PTQ与QAT

news2025/1/16 13:00:16

对称量化与非对称量化

量化分为对称量化与非对称量化。
非对称量化含有S和Z,对称量化Z为0,计算公式中只需S,为非饱和量化。
在这里插入图片描述
在这里插入图片描述

动态范围的确认

动态范围的确认Max(默认的是对称量化,即不用Z),Histgram和Entropy。

量化分为隐性量化和显性量化,区别在于显性量化含有QDQ节点。
隐式量化:PTQ且各层精度不可控
显性量化:带QDQ节点的PTQ;带QDQ节点的QAT。
PTQ与QAT的区别是否用数据对模型进行finetune。

PTQ与QTA

PTQ

PTQ就是对训练好的模型进行量化,也就是对模型的权重与输入进行缩放。
流程:(1)获取校准数据(分布要与总体数据分布相同,为训练集子集);(2)获取预训练模型;(3)在网络中计算权重参数与激活值的动态范围计算出S;(4)对模型的权重参数(和激活值)进行量化得到量化参数;(5)获得量化后的模型。

优点是方便、速度快;缺点是无法手动设置某层的精度,某层的精度不可控。

QAT

流程:(1)获得预训练模型;(2)添加QAT算子;(3)对带有QAT算子的模型进行微调;(4)保存量化后的参数;(5)获得量化后的模型。
在这里插入图片描述
优点:每层精度可控;缺点:速度较慢。

例子

from pytorch_quantization import tensor_quant
import torch
torch.manual_seed(123)
x = torch.rand(10)
fake_quant_x = tensor_quant.fake_tensor_quant(x,x.abs().max())
print(x)
print(fake_quant_x)
tensor([0.2961, 0.5166, 0.2517, 0.6886, 0.0740, 0.8665, 0.1366, 0.1025, 0.1841,
        0.7264])
tensor([0.2934, 0.5185, 0.2525, 0.6891, 0.0751, 0.8665, 0.1365, 0.1023, 0.1842,
        0.7232])

对于模型输入tensor,是per tensor的,即只有一个scale;对于模型的权重,是per channel,即scale的个数等于channel数。

import torch
import torchvision
from pytorch_quantization import tensor_quant
from pytorch_quantization import quant_modules
from pytorch_quantization import nn as quant_nn
quant_modules.initialize()
model = torchvision.models.resnet50()
model.cuda()

inputs = torch.randn(1, 3, 224, 224, device='cuda')
quant_nn.TensorQuantizer.use_fb_fake_quant = True
torch.onnx.export(model, inputs, 'quant_resnet50.onnx',opset_version=13)

带有QDQ算子的PTQ(显性量化)
(1)定义模型
(2)对模型插入QDQ
(3)统计QDQ节点的range和scale,对模型进行标定(calibrate),这时得到的是ptq模型
(4)做敏感层的分析:需要知道,哪一层对精度指标影响较大,关闭对精度影响大的层
(5)导出一个带有QDQ节点的模型
(6)对模型进行finetune,得到qat模型

#
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import datetime
import os
import sys
import time
import argparse
import warnings
import collections

import torch
import torch.utils.data
from torch import nn

from tqdm import tqdm

import torchvision
from torchvision import transforms
from torchvision.models.utils import load_state_dict_from_url

from pytorch_quantization import nn as quant_nn
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
from pytorch_quantization import quant_modules

import onnxruntime
import numpy as np
import models

from prettytable import PrettyTable

# The following path assumes running in nvcr.io/nvidia/pytorch:20.08-py3
sys.path.insert(0,"/opt/pytorch/vision/references/classification/")

