【C++】C++11 ——lambda表达式

news2024/11/20 9:29:57

在这里插入图片描述

​📝个人主页:@Sherry的成长之路
🏠学习社区:Sherry的成长之路(个人社区)
📖专栏链接:C++学习
🎯长路漫漫浩浩,万事皆有期待

上一篇博客:【C++】C++11 ——— 可变参数模板

文章目录

  • lambda表达式
    • lambda表达式概念
    • lambda表达式语法
    • lambda表达式交换两个数
    • lambda表达式底层原理
  • 总结:

lambda表达式

lambda表达式概念

lambda表达式是一个匿名函数,恰当使用lambda表达式可以让代码变得简洁,并且可以提高代码的可读性。

举个例子

商品类Goods的定义如下:

struct Goods
{
	string _name;  //名字
	double _price; //价格
	int _num;      //数量
};

现在要对若干商品分别按照价格和数量进行升序、降序排序。

要对一个数据集合中的元素进行排序,可以使用sort函数,但由于这里待排序的元素为自定义类型,因此需要用户自行定义排序时的比较规则。
要控制sort函数的比较方式常见的有两种方法,一种是对商品类的的()运算符进行重载,另一种是通过仿函数来指定比较的方式。
显然通过重载商品类的()运算符是不可行的,因为这里要求分别按照价格和数量进行升序、降序排序,每次排序就去修改一下比较方式是很笨的做法。

所以这里选择传入仿函数来指定排序时的比较方式。比如:

struct ComparePriceLess
{
	bool operator()(const Goods& g1, const Goods& g2)
	{
		return g1._price < g2._price;
	}
};
struct ComparePriceGreater
{
	bool operator()(const Goods& g1, const Goods& g2)
	{
		return g1._price > g2._price;
	}
};
struct CompareNumLess
{
	bool operator()(const Goods& g1, const Goods& g2)
	{
		return g1._num < g2._num;
	}
};
struct CompareNumGreater
{
	bool operator()(const Goods& g1, const Goods& g2)
	{
		return g1._num > g2._num;
	}
};
int main()
{
	vector<Goods> v = { { "苹果", 2.1, 300 }, { "香蕉", 3.3, 100 }, { "橙子", 2.2, 1000 }, { "菠萝", 1.5, 1 } };
	sort(v.begin(), v.end(), ComparePriceLess());    //按价格升序排序
	sort(v.begin(), v.end(), ComparePriceGreater()); //按价格降序排序
	sort(v.begin(), v.end(), CompareNumLess());      //按数量升序排序
	sort(v.begin(), v.end(), CompareNumGreater());   //按数量降序排序
	return 0;
}

仿函数确实能够解决这里的问题,但可能仿函数的定义位置可能和使用仿函数的地方隔得比较远,这就要求仿函数的命名必须要通俗易懂,否则会降低代码的可读性。

对于这种场景就比较适合使用lambda表达式。比如:

int main()
{
	vector<Goods> v = { { "苹果", 2.1, 300 }, { "香蕉", 3.3, 100 }, { "橙子", 2.2, 1000 }, { "菠萝", 1.5, 1 } };
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2)
	{
		return g1._price < g2._price; 
	}); //按价格升序排序
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2)
	{
		return g1._price > g2._price;
	}); //按价格降序排序
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2)
	{
		return g1._num < g2._num;
	}); //按数量升序排序
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2)
	{
		return g1._num > g2._num;
	}); //按数量降序排序
	return 0;
}

这样一来,每次调用sort函数时只需要传入一个lambda表达式指明比较方式即可,阅读代码的人一看到lambda表达式就知道本次排序的比较方式是怎样的,提高了代码的可读性。

lambda表达式语法

lambda表达式书写格式:[capture-list] (parameters)mutable->return-type{statement}

lambda表达式各部分说明

[capture-list]:捕捉列表。该列表总是出现在lambda函数的开始位置,编译器根据[]来判断接下来的代码是否为lambda函数,捕捉列表能够捕捉上下文中的变量供lambda函数使用。

