【Python 零基础入门】 Numpy

news2024/11/26 22:21:38

【Python 零基础入门】第六课 Numpy

  • 概述
  • 什么是 Numpy?
    • Numpy 与 Python 数组的区别
    • 并发 vs 并行
    • 单线程 vs 多线程
    • GIL
    • Numpy 在数据科学中的重要性
  • Numpy 安装
    • Anaconda
    • 导包
  • ndarray
    • np.array 创建
    • 数组属性
    • np.zeros 创建
    • np.ones 创建
  • 数组的切片和索引
    • 基本索引
    • 切片操作
    • 数组运算
  • 常用函数
    • reshape
    • flatten
    • 聚合函数
  • Numpy 的高级功能
    • 广播
    • 矩阵计算
  • Numpy 实际应用
    • 统计分析
    • 图像处理
    • 解方程
  • 结论
  • 练习
    • 练习1
    • 练习2
    • 练习3
  • 参考答案
    • 练习1
    • 练习2
    • 练习3

概述

在众多 Python 的数据处理库中, Numpy 是一个非常强大的存在. Numpy 为我们提供了高性能的多维数组, 以及这些数组对象上的各种操作. 但是, 作为一个刚入门 Python 的新手, 你可能会问: "为什么我需要 Numpy, 而不是直接使用Python 的内置列表?"在这篇文章的开篇, 我们就来探讨这个问题.

在这里插入图片描述

什么是 Numpy?

Numpy (Numerical Python) 是 Python 非常重要的一个库, 用于处理数值数组. Numpy 为我们提供了大量数据处理的函数以及数学函数. 与 Python 的内列表相比, Numpy 数组在数据分析, 科学计算, 线性代数, 机器学习等方面都表现出了卓越的性能和效率.

Numpy 与 Python 数组的区别

虽然 Python 的内置列表很灵活, 能存储任意类型的数据. 但当我们需要进行大量的数值运算时 (线性代数, 统计), Python 的内置列表效率并不高. Numpy 数组相比之下, 是在连续的内存块上存储的, 这使得访问速度更快, 效率更高. 而且 Numpy 是用 C 语言编写的, 其内部迭代计算比 Python 的内置循环要快很多.

例子:

在这里插入图片描述

并发 vs 并行

并发 vs 并行

  • 并发 (Concurrency): 是指系统能够处理多个任务在同一时间段内交替执行, 但不一定同时
  • 并行 (Parallelism): 并行是指多个任务或多个数据在同一时刻被执行

在这里插入图片描述
举个例子:

  • 并发: 类似一个单线程的服务器, 可以在短时间内处理多个请求, 但是一次只能处理一个请求. 当等待一个请求数据时, 可以切换到另一个请求
  • 并行: 想象成一个多线程的计算任务, 每个线程在多核 CPU 不同核心上同时执行

举个生活中的例子:

小白吃饭吃到一半, 电话来了, 我一直到吃完了以后才去接, 这就说明你不支持并发也不支持并行.
小白吃饭吃到一半, 电话来了, 你停了下来接了电话, 接完后继续吃饭, 这说明你支持并发.
小白吃饭吃到一半, 电话来了, 你一边听电话一边吃饭, 这说明你支持并行.

应用:

  • 并发: 进行任务之间的协调 & 同步, 难点在有效地处理资源争用 & 死锁
  • 并行: 同时进行多个任务, 难点在于负载均衡和通信开销

单线程 vs 多线程

单线程 vs 多线程:

  • 单线程: 在同一时间处理一个任务
  • 多线程: 在同一时间处理多个任务

GIL

GIL (Global Interpreter Lock) 全局解释器, 来源是 Python设计之初的考虑, 为了数据安全所做的决定.

每个 CPU 在同一时间只能执行一个线程 (在单核 CPU 下的多线程其实都只是并发, 不是并行, 并发和并行从宏观上来讲都是同时处理多路请求的概念. 但并发和并行又有区别, 并行是指两个或者多个事件在同一时刻发生, 而并发是指两个或多个事件在同一时间间隔内发生.