# Import functions from torchvision reference
try:
    from train import evaluate, train_one_epoch, load_data, utils
except Exception as e:
    raise ModuleNotFoundError(
        "Add https://github.com/pytorch/vision/blob/master/references/classification/ to PYTHONPATH")

def get_parser():
    """
    Creates an argument parser.
    """
    parser = argparse.ArgumentParser(description='Classification quantization flow script')

    parser.add_argument('--data-dir', '-d', type=str, help='input data folder', required=True)
    parser.add_argument('--model-name', '-m', default='resnet50', help='model name: default resnet50')
    parser.add_argument('--disable-pcq', '-dpcq', action="store_true", help='disable per-channel quantization for weights')
    parser.add_argument('--out-dir', '-o', default='/tmp', help='output folder: default /tmp')
    parser.add_argument('--print-freq', '-pf', type=int, default=20, help='evaluation print frequency: default 20')
    parser.add_argument('--threshold', '-t', type=float, default=-1.0, help='top1 accuracy threshold (less than 0.0 means no comparison): default -1.0')

    parser.add_argument('--batch-size-train', type=int, default=128, help='batch size for training: default 128')
    parser.add_argument('--batch-size-test', type=int, default=128, help='batch size for testing: default 128')
    parser.add_argument('--batch-size-onnx', type=int, default=1, help='batch size for onnx: default 1')

    parser.add_argument('--seed', type=int, default=12345, help='random seed: default 12345')

    checkpoint = parser.add_mutually_exclusive_group(required=True)
    checkpoint.add_argument('--ckpt-path', default='', type=str,
                            help='path to latest checkpoint (default: none)')
    checkpoint.add_argument('--ckpt-url', default='', type=str,
                            help='url to latest checkpoint (default: none)')
    checkpoint.add_argument('--pretrained', action="store_true")

    parser.add_argument('--num-calib-batch', default=4, type=int,
                        help='Number of batches for calibration. 0 will disable calibration. (default: 4)')
    parser.add_argument('--num-finetune-epochs', default=0, type=int,
                        help='Number of epochs to fine tune. 0 will disable fine tune. (default: 0)')
    parser.add_argument('--calibrator', type=str, choices=["max", "histogram"], default="max")
    parser.add_argument('--percentile', nargs='+', type=float, default=[99.9, 99.99, 99.999, 99.9999])
    parser.add_argument('--sensitivity', action="store_true", help="Build sensitivity profile")
    parser.add_argument('--evaluate-onnx', action="store_true", help="Evaluate exported ONNX")

    return parser

def prepare_model(
        model_name,
        data_dir,
        per_channel_quantization,
        batch_size_train,
        batch_size_test,
        batch_size_onnx,
        calibrator,
        pretrained=True,
        ckpt_path=None,
        ckpt_url=None):
    """
    Prepare the model for the classification flow.
    Arguments:
        model_name: name to use when accessing torchvision model dictionary
        data_dir: directory with train and val subdirs prepared "imagenet style"
        per_channel_quantization: iff true use per channel quantization for weights
                                   note that this isn't currently supported in ONNX-RT/Pytorch
        batch_size_train: batch size to use when training
        batch_size_test: batch size to use when testing in Pytorch
        batch_size_onnx: batch size to use when testing with ONNX-RT
        calibrator: calibration type to use (max/histogram)

        pretrained: if true a pretrained model will be loaded from torchvision
        ckpt_path: path to load a model checkpoint from, if not pretrained
        ckpt_url: url to download a model checkpoint from, if not pretrained and no path was given
        * at least one of {pretrained, path, url} must be valid

    The method returns a the following list:
        [
            Model object,
            data loader for training,
            data loader for Pytorch testing,
            data loader for onnx testing
        ]
    """
    # Use 'spawn' to avoid CUDA reinitialization with forked subprocess
    torch.multiprocessing.set_start_method('spawn')