(parameters):参数列表。与普通函数的参数列表一致,如果不需要参数传递,则可以连同()一起省略。

mutable:默认情况下,lambda函数总是一个const函数,mutable可以取消其常量性。使用该修饰符时,参数列表不可省略(即使参数为空)。

->return-type:返回值类型。用追踪返回类型形式声明函数的返回值类型,没有返回值时此部分可以省略。返回值类型明确情况下,也可省略,由编译器对返回类型进行推导。

{statement}:函数体。在该函数体内,除了可以使用其参数外,还可以使用所有捕获到的变量。

lambda函数的参数列表和返回值类型都是可选部分,但捕捉列表和函数体是不可省略的,因此最简单的lambda函数如下:

int main()
{
	[]{}; //最简单的lambda表达式
	return 0;
}

该lambda函数不能做任何事情。

捕获列表说明

捕获列表描述了上下文中哪些数据可以被lambda函数使用,以及使用的方式是传值还是传引用。

[var]:表示值传递方式捕捉变量var。
[=]:表示值传递方式捕获所有父作用域中的变量(成员函数包括this指针)。
[&var]:表示引用传递捕捉变量var。
[&]:表示引用传递捕捉所有父作用域中的变量(成员函数包括this指针)。
[this]:表示值传递方式捕捉当前的this指针。

说明一下
父作用域指的是包含lambda函数的语句块。
语法上捕捉列表可由多个捕捉项组成,并以逗号分割。比如[=, &a, &b]。
捕捉列表不允许变量重复传递,否则会导致编译错误。比如[=, a]重复传递了变量a。
在块作用域以外的lambda函数捕捉列表必须为空,即全局lambda函数的捕捉列表必须为空。
在块作用域中的lambda函数仅能捕捉父作用域中的局部变量,捕捉任何非此作用域或者非局部变量都会导致编译报错。
lambda表达式之间不能相互赋值,即使看起来类型相同。

lambda表达式交换两个数

如果要用lambda表达式交换两个数,可以有以下几种写法:

标准写法

参数列表中包含两个形参,表示需要交换的两个数,注意需要以引用的方式传递。比如:

int main()
{
	int a = 10, b = 20;
	auto Swap = [](int& x, int& y)->void
	{
		int tmp = x;
		x = y;
		y = tmp;
	};
	Swap(a, b); //交换a和b
	return 0;
}

说明一下
lambda表达式是一个匿名函数,该函数无法直接调用,如果想要直接调用,可借助auto将其赋值给一个变量,此时这个变量就可以像普通函数一样使用。
lambda表达式的函数体在格式上并不是必须写成一行,如果函数体太长可以进行换行,但换行后不要忘了函数体最后还有一个分号。

利用捕捉列表进行捕捉

以引用的方式捕捉所有父作用域中的变量,省略参数列表和返回值类型。比如:

int main()
{
	int a = 10, b = 20;
	auto Swap = [&]
	{
		int tmp = a;
		a = b;
		b = tmp;
	};
	Swap(); //交换a和b
	return 0;
}

这样一来,调用lambda表达式时就不用传入参数了,但实际我们只需要用到变量a和变量b,没有必要把父作用域中的所有变量都进行捕捉,因此也可以只对父作用域中的a、b变量进行捕捉。比如:

int main()
{
	int a = 10, b = 20;
	auto Swap = [&a, &b]
	{
		int tmp = a;
		a = b;
		b = tmp;
	};
	Swap(); //交换a和b
	return 0;
}

说明一下: 实际当我们以[&]或[=]的方式捕获变量时,编译器也不一定会把父作用域中所有的变量捕获进来,编译器可能只会对lambda表达式中用到的变量进行捕获,没有必要把用不到的变量也捕获进来,这个主要看编译器的具体实现。

传值方式捕捉?