Numpy 在数据科学中的重要性

在现代数据科学领域, 数据处理, 清晰, 统计分析, 特征工厂, 机器学习等各个领域都离不开数值计算. Numpy 为我们提供了一套完整, 高效的工具, 使得我们的任务变得简单. 几乎所有的 Python 数据处理库, 如 Pandas, Scipy 等, 都是基于 Numpy 构建的. 所以我们非常有必要要熟悉掌握 Numpy 库.

Numpy 安装

安装命令:

pip install numpy
pip3 install numpy

Anaconda

Anaconda 是一个计算科学库, 可以为我们提供便利的 Python 环境.

安装:
Anaconda 官网

在这里插入图片描述

导包

导入 Numpy 包:

# 导包
import numpy as np


print(np.__version__)

ndarray

ndarray 是 Numpy 最重要的一个特点. ndarray 是一个 N 维数组对象.

在这里插入图片描述

np.array 创建

np.array可以帮助我们创建一 ndarray.

格式:

numpy.array(object, dtype=None, *, copy=True, order='K', subok=False, ndmin=0, like=None)

参数:

  • object: 类数组
  • dtype: 数据类型, 可选

例子:

# 导包
import numpy as np

# 创建ndarray
array1 = np.array([1, 2, 3])  # 通过lsit创建
array2 = np.array([1, 2, 3], dtype=float)

# 调试输出
print(array1, type(array1))
print(array2, type(array2))

输出结果:

[1 2 3] <class 'numpy.ndarray'>
[1. 2. 3.] <class 'numpy.ndarray'>

数组属性

创建 Numpy 数组后, 我们可以进一步查询 ndarray 的属性, 如形状, 维度, 数据类型等:

  • shape: 返回数组的形状
  • dtype: 返回数组中元素的数据类型
  • ndim: 返回数组的维度
  • size: 返回数组的元素总数

例子:

"""
@Module Name: Numpy 数组属性.py
@Author: CSDN@我是小白呀
@Date: October 13, 2023

Description:
Numpy 数组属性
"""

import numpy as np


# 创建 ndarray
arr = np.array([[1, 2, 3], [4, 5, 6]])
print(arr)

# 输出数组属性
print(arr.shape)  # 输出 [2, 3] (两行, 三列)
print(arr.dtype)  # 输出 int32 (整型)
print(arr.ndim)  # 输出 2 (二维数组)
print(arr.size)  # 输出 6 (2*3, 6个元素)

np.zeros 创建

np.zeros可以帮助我们创建指定形状的全 0 数组.

格式:

numpy.zeros(shape, dtype=float, order='C', *, like=None)

参数:

  • shape: 数组形状
  • detype: 默认为 float, 浮点型

例子:

import numpy as np

# 创建全0的ndarray
array = np.zeros((3, 3), dtype=int)
print(array)

输出结果:

[[0 0 0]
 [0 0 0]
 [0 0 0]]

np.ones 创建

np.zeros可以帮助我们创建指定形状的全 1 数组.

格式:

numpy.ones(shape, dtype=float, order='C', *, like=None)

参数:

  • shape: 数组形状
  • detype: 默认为 float, 浮点型

例子:

import numpy as np

# 创建全1的ndarray
array = np.ones((3, 3), dtype=int)
print(array)
print(type(array))

输出结果:

[[1 1 1]
 [1 1 1]
 [1 1 1]]
<class 'numpy.ndarray'>

数组的切片和索引

Numpy 数组支持 Python 的索引和切片操作, 并提供了更为丰富的功能.

格式 1:

数组[起始索引:结束索引]
  • 起始索引: 取的到
  • 结束索引: 取不到

格式 2:

数组[起始索引:结束索引:间隔]
  • 起始索引: 取的到
  • 结束索引: 取不到
  • 间隔: 间隔几个数

基本索引

import numpy as np


# 创建 ndarray
arr = np.array([1, 2 ,3 ,4 ,5])

# 切片, 取索引 0 对应的元素
print("输出第一个元素:", arr[0])  

输出结果:

输出第一个元素: 1

切片操作

例子:

import numpy as np


# 创建 ndarray
arr = np.array([1, 2 ,3 ,4 ,5])

# 切片数组前三个元素
print("前三个素:", arr[:3])

# 切片数组 2-3
print("2-3 元素:", arr[1:3])

# 切片最后一个元素
print("最后一个元素:", arr[-1])

# 切片奇数索引
print("奇数元素:", arr[::2])

# 切片反转
print("反转数组:", arr[::-1])

输出结果:

前三个素: [1 2 3]
2-3 元素: [2 3]
最后一个元素: 5
奇数元素: [1 3 5]
反转数组: [5 4 3 2 1]

数组运算

与 Python 的内置列表不同, Numpy 数组支持元素级别的运算. 我们可以对 ndarray 进行加, 减, 乘, 除等操作.

