基于指数趋近律的机器人滑模轨迹跟踪控制算法及MATLAB仿真

news2025/1/11 5:49:53

 

机械手是工业制造领域中应用最广泛的自动化机械设备,广泛应用于工业制造、医疗、军工、半导体制造、太空探索等领域。它们虽然形式不同,但都有一个共同的特点,即能够接受指令,并能准确定位到三维(或二维)空间的某一点进行工作。由于其在3D打印、喷漆机器人、汽车制造等领域的广泛应用,机器人的控制显得尤为重要。而滑模变结构控制SMC由于其快速的瞬态响应和对不确定性和扰动的鲁棒性,在机器人控制领域受到了广泛的关注。

 

问题描述

机器人轨迹跟踪控制问题可以描述为: 给定一个参考轨迹,找到一个容许控制u,使得实际的关节角度与参考的关节角度误差最小,从而使得机械臂末端轨迹跟踪上参考轨迹。

 

理论分析

1滑模控制基础概念

1.1滑模控制定义

滑模控制(SMC)也称为可变结构控制,本质上是一种特殊的非线性控制,其非线性性能是控制的不连续性。该控制策略与其他控制的区别在于“结构”系统的状态不是固定的,但是在动态过程中,它可以根据系统的当前状态(例如偏差和其导数)有意地进行更改,从而迫使系统以预定的“滑动模式”状态轨迹运动。滑模的设计可以不受对象参数和干扰的影响,滑模控制具有响应速度快,对参数变化和干扰不敏感,无需在线系统识别,物理实现简单等优点。通过不连续控制有意改变系统结构将相位轨迹驱动到稳定的超平面或流形的系统。不受干扰和参数变化

1.2滑模趋近律

滑模控制下的系统一般分为两个阶段:

(1)从系统初始状态到滑模面;

(2)在滑模面上滑模到达系统平衡点;

2.将趋近律引入到(1)阶段设计中,对(2)阶段设计快速终端滑模。2.“全局”、“快速”、“终端滑模”中的“全局”表示滑模没有(1)阶段,因此不使用趋近定律。

4个基本趋近律表达如下:

 

(1)等速趋近律:

 

aa3f552fe4bed380f6f7da8e10abdaff.png

(2)指数趋近律

 

66ef10a61ebdae78150a08d1711b9302.png

(3)幂次趋近律

 

dfa7d5c8d781eaeb836742be6441cc99.png

(4)一般趋近律

 

64de6fa1e568e959bfea17e313bd3c07.png

 

3基于指数趋近律的模糊滑模控制

3.1 基于指数趋近律的滑模控制

由牛顿欧拉公式得n自由度机器人关节空间动力学方程为:

34613724317330e653f278e3d758c4ca.png

设系统误差为:

6b6928e40720213aa06abccc871d53f0.png

则误差的微分得:

962d980a79dd0252d6c28d5ad19030dc.png

选择滑模函数为:

eb8316161a4882aa6a10ea2b27888348.png

则对滑模函数s求导得:

4132d539b7187f9560c3a33ba398011b.png

因为系统方程可变形为:

63eb970371cdf1605b878cd1aadba6ab.png

所以:

ddd39dd65a420394807e215ddb2ac993.png

选取指数趋近律为:

0dc813ce54874d7a441f9b5c919f9d74.png

所以基于指数趋近律可设计u,将两公式合并:

67a023d6b9e064fa69fd021c64e736de.png

则控制律u为:

d62c4c1e60a3d7fa31b6488af246dbd8.png

已知只要得到滑模平面(切换面s)和滑动模态的控制律u,滑动变结构控制就能完全建立起来。

下面证明其滑模平面稳定存在滑动模态:

第一步:取李雅普诺夫函数

a9f2cd8056f8b3ba64f95f8da2b4a0cb.png

由于

69cf7ba4ed6c3ad94a30775f10ea153e.png

所以V是正定(PD)