    ## Initialize quantization, model and data loaders
    if per_channel_quantization:
        quant_desc_input = QuantDescriptor(calib_method=calibrator)
        quant_nn.QuantConv2d.set_default_quant_desc_input(quant_desc_input)
        quant_nn.QuantLinear.set_default_quant_desc_input(quant_desc_input)
    else:
        ## Force per tensor quantization for onnx runtime
        quant_desc_input = QuantDescriptor(calib_method=calibrator, axis=None)
        quant_nn.QuantConv2d.set_default_quant_desc_input(quant_desc_input)
        quant_nn.QuantConvTranspose2d.set_default_quant_desc_input(quant_desc_input)
        quant_nn.QuantLinear.set_default_quant_desc_input(quant_desc_input)

        quant_desc_weight = QuantDescriptor(calib_method=calibrator, axis=None)
        quant_nn.QuantConv2d.set_default_quant_desc_weight(quant_desc_weight)
        quant_nn.QuantConvTranspose2d.set_default_quant_desc_weight(quant_desc_weight)
        quant_nn.QuantLinear.set_default_quant_desc_weight(quant_desc_weight)

    if model_name in models.__dict__:
        model = models.__dict__[model_name](pretrained=pretrained, quantize=True)
    else:
        quant_modules.initialize()
        model = torchvision.models.__dict__[model_name](pretrained=pretrained)
        quant_modules.deactivate()

    if not pretrained:
        if ckpt_path:
            checkpoint = torch.load(ckpt_path)
        else:
            checkpoint = load_state_dict_from_url(ckpt_url)
        if 'state_dict' in checkpoint.keys():
            checkpoint = checkpoint['state_dict']
        elif 'model' in checkpoint.keys():
            checkpoint = checkpoint['model']
        model.load_state_dict(checkpoint)
    model.eval()
    model.cuda()

    ## Prepare the data loaders
    traindir = os.path.join(data_dir, 'train')
    valdir = os.path.join(data_dir, 'val')
    _args = collections.namedtuple("mock_args", ["model", "distributed", "cache_dataset"])
    dataset, dataset_test, train_sampler, test_sampler = load_data(
        traindir, valdir, _args(model=model_name, distributed=False, cache_dataset=False))

    data_loader_train = torch.utils.data.DataLoader(
        dataset, batch_size=batch_size_train,
        sampler=train_sampler, num_workers=4, pin_memory=True)

    data_loader_test = torch.utils.data.DataLoader(
        dataset_test, batch_size=batch_size_test,
        sampler=test_sampler, num_workers=4, pin_memory=True)

    data_loader_onnx = torch.utils.data.DataLoader(
        dataset_test, batch_size=batch_size_onnx,
        sampler=test_sampler, num_workers=4, pin_memory=True)

    return model, data_loader_train, data_loader_test, data_loader_onnx

def main(cmdline_args):
    parser = get_parser()
    args = parser.parse_args(cmdline_args)
    print(parser.description)
    print(args)

    torch.manual_seed(args.seed)
    np.random.seed(args.seed)

    ## Prepare the pretrained model and data loaders
    model, data_loader_train, data_loader_test, data_loader_onnx = prepare_model(
        args.model_name,
        args.data_dir,
        not args.disable_pcq,
        args.batch_size_train,
        args.batch_size_test,
        args.batch_size_onnx,
        args.calibrator,
        args.pretrained,
        args.ckpt_path,
        args.ckpt_url)

    ## Initial accuracy evaluation
    criterion = nn.CrossEntropyLoss()
    with torch.no_grad():
        print('Initial evaluation:')
        top1_initial = evaluate(model, criterion, data_loader_test, device="cuda", print_freq=args.print_freq)

    ## Calibrate the model
    with torch.no_grad():
        calibrate_model(
            model=model,
            model_name=args.model_name,
            data_loader=data_loader_train,
            num_calib_batch=args.num_calib_batch,
            calibrator=args.calibrator,
            hist_percentile=args.percentile,
            out_dir=args.out_dir)

    ## Evaluate after calibration
    if args.num_calib_batch > 0:
        with torch.no_grad():
            print('Calibration evaluation:')
            top1_calibrated = evaluate(model, criterion, data_loader_test, device="cuda", print_freq=args.print_freq)
    else:
        top1_calibrated = -1.0