如果以传值方式进行捕捉,那么首先编译不会通过,因为传值捕获到的变量默认是不可修改的,如果要取消其常量性,就需要在lambda表达式中加上mutable,并且此时参数列表不可省略。比如:

int main()
{
	int a = 10, b = 20;
	auto Swap = [a, b]()mutable
	{
		int tmp = a;
		a = b;
		b = tmp;
	};
	Swap(); //交换a和b?
	return 0;
}

但由于这里是传值捕捉,lambda函数中对a和b的修改不会影响外面的a、b变量,与函数的传值传参是一个道理,因此这种方法无法完成两个数的交换。

lambda表达式底层原理

lambda表达式的底层原理

实际编译器在底层对于lambda表达式的处理方式,完全就是按照函数对象的方式处理的。函数对象就是我们平常所说的仿函数,就是在类中对()运算符进行了重载的类对象。

下面编写了一个Add类,该类对()运算符进行了重载,因此Add类实例化出的add1对象就叫做函数对象,add1可以像函数一样使用。然后我们编写了一个lambda表达式,并借助auto将其赋值给add2对象,这时add1和add2都可以像普通函数一样使用。比如:

class Add
{
public:
	Add(int base)
		:_base(base)
	{}
	int operator()(int num)
	{
		return _base + num;
	}
private:
	int _base;
};
int main()
{
	int base = 1;

	//函数对象
	Add add1(base);
	add1(1000);

	//lambda表达式
	auto add2 = [base](int num)->int
	{
		return base + num;
	};
	add2(1000);
	return 0;
}

调试代码并转到反汇编,可以看到:
在创建函数对象add1时,会调用Add类的构造函数。
在使用函数对象add1时,会调用Add类的()运算符重载函数。

如下图:
在这里插入图片描述

观察lambda表达式时,也能看到类似的代码:
借助auto将lambda表达式赋值给add2对象时,会调用<lambda_uuid>类的构造函数。
在使用add2对象时,会调用<lambda_uuid>类的()运算符重载函数。

如下图:
在这里插入图片描述
本质就是因为lambda表达式在底层被转换成了仿函数。

当我们定义一个lambda表达式后,编译器会自动生成一个类,在该类中对()运算符进行重载,实际lambda函数体的实现就是这个仿函数的operator()的实现。
在调用lambda表达式时,参数列表和捕获列表的参数,最终都传递给了仿函数的operator()。

lambda表达式和范围for是类似的,它们在语法层面上看起来都很神奇,但实际范围for底层就是通过迭代器实现的,lambda表达式底层的处理方式和函数对象是一样的。

lambda表达式之间不能相互赋值

lambda表达式之间不能相互赋值,就算是两个一模一样的lambda表达式。

因为lambda表达式底层的处理方式和仿函数是一样的,在VS下,lambda表达式在底层会被处理为函数对象,该函数对象对应的类名叫做<lambda_uuid>。
类名中的uuid叫做通用唯一识别码(Universally Unique Identifier),简单来说,uuid就是通过算法生成一串字符串,保证在当前程序当中每次生成的uuid都不会重复。
lambda表达式底层的类名包含uuid,这样就能保证每个lambda表达式底层类名都是唯一的。

因此每个lambda表达式的类型都是不同的,这也就是lambda表达式之间不能相互赋值的原因,我们可以通过typeid(变量名).name()的方式来获取lambda表达式的类型。比如:

int main()
{
	int a = 10, b = 20;
	auto Swap1 = [](int& x, int& y)->void
	{
		int tmp = x;
		x = y;
		y = tmp;
	};
	auto Swap2 = [](int& x, int& y)->void
	{
		int tmp = x;
		x = y;
		y = tmp;
	};
	cout << typeid(Swap1).name() << endl; //class <lambda_797a0f7342ee38a60521450c0863d41f>
	cout << typeid(Swap2).name() << endl; //class <lambda_f7574cd5b805c37a13a7dc214d824b1f>
	return 0;
}

可以看到,就算是两个一模一样的lambda表达式,它们的类型都是不同的。

说明一下: 编译器只需要保证每个lambda表达式底层对应类的类名不同即可,并不是每个编译器都会将lambda表达式底层对应类的类名处理成<lambda_uuid>,这里只是以VS为例。

总结:

今天我们学习了C++11中lambda表达式,了解了一些有关的底层原理。接下来,我们将继续进行C++11的学习。希望我的文章和讲解能对大家的学习提供一些帮助。

当然,本文仍有许多不足之处,欢迎各位小伙伴们随时私信交流、批评指正!我们下期见~

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1094807.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