第二步:对李雅普诺夫函数求导得:

fff7e0f50113347885d33f21614201e1.png

由此可知,上述设计的滑模变结构控制器满足要求。

为更直观的分析所设计的滑模控制器的优劣,对控制系统进行仿真分析如下:

 

4e97cc23a2dd97c45555154a9b627dd1.png

 

图1.三自由度机械臂

根据拉格朗日功能平衡法,建立其动力学模型。由于是比较常见的三自由度机器人模型,这里可以查找教科书或文献参考

MATLAB仿真程序

其simulink建模框图如图2所示:

4f73818a4c4cf50dee6ae0079d9a601a.png

图2 控制系统simulink框图

机器人动力学MATLAB仿真程序:

function [sys,x0,str,ts]=s_function(t,x,u,flag)switch flag,case 0,    [sys,x0,str,ts]=mdlInitializeSizes;case 1,    sys=mdlDerivatives(t,x,u);case 3,    sys=mdlOutputs(t,x,u);case {2, 4, 9 }    sys = [];otherwise    error(['Unhandled flag = ',num2str(flag)]);endfunction [sys,x0,str,ts]=mdlInitializeSizessizes = simsizes;sizes.NumContStates  = 6;sizes.NumDiscStates  = 0;sizes.NumOutputs     = 6;sizes.NumInputs      = 3;sizes.DirFeedthrough = 0;sizes.NumSampleTimes = 0;sys=simsizes(sizes);x0=[0.6;0.3;0.5;0.5;0.5;0.5];str=[];ts=[];function sys=mdlDerivatives(t,x,u)q1=x(1);dq1=x(2);q2=x(3);dq2=x(4);q3=x(5);dq3=x(6);m1=0;m2=1;m3=1;L1=0;L2=1;L3=1;g=10;I1=0;I2=0;I3=0;a1=m2*L2^2+m3*L2^2;a2=m3*L3^2;a3=m3*L3^2;b1=(m2*L2+m3*L2)*g;b2=m3*L3*g;M11=I1+a1*(cos(q2))^2+a2*cos(q2+q3)+2*a2*cos(q2)*cos(q2+q3);M12=0;M13=0;M21=0;M22=I2+a1+a2+2*a3*cos(q3);M23=a2+a3*cos(q3);M31=0;M32=a2+a3*cos(q3);M33=I3+a2;M=[M11 M12 M13;   M21 M22 M23;   M31 M32 M33];B11=-(1/2)*a1*dq2*sin(2*q2)-a3*dq3*cos(q2)*sin(q2+q3)-(1/2)*a2*(dq2+dq3)*sin(2*q2+2*q3)-a3*dq2*sin(2*q2+q3);B12=-(1/2)*a1*dq1*sin(2*q2)-a3*dq1*sin(2*q2+q3)-(1/2)*a2*dq1*sin(2*q2+2*q3);B13=-a3*dq1*cos(q2)*sin(q2+q3)-(1/2)*a1*dq1*sin(2*q2+2*q3);B21=-B12;B22=-a3*dq3*sin(q3);B23=-a3*(dq2+dq3)*sin(q3);B31=-B13;B32=-a3*dq2*sin(q3);B33=0;B=[B11 B12 B13;   B21 B22 B23;   B31 B32 B33];G1=0;G2=b1*cos(q2)+b2*cos(q2+q3);G3=b2*cos(q2+q3);G=[G1;G2;G3];tol(1)=u(1);tol(2)=u(2);tol(3)=u(3);ddq=inv(M)*(tol'-B*[dq1;dq2;dq3]-G);sys(1)=x(2);sys(2)=ddq(1);sys(3)=x(4);sys(4)=ddq(2);sys(5)=x(6);sys(6)=ddq(3);function sys=mdlOutputs(t,x,u)sys(1)=x(1);sys(2)=x(2);sys(3)=x(3);sys(4)=x(4);sys(5)=x(5);sys(6)=x(6);

则各关节跟踪响应如图3所示

f2609651575eeb44693121e307afeef0.png

图3.各关节跟踪响应

轨迹跟踪误差如图4所示

4a5dba69b8d28d1d9af465721a91967f.png

图4.轨迹跟踪误差

滑模面如图5所示

83004eca106b372c8e86a699e3e717fc.png

图5.滑模面

控制力矩如图6所示

f8d37230f667e600b1dff8632eaab761.png

图6.控制力矩

总结

由以上仿真结果可以看出,基于趋近律的滑模轨迹跟踪控制器在系统复杂的环境下,能够对系统的轨迹跟踪进行有效的控制,然而,其基于趋近律的滑模轨迹跟踪控制方法存在着严重的抖振,还是有待改进!