例子:

在这里插入图片描述

常用函数

在这里插入图片描述

reshape

通过reshape()我们可以改变数组形状.

格式:

numpy.reshape(arr, newshape, order='C')

参数:

  • arr: 需要改变形状的数组
  • newshape: 新的形状

例子:

import numpy as np

# 创建ndarray
array = np.zeros(9)
print(array)

# reshape
array = array.reshape((3,3))
print(array)
print(array.shape)  # 调试输出数组形状

输出结果:

[0. 0. 0. 0. 0. 0. 0. 0. 0.]
[[0. 0. 0.]
 [0. 0. 0.]
 [0. 0. 0.]]
(3, 3) 

flatten

通过flatten()我们可以将多维数组摊平成1 维数组.

例子:

import numpy as np

# 创建多维数组
array = np.zeros((3, 3))
print(array)

# flatten转变为一维数组
array = array.flatten()
print(array)

输出结果:

[[0. 0. 0.]
 [0. 0. 0.]
 [0. 0. 0.]]
[0. 0. 0. 0. 0. 0. 0. 0. 0.]

聚合函数

常见的聚合函数:

  • np.sum(): 求和
  • np.min(): 求最小值
  • np.max(): 求最大值
  • np.mean(): 计算平均值
  • np.median(): 计算中位数

例子:

import numpy as np


# 创建 ndarray
arr = np.array([1, 2, 3, 4, 5])

# 调用常用聚合函数
print(np.sum(arr))
print(np.min(arr))
print(np.max(arr))
print(np.mean(arr))
print(np.median(arr))

输出结果:

15
1
5
3.0
3.0

Numpy 的高级功能

下面我们来讲一下 Numpy 的高级功能. Numpy 的高级功能可以帮助我们有效的处理数据, 进行科学计算, 以便帮我们更好地处理数据.

广播

广播 (Broadcasting) 是 Numpy 的一个强大功能, 可以帮助我们进行不同形状数组的的运算. Numpy 中广播的规则是从尾部的维度开始对比.

例子:

import numpy as np

# 广播
a = np.array([1, 2, 3])
b = np.array([[10], [20], [30]])
print(a + b)

输出结果:

[[11 12 13]
 [21 22 23]
 [31 32 33]]

矩阵计算

例子:

import numpy as np


# 定义矩阵
mat1 = np.array([[1, 2], [3, 4]])
mat2 = np.array([[2, 0], [1, 3]])

# 矩阵乘法
# 1*2 + 2*1 = 2 
# 1*1 + 2*3 = 6
# 3*2 + 4*1 = 10
# 3*0 + 4*3 = 12
result = np.dot(mat1, mat2) 
print(result)

输出结果:

[[ 4  6]
 [10 12]]

Numpy 实际应用

当我们已经掌握了 Numpy 的基础用法和高级功能后, 小白我来带大家了解一下 Numpy 的实际应用.

统计分析

求数组平均数和标准差:

import numpy as np


# 定义数组
data = np.array([23, 45, 56, 78, 12, 9])

# 计算平均值和标准差
print("平均值:", np.mean(data))
print("标准差:", np.std(data))

输出结果:

3.14

图像处理

利用 Numpy, 我们可以将图像转化为数组进行处理.

例子:

import numpy as np
from PIL import Image

# 将图像转化为数据
image = Image.open('path_to_image.jpg')
image_array = np.array(image)
print(image_array.shape)

输出结果:

(1707, 2560, 3)

解方程

例子:

import numpy as np
from numpy.linalg import solve


# 创建 ndarray
a = np.array([[3, 1], [1, 2]])  # 3x + y = 9 
b = np.array([9, 8])  # x + 2y = 8

# 解方程
x = solve(a, b)  # x = 2, y = 3
print(x)

输出结果:

[2. 3.]