    ## Build sensitivy profile
    if args.sensitivity:
        build_sensitivity_profile(model, criterion, data_loader_test)

    ## Finetune the model
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.SGD(model.parameters(), lr=0.0001)
    lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.num_finetune_epochs)
    for epoch in range(args.num_finetune_epochs):
        # Training a single epch
        train_one_epoch(model, criterion, optimizer, data_loader_train, "cuda", 0, 100)
        lr_scheduler.step()

    if args.num_finetune_epochs > 0:
        ## Evaluate after finetuning
        with torch.no_grad():
            print('Finetune evaluation:')
            top1_finetuned = evaluate(model, criterion, data_loader_test, device="cuda")
    else:
        top1_finetuned = -1.0

    ## Export to ONNX
    onnx_filename = args.out_dir + '/' + args.model_name + ".onnx"
    top1_onnx = -1.0
    if export_onnx(model, onnx_filename, args.batch_size_onnx, not args.disable_pcq) and args.evaluate_onnx:
        ## Validate ONNX and evaluate
        top1_onnx = evaluate_onnx(onnx_filename, data_loader_onnx, criterion, args.print_freq)

    ## Print summary
    print("Accuracy summary:")
    table = PrettyTable(['Stage','Top1'])
    table.align['Stage'] = "l"
    table.add_row( [ 'Initial',     "{:.2f}".format(top1_initial) ] )
    table.add_row( [ 'Calibrated',  "{:.2f}".format(top1_calibrated) ] )
    table.add_row( [ 'Finetuned',   "{:.2f}".format(top1_finetuned) ] )
    table.add_row( [ 'ONNX',        "{:.2f}".format(top1_onnx) ] )
    print(table)

    ## Compare results
    if args.threshold >= 0.0:
        if args.evaluate_onnx and top1_onnx < 0.0:
            print("Failed to export/evaluate ONNX!")
            return 1
        if args.num_finetune_epochs > 0:
            if top1_finetuned >= (top1_onnx - args.threshold):
                print("Accuracy threshold was met!")
            else:
                print("Accuracy threshold was missed!")
                return 1

    return 0

def evaluate_onnx(onnx_filename, data_loader, criterion, print_freq):
    """Evaluate accuracy on the given ONNX file using the provided data loader and criterion.
       The method returns the average top-1 accuracy on the given dataset.
    """
    print("Loading ONNX file: ", onnx_filename)
    ort_session = onnxruntime.InferenceSession(onnx_filename)
    with torch.no_grad():
        metric_logger = utils.MetricLogger(delimiter="  ")
        header = 'Test:'
        with torch.no_grad():
            for image, target in metric_logger.log_every(data_loader, print_freq, header):
                image = image.to("cpu", non_blocking=True)
                image_data = np.array(image)
                input_data = image_data

                # run the data through onnx runtime instead of torch model
                input_name = ort_session.get_inputs()[0].name
                raw_result = ort_session.run([], {input_name: input_data})
                output = torch.tensor((raw_result[0]))

                loss = criterion(output, target)
                acc1, acc5 = utils.accuracy(output, target, topk=(1, 5))
                batch_size = image.shape[0]
                metric_logger.update(loss=loss.item())
                metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
                metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
        # gather the stats from all processes
        metric_logger.synchronize_between_processes()

        print('  ONNXRuntime: Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f}'
            .format(top1=metric_logger.acc1, top5=metric_logger.acc5))
        return metric_logger.acc1.global_avg

def export_onnx(model, onnx_filename, batch_onnx, per_channel_quantization):
    model.eval()
    quant_nn.TensorQuantizer.use_fb_fake_quant = True # We have to shift to pytorch's fake quant ops before exporting the model to ONNX

    if per_channel_quantization:
        opset_version = 13
    else:
        opset_version = 12