 

更多信息请关注:DRobot

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1071717.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

RabbitMQ之topic(主题)Exchange解读

目录 基本介绍 使用场景 演示架构 工程概述 RabbitConfig配置类:创建队列及交换机并进行绑定 MessageService业务类:发送消息及接收消息 主启动类RabbitMq01Application:实现ApplicationRunner接口 基本介绍 在rabbitmq中,…

【目标检测】大图包括标签切分,并转换成txt格式

前言 遥感图像比较大,通常需要切分成小块再进行训练,之前写过一篇关于大图裁切和拼接的文章【目标检测】图像裁剪/标签可视化/图像拼接处理脚本,不过当时的工作流是先将大图切分成小图,再在小图上进行标注,于是就不考…

[NewStarCTF 2023 公开赛道] week1 Crypto

brainfuck 题目描述&#xff1a; [>>>>>>>>>>>>>>>><<<<<<<<<<<<<<<<-]>>>>>>>.>----.<-----.>-----.>-----.<<<-.>>..…

深入了解归并排序:原理、性能分析与 Java 实现

归并排序&#xff08;Merge Sort&#xff09;是一种高效且稳定的排序算法&#xff0c;其优雅的分治策略使它成为排序领域的一颗明珠。它的核心思想是将一个未排序的数组分割成两个子数组&#xff0c;然后递归地对子数组进行排序&#xff0c;最后将这些排好序的子数组合并起来。…

在JavaScript中,什么是IIFE(Immediately Invoked Function Expression)?它的作用是什么?

聚沙成塔每天进步一点点 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 欢迎来到前端入门之旅&#xff01;感兴趣的可以订阅本专栏哦&#xff01;这个专栏是为那些对Web开发感兴趣、刚刚踏入前端领域的朋友们量身打造的。无论你是完全的新手还是有一些基础的开发…

现代化战机之路:美国空军U-2侦察机基于Jenkins和k8s的CI/CD架构演进

▲ 点击上方"DevOps和k8s全栈技术"关注公众 华为北京研究所Q27大楼 随着技术的不断进步&#xff0c;军事领域也在积极采纳现代化工具来提高战备水平和效率。美国空军的U-2侦察机项目是一个鲜明的例子&#xff0c;它成功地借助Jenkins和Kubernetes&#xff08;k8s&…

Oracle修改数据之后提交事务如何回滚?

在 MySQL 和 Oracle 数据库中&#xff0c;事务提交后都无法回滚。 在 MySQL 中&#xff0c;恢复机制是通过回滚日志&#xff08;undo log&#xff09;实现的&#xff0c;所有事务进行的修改都会先记录到这个回滚日志中&#xff0c;然后在对数据库中的对应行进行写入。当事务已经…

IDE环境要注意统一编码,否则出现中文乱码找不到头绪

最近遇到在IDEA开发项目时&#xff0c;保存中文为乱码的现象&#xff0c;如图&#xff1a; 看了项目配置文件的编码都是UTF-8&#xff0c;在别的开发机上运行都正常&#xff0c;就是这台机器上有问题。 同事一时也找不到方法&#xff0c;因为没遇到同样的事情。 一直怀疑是编…

Spring源码解析——IOC之循环依赖处理

什么是循环依赖 循环依赖其实就是循环引用&#xff0c;也就是两个或则两个以上的bean互相持有对方&#xff0c;最终形成闭环。比如A依赖于B&#xff0c;B依赖于C&#xff0c;C又依赖于A。如下图所示&#xff1a; 注意&#xff0c;这里不是函数的循环调用&#xff0c;是对象的相…

tcpdump(三)命令行参数讲解(二)

