像

概述 Reddit是一个社交新闻网站,用户可以发布各种主题的内容,包括图片。本文将介绍如何使用Go语言和Colly库编写一个简单的爬虫程序,从Reddit网站上下载指定主题的图片,并保存到本地文件夹中。为了避免被目标网站反爬&#xff0c…

过关斩将法:验证输入的用户信息:

输入用户名、密码、邮箱、如果信息录入正确,则提示注册成功,否则生成异常: 要求: 用户名长度为2或3或4密码的长度为6,要求全是数字 提示:可以自行设计isDigital方法,否则排版则乱邮箱中包含和…

Steam余额红锁的原因,及红锁后申诉办法

安全的余额一般是通过充值卡充值获得,再加上交易手续费再转卖给你。一般便宜不到哪去。 但你别以为余额是安全的,就万事大吉了。照样有被红锁的可能性,比如这三种: 1、Steam市场巡查机制,红锁 平台的巡查机制和原理…

【PCIe Byte Enable】

PCIe Byte Enable 及与TPH关系 Byte Enable PCIe Byte Enable 在mem/IO/Cfg TLP中被应用并且在各种不同TLP中的没有区别,PCIe中Byte Enable与AXI中wstrb类似起到mask的作用,但是PCIe不支持request数据全部字节的mask,只支持数据头和尾部各一…

ASEMI解读KBL610整流桥的使用说明及操作指南

编辑-Z KBL610整流桥是一种功率电子元件,它在电力系统、电力电子设备中有着广泛的应用。然而,对于初次接触或者专业人士来说,明确使用说明和操作更是关键。那么,让我们一起来详解KBL610整流桥的使用说明及操作指南。 KBL610整流桥…

灾害与环境遥感团队本科生在IEEE TGRS 发表高水平论文

2023年9月27日,地球科学和遥感领域顶级期刊《IEEE Transactions on Geoscience and Remote Sensing》(IEEE TGRS)在线预刊发了灾害与环境遥感团队的最新研究成果“A novel spectral index for rapid dust-proof net mapping based on Sentine…

COLE HERSEE 48408 工业4.0、制造业X和元宇宙

COLE HERSEE 48408 工业4.0、制造业X和元宇宙 需要数据来释放工业4.0的全部潜力——价值链中的所有公司都可以访问大量数据。一个新的互联数据生态系统旨在提供解决方案:制造业x。 在德国联邦经济事务和气候行动部以及BDI、VDMA和ZVEI贸易协会的密切合作下,实施制…

性能测试之Mysql数据库调优

一、前言 性能调优前提:无监控不调优,对于mysql性能的监控前几天有文章提到过,有兴趣的朋友可以去看一下 二、Mysql性能指标及问题分析和定位 1、我们在监控图表中关注的性能指标大概有这么几个:CPU、内存、连接数、io读写时间…

一文了解多模态数字人

一、什么是多模态数字人 多模态数字人是一种通过多种传感器获取人体数据,使用计算机技术进行处理和分析,构建出具有多种感知和交互能力的虚拟人。多模态数字人可以通过视觉、听觉、触觉等多种感知方式与人类进行交互,具有高度的仿真度和个性…

Java基础20问(1-5)

1.Java面向对象和面试过程的区别? 面向过程是将一个问题拆解成几个步骤,依次实现每一个步骤,比如实现一个冒泡排序的算法,是为了解决某个非常具体的问题。 而面向对象也是将一个问题拆解成几个步骤,但是先不去实现&a…

华为云云耀云服务器L实例评测|企业项目最佳实践之评测用例(五)

华为云云耀云服务器L实例评测|企业项目最佳实践系列: 华为云云耀云服务器L实例评测|企业项目最佳实践之云服务器介绍(一) 华为云云耀云服务器L实例评测|企业项目最佳实践之华为云介绍(二) 华为云云耀云服务器L实例评测&#xff5…

B端设计的核心:助你成功的关键!

B端设计是指针对企业、组织、机构等机构客户的设计服务,通常称为“企业级设计”或“商业设计”,而不是针对消费者的C端设计。B端设计是一个旨在实现企业商业目标的设计过程,旨在满足企业客户的需求,帮助他们增强市场竞争力&#x…

python实现免疫算法,并绘制训练过程

免疫算法同遗传算法相似,不过子代是克隆出来的,而不是交叉,并且引入了抗体间亲和度的概念,算出抗体适应度之后,我们还需要减去抗体间亲和度,从而使得结果不容易陷入局部最优。 注意代码里的n是仅仅x的位数…