阿里云香港云服务器公网带宽价格表及测试IP地址

阿里云服务器香港地域公网带宽价格表&#xff0c;1M带宽价格是30.0元/月&#xff0c;按使用流量1GB价格是1.0元&#xff0c;阿里云香港服务器测试IP地址&#xff1a;47.75.18.101&#xff0c;阿里云百科aliyunbaike.com来详细说下阿里云香港服务器1M带宽、5M带宽、6M带宽、10M带…

民宿酒店订房房态商城小程序的作用是什么

外出旅游出差&#xff0c;酒店民宿总是很好的选择&#xff0c;随着经济复苏&#xff0c;各地旅游及外出办公人次增多&#xff0c;酒店成绩随之增加&#xff0c;市场呈现多品牌酒店经营形式。 区别于以前&#xff0c;如今互联网深入各个行业&#xff0c;酒店经营也面临着困境。…

删除字符串特定的字符(fF)C语言

代码&#xff1a; #include <stdio.h> void funDel(char *str) {int i, j;for (i j 0; str[i] ! \0; i)if (str[i] ! f && str[i] ! F)str[j] str[i];str[j] \0; }int main() {char str[100];printf("请输入一个字符串&#xff1a;");gets(str);pr…

转化限制+分析变量变化引起的答案变化:Gym - 104065D

https://vjudge.net/contest/587311#problem/H 先转化一波条件&#xff1a; p i ≥ 1 X p_i\ge \frac 1 X pi​≥X1​ p i ≤ 1 1 − Y p_i\le \frac 1 {1-Y} pi​≤1−Y1​ 所以我们按 p p p 排序&#xff0c; s u m x sum_x sumx​ 必然是后缀&#xff0c; s u m y sum_y …

Python算术运算符:加减乘除 整除 取余 幂指数 小括号

运算案例 需求&#xff1a;用户手工输入梯形的上底、下底以及高&#xff0c;能直接通过Python打印出梯形的面积为多少。 做这个需求前&#xff0c;首先要知道Python的算数运算符有哪些。 2、算术运算符 所谓的算数运算符就是我们日常生活中的加减乘除等待。 运算符描述实例…

汉服商城小程序的作用是什么

汉服在日常生活中越来越常见&#xff0c;大街小巷也有不少年轻人装扮甚是漂亮帅气&#xff0c;有些地区甚至还有相关的比赛等&#xff0c;作为近几年曝光的服饰&#xff0c;汉服市场规模持续增加中&#xff0c;各地线上线下商家也多了起来。 然而在实际经营中&#xff0c;汉服…

Anylogic 读取和写入Excel文件

1、选择面板-连接-Excel文件&#xff0c;拖入到视图中 然后在excel文件的属性中进行绑定外部excel文件。 绑定完之后&#xff0c;在你需要读取的地方进行写代码&#xff0c; //定义开始读取的行数 //这里设为2&#xff0c;是因为第一行是数据名称 int row12; //读取excel文件信…

SpringBoot-黑马程序员-学习笔记(六)

目录 76.常用计量单位使用 77.bean属性校验 81.测试表现层 82.发送虚拟请求 94.springboot读写redis的客户端 100.ElasticSearch&#xff08;简称ES&#xff09; 一个分布式全文搜索引擎 76.常用计量单位使用 Data Component ConfigurationProperties(prefix "serve…

SpringMVC的响应处理

目录 传统同步业务数据的响应 请求资源转发 请求资源重定向 响应数据模型 直接回写数据给客户端 前后端分离异步业务数据响应 在前面的文章中&#xff0c;我们已经介绍了Spring接收请求的部分&#xff0c;接下来看Spring如何给客户端响应数据 传统同步业务数据的响应 准…

Matlab统计棋盘连通分量(空值区域)的大小和个数

一、基础设定 在20x20的棋盘矩阵中&#xff0c;设定黑子为1&#xff0c;空值为0 现需要统计空值&#xff08;连通分量&#xff09;的大小和个数并标记&#xff0c;如下图所示&#xff1a; 以此类推 其中&#xff0c;最大的连通分量如下&#xff1a; 二、Matlab程序 以下是红…