一 tcpdump实战详解 骏马金龙tcpdump详解 强调&#xff1a; 注意区分选项参数和过滤条件 本文继上篇 网卡没有开启混杂模式 tcpdump默认开启混杂模式 --no-promiscuous-mode --> 可以指定在非混杂模式抓包 ① -vv 控制详细内容的输出 ② -s -s 长度: 可以只…

基于Java的社区生鲜在线电商平台设计与实现(源码+lw+部署文档+讲解等)

文章目录 前言具体实现截图论文参考详细视频演示为什么选择我自己的网站自己的小程序&#xff08;小蔡coding&#xff09;有保障的售后福利 代码参考源码获取 前言 &#x1f497;博主介绍&#xff1a;✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计划导师、全栈领域优质创作…

【排序算法】选择排序

文章目录 一&#xff1a;基本介绍1.1 概念1.2 算法思想1.3 思路分析图1.4 思路分析1.5 总结1.5.1 选择排序一共有数组大小-1轮排序1.5.2 每一轮排序&#xff0c;又是一个循环&#xff0c;循环的规则如下&#xff08;在代码中实现&#xff09;&#xff1a; 二&#xff1a;代码实…

大数据——Spark Streaming

是什么 Spark Streaming是一个可扩展、高吞吐、具有容错性的流式计算框架。 之前我们接触的spark-core和spark-sql都是离线批处理任务&#xff0c;每天定时处理数据&#xff0c;对于数据的实时性要求不高&#xff0c;一般都是T1的。但在企业任务中存在很多的实时性的任务需求&…

C#,数值计算——数据建模Fitexy的计算方法与源程序

1 文本格式 using System; namespace Legalsoft.Truffer { public class Fitexy { private double a { get; set; } private double b { get; set; } private double siga { get; set; } private double sigb { get; set; } …

快速搭建Springboot项目(一)

目录 第一章、Spring Boot框架介绍1.1&#xff09;Springboot是什么&#xff0c;有什么好处1.2&#xff09;spring boot的两大策略与四大核心 第二章、快速搭建spring boot 项目2.1&#xff09;idea快速创建spring boot项目2.2&#xff09;pom文件内容的含义2.3&#xff09;起步…

195、SpringBoot--配置RabbitMQ消息Broker的SSL 和 管理控制台的HTTPS

开启Rabbitmq的一些命令&#xff1a; 小黑窗输入&#xff1a; rabbitmq-plugins enable rabbitmq_management 启动控制台插件&#xff0c;就是启动登录rabbitmq控制台的页面 rabbitmq_management 代表了RabbitMQ的管理界面。 rabbitmq-server 启动rabbitMQ服务器 上面这个&…

springboot中的静态资源规则~

静态资源处理&#xff1a; 默认的静态资源路径为 calsspath:/META-INF/resources/ classpath:/resources/ classpath:/static/ classpath:/public/如果我们将静态资源放置上述四种路径处&#xff0c;那么可以通过项目根路径/静态资源名称的方式访问到&#xff0c;否则会访问不…

Oracle-ASM实例communication error问题处理

问题背景&#xff1a; Oracle数据库日志出现大量的WARNING: ASM communication error: op 0 state 0x0 (15055)错误 问题分析: 首先检查ASM实例的状态,尝试通过sqlplus / as sysasm连接asm实例&#xff0c;出现Connected to an idle instance连接asm实例失败 检查ASM实例的后台…

mysql面试题27:数据库中间件了解过吗?什么是sharding jdbc、mycat,并且讲讲怎么使用?

该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:数据库中间件了解过吗,比如sharding jdbc、mycat? 我知道的数据库中间件有以下这些: MySQL Proxy:MySQL Proxy是一个开源的数据库中间件,它位…

SSM170基于SSM的疫情物质管理系统

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;采用JSP技术开发 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#x…