    # Export ONNX for multiple batch sizes
    print("Creating ONNX file: " + onnx_filename)
    dummy_input = torch.randn(batch_onnx, 3, 224, 224, device='cuda') #TODO: switch input dims by model
    try:
        torch.onnx.export(model, dummy_input, onnx_filename, verbose=False, opset_version=opset_version, enable_onnx_checker=False, do_constant_folding=True)
    except ValueError:
        warnings.warn(UserWarning("Per-channel quantization is not yet supported in Pytorch/ONNX RT (requires ONNX opset 13)"))
        print("Failed to export to ONNX")
        return False

    return True

def calibrate_model(model, model_name, data_loader, num_calib_batch, calibrator, hist_percentile, out_dir):
    """
        Feed data to the network and calibrate.
        Arguments:
            model: classification model
            model_name: name to use when creating state files
            data_loader: calibration data set
            num_calib_batch: amount of calibration passes to perform
            calibrator: type of calibration to use (max/histogram)
            hist_percentile: percentiles to be used for historgram calibration
            out_dir: dir to save state files in
    """

    if num_calib_batch > 0:
        print("Calibrating model")
        with torch.no_grad():
            collect_stats(model, data_loader, num_calib_batch)

        if not calibrator == "histogram":
            compute_amax(model, method="max")
            calib_output = os.path.join(
                out_dir,
                F"{model_name}-max-{num_calib_batch*data_loader.batch_size}.pth")
            torch.save(model.state_dict(), calib_output)
        else:
            for percentile in hist_percentile:
                print(F"{percentile} percentile calibration")
                compute_amax(model, method="percentile")
                calib_output = os.path.join(
                    out_dir,
                    F"{model_name}-percentile-{percentile}-{num_calib_batch*data_loader.batch_size}.pth")
                torch.save(model.state_dict(), calib_output)

            for method in ["mse", "entropy"]:
                print(F"{method} calibration")
                compute_amax(model, method=method)
                calib_output = os.path.join(
                    out_dir,
                    F"{model_name}-{method}-{num_calib_batch*data_loader.batch_size}.pth")
                torch.save(model.state_dict(), calib_output)

def collect_stats(model, data_loader, num_batches):
    """Feed data to the network and collect statistics"""
    # Enable calibrators
    for name, module in model.named_modules():
        if isinstance(module, quant_nn.TensorQuantizer):
            if module._calibrator is not None:
                module.disable_quant()
                module.enable_calib()
            else:
                module.disable()

    # Feed data to the network for collecting stats
    for i, (image, _) in tqdm(enumerate(data_loader), total=num_batches):
        model(image.cuda())
        if i >= num_batches:
            break

    # Disable calibrators
    for name, module in model.named_modules():
        if isinstance(module, quant_nn.TensorQuantizer):
            if module._calibrator is not None:
                module.enable_quant()
                module.disable_calib()
            else:
                module.enable()

def compute_amax(model, **kwargs):
    # Load calib result
    for name, module in model.named_modules():
        if isinstance(module, quant_nn.TensorQuantizer):
            if module._calibrator is not None:
                if isinstance(module._calibrator, calib.MaxCalibrator):
                    module.load_calib_amax()
                else:
                    module.load_calib_amax(**kwargs)
            print(F"{name:40}: {module}")
    model.cuda()

def build_sensitivity_profile(model, criterion, data_loader_test):
    quant_layer_names = []
    for name, module in model.named_modules():
        if name.endswith("_quantizer"):
            module.disable()
            layer_name = name.replace("._input_quantizer", "").replace("._weight_quantizer", "")
            if layer_name not in quant_layer_names:
                quant_layer_names.append(layer_name)
    for i, quant_layer in enumerate(quant_layer_names):
        print("Enable", quant_layer)
        for name, module in model.named_modules():
            if name.endswith("_quantizer") and quant_layer in name:
                module.enable()
                print(F"{name:40}: {module}")
        with torch.no_grad():
            evaluate(model, criterion, data_loader_test, device="cuda")
        for name, module in model.named_modules():
            if name.endswith("_quantizer") and quant_layer in name:
                module.disable()
                print(F"{name:40}: {module}")