读写锁ReentrantReadWriteLockStampLock详解

如何设计一把读写锁&#xff1f;ReentrantReadWriteLock 读写锁设计思路 读写状态的设计 设计的精髓&#xff1a;用一个变量如何维护多种状态 在 ReentrantLock 中&#xff0c;使用 Sync ( 实际是 AQS )的 int 类型的 state 来表示同步状态&#xff0c;表示锁被一个线程重复获…

【网络基础】——传输层

目录 前言 传输层 端口号 端口号范围划分 知名端口号 进程与端口号的关系 netstat UDP协议 UDP协议位置 UDP协议格式 UDP协议特点 面向数据报 UDP缓冲区 UDP的使用注意事项 基于UDP的应用层协议 TCP协议 TCP简介 TCP协议格式 确认应答机制&#…

性能测试需求分析

1、客户方提出 客户方能提出明确的性能需求&#xff0c;说明对方很重视性能测试&#xff0c;这样的企业一般是金融、电信、银行、医疗器械等&#xff1b;他们一般对系统的性能要求非常高&#xff0c;对性能也非常了解。提出需求也比较明确。 曾经有一个银行项目&#xff0c;已经…

漏洞复现--华测监测预警系统2.2任意文件读取

免责声明&#xff1a; 文章中涉及的漏洞均已修复&#xff0c;敏感信息均已做打码处理&#xff0c;文章仅做经验分享用途&#xff0c;切勿当真&#xff0c;未授权的攻击属于非法行为&#xff01;文章中敏感信息均已做多层打马处理。传播、利用本文章所提供的信息而造成的任何直…

Asp.net core Web Api 配置swagger中文

启动项目&#xff0c;如图&#xff1a; 原来是英文的&#xff0c;我们要中文的&#xff0c;WeatherForecastController.cs是一个示例&#xff0c;删除即可&#xff0c;WeatherForecast.cs同时删除&#xff0c;当然不删除也行&#xff0c;这里是删除&#xff0c;创建自己的控制器…

CORE: Cooperative Reconstruction for Multi-Agent Perception 论文阅读

论文连接 CORE: Cooperative Reconstruction for Multi-Agent Perception 0. 摘要 本文提出了 CORE&#xff0c;一种概念简单、有效且通信高效的多智能体协作感知模型。 从合作重建的新颖角度解决了该任务&#xff1a; 合作主体共同提供对环境的更全面的观察整体观察可以作为…

Redis为什么这么快?高频面试题详解

Redis为什么这么快&#xff1f; Redis利用epoll来实现IO多路复用&#xff0c;将连接信息和事件放到队列中&#xff0c;一次放到文件事件分派器&#xff0c;事件分派器将事件分发给事件处理器。 Redis 是跑在单线程中的&#xff0c;所有的操作都是按照顺序线性执行的&#xf…

C进阶-动态内存管理

本章重点&#xff1a; 为什么存在动态内存分配&#xff1f; 动态内存函数的介绍 malloc free calloc realloc 常见的动态内存错误 经典的笔试题 柔性数组 1.为什么存在动态内存分配 开辟空间的方式有两个特点&#xff1a; 1. 空间开辟大小是固定的。 2. 数组在申明的…

Codeforces Round 846 (Div. 2) E. Josuke and Complete Graph 详解 数论分块

题目大意 题意来源 解题思路 首先我们假设存在 x x x满足 a , b ∈ [ l , r ] , g c d ( a , b ) x a,b\in[l,r],gcd(a,b)x a,b∈[l,r],gcd(a,b)x那么肯定 g c d ( ⌊ a / x ⌋ , ⌊ b / x ⌋ ) 1 就是互质 gcd(\lfloor a/x \rfloor, \lfloor b/x \rfloor)1就是互质 gcd(⌊a…

Js高级技巧—拖放

拖放基本功能实现 拖放是一种非常流行的用户界面模式。它的概念很简单&#xff1a;点击某个对象&#xff0c;并按住鼠标按钮不放&#xff0c;将 鼠标移动到另一个区域&#xff0c;然后释放鼠标按钮将对象“放”在这里。拖放功能也流行到了 Web 上&#xff0c;成为 了一些更传统…