结论

在本篇文章中, 我们深入地探讨了 Numpy, 这是 Python 中用于数值计算和数据分析的核心库. 从数组的基本操作, 数组的形状和维度, 高级数组操作, 到 Numpy 的最佳实践和常见误区, 我们尝试为读者提供了一个全面且深入的视角.

Numpy 的真正威力在于其高效性和灵活性. 它为我们提供了大量的功能, 能帮助我们轻松处理大规模的数值数据. 但与此同时, 也需要注意其特定的工作原理, 避免常见的陷阱.

对于初学者来说, 可能需要一些时间来适应 Numpy 的思维方式, 特别是它的广播机制和向量化操作. 但一旦你习惯了这种方式, 你会发现自己的数据处理能力大大增强.

无论你是数据分析师, 科学家还是工程师, 掌握 Numpy 都将是你数据处理技能的重要组成部分. 希望这篇文章能为你在 Python 数据处理之路上提供一些有用的指导.

练习

练习1

数组创建与基础操作:

  • 创建一个形状为 (5, 5) 的数组,其中所有元素都为整数1。
  • 创建一个长度为 20 的一维随机整数数组,范围在 1 到 100 之间。
  • 将上述一维数组重新塑形为 (5, 4) 的二维数组。

练习2

数组索引与切片:

  • 创建一个形状为 (10, 10) 的随机整数数组,范围在 1 到 100 之间。提取出其中的第 3 到 8 行,第 4 到 9 列的子数组。
  • 从上述数组中,提取出所有的偶数元素。

练习3

数组操作与数学运算:

  • 创建两个形状为 (3, 3) 的随机整数数组 A 和 B,范围在 1 到 10 之间。计算 A 与 B 的点积。
  • 计算上述数组 A 的逆矩阵(如果存在)。

参考答案

练习1

import numpy as np


array = np.ones([5,5], dtype=int)
print(array)
array = np.random.randint(1, 101, size=20)
print(array)
array = array.reshape((5, 4))
print(array)

输出结果:

[[1 1 1 1 1]
 [1 1 1 1 1]
 [1 1 1 1 1]
 [1 1 1 1 1]
 [1 1 1 1 1]]
[22 13 20 67  5 91 26 64 84 85 59 66 44 83 41 63 44 23 76 35]
[[22 13 20 67]
 [ 5 91 26 64]
 [84 85 59 66]
 [44 83 41 63]
 [44 23 76 35]]

练习2

import numpy as np


array = np.random.randint(1, 101, size=(10, 10)).reshape((10,10))
print(array)
array = array[2:8, 3:9]
print(array)
array = array[array % 2 == 0]
print(array)

输出结果:

[[1 1 1 1 1]
 [1 1 1 1 1]
 [1 1 1 1 1]
 [1 1 1 1 1]
 [1 1 1 1 1]]
[ 32   6  91  48  63  81  87  28  19  25  20  93  97 100  70  77   3  46
 100   7]
[[ 32   6  91  48]
 [ 63  81  87  28]
 [ 19  25  20  93]
 [ 97 100  70  77]
 [  3  46 100   7]]
[[1 1 1 1 1]
 [1 1 1 1 1]
 [1 1 1 1 1]
 [1 1 1 1 1]
 [1 1 1 1 1]]
[71 63  6 50 59 69 14 18 80 88 68 54 35 97 51 82 86 50 61  9]
[[71 63  6 50]
 [59 69 14 18]
 [80 88 68 54]
 [35 97 51 82]
 [86 50 61  9]]

练习3

import numpy as np


a = np.random.randint(1, 11, size=(3, 3))
b = np.random.randint(1, 11, size=(3, 3))
print(a)
print(b)
result = np.dot(a, b)
print(result)

det_a = np.linalg.det(a)

if det_a == 0:
    print("矩阵 A 不可逆")
else:
    inverse_a = np.linalg.inv(a)
    print("A 的逆矩阵为: \n", inverse_a)

输出结果:

[[ 8  6  4]
 [10  5  5]
 [ 7  7  9]]
[[ 7  2  9]
 [10  9  6]
 [ 5  7  1]]
[[136  98 112]
 [145 100 125]
 [164 140 114]]
A 的逆矩阵为: 
 [[-9.09090909e-02  2.36363636e-01 -9.09090909e-02]
 [ 5.00000000e-01 -4.00000000e-01 -7.93016446e-18]
 [-3.18181818e-01  1.27272727e-01  1.81818182e-01]]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1089303.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

TypeScript React(上)

目录 扩展学习资料 TypeScript设计原则 TypeScript基础 语法基础 变量声明 JavaScript声明变量 TypeScript声明变量 示例 接口 (标准类型-Interface) 类型别名-Type 接口 VS 类型别名 类型断言:欺骗TS&#xff0c;肯定数据符合结构 泛型、<大写字母> 扩展学习…

Vulnhub系列靶机---Raven2

文章目录 Raven2 渗透测试信息收集提权UDF脚本MySQL提权SUID提权 Raven2 渗透测试 信息收集 查看存活主机 arp-scan -l 找到目标主机。 扫描目标主机上的端口、状态、服务类型、版本信息 nmap -A 192.168.160.47目标开放了 22、80、111 端口 访问一下80端口&#xff0c;并…

VSCode 快速移动光标至行尾

最近在用vscode进行C编程&#xff0c;经常需要把光标跳到行尾去添加符号。 手动到行尾太麻烦了。 一种快捷方式是&#xff1a;用键盘上的“END”快捷键。 但是用这个键也不是很方便&#xff0c;因为“end”键离主键盘区太远。 另一种便捷的方式是&#xff1a;给vscode设置自定义…

分权分域有啥内容?

目前的系统有什么问题&#xff1f; 现在我们的系统越来越庞大&#xff0c;可是每一个人进来的查看到的内容完全一样&#xff0c;没有办法灵活的根据不同用户展示不同的数据 例如我们有一个系统&#xff0c;期望不同权限的用户可以看到不同类型的页面&#xff0c;同一个页面不…

计算机毕业设计选什么题目好?springboot 高校就业管理系统

✍✍计算机编程指导师 ⭐⭐个人介绍&#xff1a;自己非常喜欢研究技术问题&#xff01;专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目&#xff1a;有源码或者技术上的问题欢迎在评论区一起讨论交流&#xff01; ⚡⚡ Java实战 |…

供应链 | 零售商-供应商柔性承诺契约:一种鲁棒优化方法 (一)

论文解读&#xff1a;毕鑫宇 作者&#xff1a;Aharon Ben-Tal, Boaz Golany, Arkadi Nemirovski, Jean-Philippe Vial 引用&#xff1a;Ben-Tal, A., Golany, B. , Nemirovski, A., & Vial, J. P… (2005). Retailer-supplier flexible commitments contracts: a robust op…

内存空间的分配与回收之连续分配管理方式

1.连续分配管理方式 连续分配:指为用户进程分配的必须是一个连续的内存空间。 1.单一连续分配 在单一连续分配方式中&#xff0c;内存被分为系统区和用户区。系统区通常位于内存的低地址部分&#xff0c;用于存放操作系统相关数据;用户区用于存放用户进程相关数据。内存中只…

十六、 代码校验(3)

本章概要 测试驱动开发 测试驱动 vs 测试优先 日志 日志信息日志等级 测试驱动开发 之所以可以有测试驱动开发&#xff08;TDD&#xff09;这种开发方式&#xff0c;是因为如果你在设计和编写代码时考虑到了测试&#xff0c;那么你不仅可以写出可测试性更好的代码&#xff…

计算机导论实验——Linux基础入门

使用Xshell登录 Linux 主机 linux命令&#xff1a; cd&#xff1a;去哪里 pwd&#xff1a;在哪里 ls&#xff1a;查看当前有什么文件 mkdir&#xff1a;创建新目录 cp&#xff1a;复制 cat&#xff1a;连接或显示文件 rm&#xff1a;删除 mv&#xff1a;用于移动或重命名文件…