if __name__ == '__main__':
    res = main(sys.argv[1:])
    exit(res)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1096351.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

linux 内核中的pid和前缀树

前言&#xff1a; 写这个文章的初衷是因为今天手写了一个字典树&#xff0c;然后写字典树以后忽然想到了之前看的技术文章&#xff0c;linux kernel 之前的pid 申请方式已经从 bitmap 变成了 基数树&#xff0c;所以打算写文章再回顾一下这种数据结构算法 一、内核中pid的申请…

排序算法-基数排序法(RadixSort)

排序算法-基数排序法&#xff08;RadixSort&#xff09; 1、说明 基数排序法与我们之前讨论的排序法不太一样&#xff0c;并不需要进行元素之间的比较操作&#xff0c;而是属于一种分配模式排序方式。 基数排序法比较的方向可分为最高位优先&#xff08;Most Significant Di…

初识容器Docker

目前使用 Docker 基本上有两个选择&#xff1a;Docker Desktop和Docker Engine。Docker Desktop 是专门针对个人使用而设计的&#xff0c;支持 Mac 和 Windows 快速安装&#xff0c;具有直观的图形界面&#xff0c;还集成了许多周边工具&#xff0c;方便易用。 不是太推荐使用D…

【linux kernel】linux内核设备驱动的注册机制

文章目录 1、简介2、driver_register分析&#x1f449;&#xff08;2-1&#xff09;driver_find分析&#x1f449;&#xff08;2-2&#xff09;bus_add_driver分析 3、总结 &#x1f53a;【linux内核系列文章】 &#x1f449;对一些文章内容进行了勘误&#xff0c;本系列文章长…

SpringBoot热部署和整合Mybatis

目录 一、SpringBoot热部署 1.1 添加DevTools依赖 1.2 在idea中设置自动编译 1.3 在Idea设置自动运行 二、SpringBoot整合Mybatis 2.1 准备数据 2.2 添加相关依赖 2.3 在配置文件进行数据源配置 2.4 编写Mapper接口和Mapper文件 2.5 测试 一、SpringBoot热部署 热部…

Spring 事务的简单了解

目录 设计实现 工作原理 简单示例 隔离级别 事务传播机制 Spring框架提供了强大的事务管理支持&#xff0c;它允许开发者以声明性或编程性的方式来管理事务&#xff0c;从而保证数据的一致性和完整性。Spring事务管理的主要特点包括&#xff1a; 声明式事务管理&#xff1…

C语言基础算法复习

003 斐波那契数列问题 #include<stdio.h> int main() {int i,f11,f21,f3,num;printf("%5d %5d",f1,f2);num2;for(i1; i<18; i){f3f1f2;f1f2;f2f3;num;printf("%5d",f3);if(num%40) printf("\n");}return 0; }//#输数斐波那契数列的前20…

k8s-12 存储之configmap

开启之后 先看集群是否正常 Configmap用于保存配置数据&#xff0c;以键值对形式存储configMap 资源提供了向 Pod 注入配置数据的方法旨在让镜像和配置文件解耦&#xff0c;以便实现镜像的可移植性和可复用性 典型的使用场景 填充环境变量的值 设置容器内的命令行参数 填充卷的…

百度OCR识别图片文本字符串——物联网上位机软件

一、开发背景 根据项目需求&#xff0c;我们需要完成LED显示屏实时显示歌词的效果。最优的方法是调用歌曲播放器的API获取歌词&#xff0c;但是由于这个开发资格不是很好申请&#xff0c;因此我们采用其他方案&#xff0c;即通过OCR识别获取歌词&#xff0c;并投射到LED显示屏上…