B站视频“多模态大模型,科大讯飞前NLP专家串讲”记录

文章目录 多模态&#xff1a;对齐 -- align迁移学习和zero-shotClipBlip 多模态&#xff1a; 图片、文字、视频、语音等不同的表征。 表示信息的方式有多种&#xff0c;但是不同的表示方式携带的信息不完全相同。 对齐 – align 如第一个图中&#xff0c;文字内容的描述和图…

关于一篇什么是JWT的原理与实际应用

目录 一.介绍 1.1.什么是JWT 二.结构 三.Jwt的工具类的使用 3.1. 依赖 3.2.工具类 3.3.过滤器 3.4.控制器 3.5.配置 3.6. 测试类 用于生成JWT 解析Jwt 复制jwt&#xff0c;并延时30分钟 测试JWT的有效时间 测试过期JWT的解析 四.应用 今天就到这了&#xff0c;希…

基于SpringBoot的网上订餐系统

基于SpringBoot的网上订餐系统的设计与实现 开发语言&#xff1a;Java数据库&#xff1a;MySQL技术&#xff1a;SpringBootMyBatisVue工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 【主要功能】 角色&#xff1a;用户、管理员管理员&#xff1a;登录、个人中心、会员管理、…

【Unity】【VR】详解Oculus Integration输入

【背景】 以下内容适用于Oculus Integration开发VR场景,也就是OVR打头的Scripts,不适用于OpenXR开发场景,也就是XR打头Scripts。 【详解】 OVR的Input相对比较容易获取。重点在于区分不同动作机制的细节效果。 OVR Input的按键存在Button和RawButton两个系列 RawButton…

MATLAB神经网络和优化算法

文章目录 1. matlab感知器神经网络初步学习2 使用建立好的神经网络进行分类程序3 线性神经网络预测程序4 BP神经网络信号拟合程序 1. matlab感知器神经网络初步学习 %% 学习目标&#xff1a;从学习第一个最简单的神经网络案例开启学习之路 %% 感知器神经网络 用于点的分类…

orgChart.js组织架构图

OrgChart.js是什么&#xff1f; 基于ES6的组织结构图插件。 特征 支持本地数据和远程数据&#xff08;JSON&#xff09;。 基于CSS3过渡的平滑扩展/折叠效果。 将图表对齐为4个方向。 允许用户通过拖放节点更改组织结构。 允许用户动态编辑组织图并将最终层次结构保存为…

c语言表达式求值--整型提升

什么是整型提升&#xff1f; C的整型算术运算总是至少以缺省整型类型的精度来进行的。 为了获得这个精度&#xff0c;表达式中的字符和短整型操作数在使用之前被转换为普通整型&#xff0c;这种转换称为整型提升。 什么叫缺省整数类型&#xff1f;缺省在计算机里面是默认的意…

第三章 内存管理 一、内存的基础知识

目录 一、什么是内存 二、有何作用 三、常用数量单位 四、指令的工作原理 五、装入方式 1、绝对装入 2、可重定位装入&#xff08;静态重定位&#xff09; 3、动态运行时装入&#xff08;动态重定位&#xff09; 六、从写程序到程序运行 七、链接的三种方式 1、静态…

MySQL建表操作和用户权限

1.创建数据库school&#xff0c;字符集为utf8 mysql> create database school character set utf8; 2.在school数据库中创建Student和Score表 mysql> create table school.student( -> Id int(10) primary key, -> Stu_id int(10) not null, -> C_n…

服务运营 |摘要:学术+业界-近期前沿运筹医疗合作精选

推文作者&#xff1a;李舒湉 编者按 本文归纳整理了近期INFORMS Journal on Applied Analytics中的相关业界合作研究。 这些研究成果体现了运筹学在医疗健康领域实践的效果。文中的学术业界合作使用了不同的研究工具。第一篇文章使用仿真模型帮助诊所进行不同拥挤程度下诊所使用…

【Java学习之道】日期与时间处理类

引言 在前面的章节中&#xff0c;我们介绍了Java语言的基础知识和核心技能&#xff0c;现在我们将进一步探讨Java中的常用类库和工具。这些工具和类库将帮助我们更高效地进行Java程序开发。在本节中&#xff0c;我们将一起学习日期与时间处理类的使用。 一、为什么需要日期和…