Potato靶机

信息搜集 设备发现 扫描端口 综合扫描 开放了80端口的HTTP服务和7120端口的SSH服务 目录扫描 扫描目录 看看这个info.php&#xff0c;发现只有php的版本信息&#xff0c;没有可以利用的注入点 SSH突破 hydra 爆破 考虑到 7120 端口是 ssh 服务&#xff0c;尝试利用 hydra …

【LeetCode热题100】--169.多数元素

169.多数元素 使用哈希表&#xff1a; class Solution {public int majorityElement(int[] nums) {int n nums.length;int m n/2;Map<Integer,Integer> map new HashMap<>(); //定义一个hashfor(int num:nums){Integer count map.get(num); //Map.get() 方法…

ARM架构的基本知识

ARM两种授权 体系结构授权, 一种硬件规范, 用来约定指令集, 芯片内部体系结构(内存管理, 高速缓存管理), 只约定每一条指令的格式, 行为规范, 参数, 客户根据这个规范自行设计与之兼容的处理器处理IP授权, ARM公司根据某个版本的体系结构设计处理器, 再把处理器设计方案授权给…

Java 全栈体系(三)

第一章 Java 基础语法 八、标识符 业内大多数程序员都在遵守阿里巴巴的命名规则。 1. 硬性要求 必须要这么做&#xff0c;否则代码会报错。 必须由数字、字母、下划线_、美元符号$组成。数字不能开头不能是关键字区分大小写的。 2. 软性建议 如果不这么做&#xff0c;代…

前后端数据导入导出Excel

一&#xff1a;导入 Excel有读取也便有写出&#xff0c;Hutool针对将数据写出到Excel做了封装。 原理 Hutool将Excel写出封装为ExcelWriter&#xff0c;原理为包装了Workbook对象&#xff0c;每次调用merge&#xff08;合并单元格&#xff09;或者write&#xff08;写出数据&…

【实操】基于ChatGPT构建知识库

前言 最近有些实践&#xff0c;因为后面要去研究fine-tune了&#xff0c;想着记录一下chatgpt向量数据库构建知识库的一些实操经验&#xff0c;不记我很快就忘了&#xff0c;哈哈。 首先&#xff0c;提一下为啥会出现向量数据库这个技术方案&#xff1f; 大家经过实践发现&…

10.2手动推导linux中file, cdev, inode之间的关系

是时候可以手动推导一下linux里面基类父类和子类的关系了 代码放最后把 简单说明版 详细流程 第一步注册驱动 cdev结构体能看做是一个基类,那么链表里面都是字符设备驱动的cdev连载一起,啥串口,lcd的,通过cdev->list_head连接 那cdev结构体里有主次设备号 第一步 使用r…

【机器学习】特征工程:从理论到实践的关键技巧

机器学习之特征工程实践技巧 1、引言2、了解特征工程2.1 机器学习2.2 特征工程 3、特征工程的思路4、特征工程的方法5、特征工程的实践6、总结 1、引言 小屌丝&#xff1a;鱼哥&#xff0c; 你不厚道~ 小鱼&#xff1a;啥情况&#xff1f; 小屌丝&#xff1a;你为啥不给我讲…

GMSH如何对STL模型再次划分网格

由于时间比较忙&#xff0c;一直未曾继续写博文&#xff0c;今天写一篇关于Gmsh对STL模型二次划分网格的测试。此项测试还不够完善&#xff0c;目前仅实现了STL模型的细分&#xff0c;效果还可以&#xff0c;在OSG下显示的效果如下&#xff1a; 一、原始STL显示效果&#xff0…

SVN服务端客户端安装配置

SVN服务端客户端安装配置 1、服务端下载安装1.1 软件下载1.2 软件安装 2、客户端下载安装2.1 软件下载2.2 软件安装2.2.1 安装2.2.2. 汉化 3、SVN配置3.1 SVN服务器端配置3. 2 SVN客户端配置 1、服务端下载安装 1.1 软件下载 百度网盘链接&#xff1a;VisualSVN-Server-5.3.0…