【List-Watch】

news2025/1/19 8:14:40

List-Watch

  • 一、定义
  • 二、工作机制
  • 三、调度过程

一、定义

Kubernetes 是通过 List-Watch 的机制进行每个组件的协作,保持数据同步的,每个组件之间的设计实现了解耦。

用户是通过 kubectl 根据配置文件,向 APIServer 发送命令,在 Node 节点上面建立 Pod 和 Container。
APIServer 经过 API 调用,权限控制,调用资源和存储资源的过程,实际上还没有真正开始部署应用。这里 需要 Controller Manager、Scheduler 和 kubelet 的协助才能完成整个部署过程。

在 Kubernetes 中,所有部署的信息都会写到 etcd 中保存。实际上 etcd 在存储部署信息的时候,会发送 Create 事件给 APIServer,而 APIServer 会通过监听(Watch)etcd 发过来的事件。其他组件也会监听(Watch)APIServer 发出来的事件。

二、工作机制

在这里插入图片描述
2379对内部使用
2380对外部使用
(1)这里有三个 List-Watch,分别是 Controller Manager(运行在 Master),Scheduler(运行在 Master),kubelet(运行在 Node)。 他们在进程已启动就会监听(Watch)APIServer 发出来的事件。

(2)用户通过 kubectl 或其他 API 客户端提交请求给 APIServer 来建立一个 Pod 对象副本。

(3)APIServer 尝试着将 Pod 对象的相关元信息存入 etcd 中,待写入操作执行完成,APIServer 即会返回确认信息至客户端。

(4)当 etcd 接受创建 Pod 信息以后,会发送一个 Create 事件给 APIServer。

(5)由于 Controller Manager 一直在监听(Watch,通过https的6443端口)APIServer 中的事件。此时 APIServer 接受到了 Create 事件,又会发送给 Controller Manager。

(6)Controller Manager 在接到 Create 事件以后,调用其中的 Replication Controller 来保证 Node 上面需要创建的副本数量。一旦副本数量少于 RC 中定义的数量,RC 会自动创建副本。总之它是保证副本数量的 Controller(PS:扩容缩容的担当)。

(7)在 Controller Manager 创建 Pod 副本以后,APIServer 会在 etcd 中记录这个 Pod 的详细信息。例如 Pod 的副本数,Container 的内容是什么。

(8)同样的 etcd 会将创建 Pod 的信息通过事件发送给 APIServer。

(9)由于 Scheduler 在监听(Watch)APIServer,并且它在系统中起到了“承上启下”的作用,“承上”是指它负责接收创建的 Pod 事件,为其安排 Node;“启下”是指安置工作完成后,Node 上的 kubelet 进程会接管后继工作,负责 Pod 生命周期中的“下半生”。 换句话说,Scheduler 的作用是将待调度的 Pod 按照调度算法和策略绑定到集群中 Node 上。

(10)Scheduler 调度完毕以后会更新 Pod 的信息,此时的信息更加丰富了。除了知道 Pod 的副本数量,副本内容。还知道部署到哪个 Node 上面了。并将上面的 Pod 信息更新至 API Server,由 APIServer 更新至 etcd 中,保存起来。

(11)etcd 将更新成功的事件发送给 APIServer,APIServer 也开始反映此 Pod 对象的调度结果。

(12)kubelet 是在 Node 上面运行的进程,它也通过 List-Watch 的方式监听(Watch,通过https的6443端口)APIServer 发送的 Pod 更新的事件。kubelet 会尝试在当前节点上调用 Docker 启动容器,并将 Pod 以及容器的结果状态回送至 APIServer。

(13)APIServer 将 Pod 状态信息存入 etcd 中。在 etcd 确认写入操作成功完成后,APIServer将确认信息发送至相关的 kubelet,事件将通过它被接受。

#注意:在创建 Pod 的工作就已经完成了后,为什么 kubelet 还要一直监听呢?原因很简单,假设这个时候 kubectl 发命令,要扩充 Pod 副本数量,那么上面的流程又会触发一遍,kubelet 会根据最新的 Pod 的部署情况调整 Node 的资源。又或者 Pod 副本数量没有发生变化,但是其中的镜像文件升级了,kubelet 也会自动获取最新的镜像文件并且加载。

三、调度过程

Scheduler 是 kubernetes 的调度器,主要的任务是把定义的 pod 分配到集群的节点上。其主要考虑的问题如下:
●公平:如何保证每个节点都能被分配资源
●资源高效利用:集群所有资源最大化被使用
●效率:调度的性能要好,能够尽快地对大批量的 pod 完成调度工作
●灵活:允许用户根据自己的需求控制调度的逻辑

Sheduler 是作为单独的程序运行的,启动之后会一直监听 APIServer,获取 spec.nodeName 为空的 pod,对每个 pod 都会创建一个 binding,表明该 pod 应该放到哪个节点上。

调度分为几个部分:首先是过滤掉不满足条件的节点,这个过程称为预算策略(predicate);然后对通过的节点按照优先级排序,这个是优选策略(priorities);最后从中选择优先级最高的节点。如果中间任何一步骤有错误,就直接返回错误。

Predicate 有一系列的常见的算法可以使用: **
●PodFitsResources:节点上剩余的资源是否大于 pod 请求的资源odeName,检查节点名称是否和 NodeName 匹配。。
●PodFitsHost:如果 pod 指定了 N
●PodFitsHostPorts:节点上已经使用的 port 是否和 pod 申请的 port 冲突。
●PodSelectorMatches:过滤掉和 pod 指定的 label 不匹配的节点。
●NoDiskConflict:已经 mount 的 volume 和 pod 指定的 volume 不冲突,除非它们都是只读。

如果在 predicate 过程中没有合适的节点,pod 会一直在 pending 状态,不断重试调度,直到有节点满足条件。 经过这个步骤,如果有多个节点满足条件,就继续 priorities 过程:按照优先级大小对节点排序。

优先级由一系列键值对组成,键是该优先级项的名称,值是它的权重(该项的重要性)。有一系列的常见的优先级选项包括:
●LeastRequestedPriority:通过计算CPU和Memory的使用率来决定权重,使用率越低权重越高。也就是说,这个优先级指标倾向于资源使用比例更低的节点。
●BalancedResourceAllocation:节点上 CPU 和 Memory 使用率越接近,权重越高。这个一般和上面的一起使用,不单独使用。比如 node01 的 CPU 和 Memory 使用率 20:60,node02 的 CPU 和 Memory 使用率 50:50,虽然 node01 的总使用率比 node02 低,但 node02 的 CPU 和 Memory 使用率更接近,从而调度时会优选 node02。
●ImageLocalityPriority:倾向于已经有要使用镜像的节点,镜像总大小值越大,权重越高。

通过算法对所有的优先级项目和权重进行计算,得出最终的结果。

//指定调度节点:
●pod.spec.nodeName 将 Pod 直接调度到指定的 Node 节点上,会跳过 Scheduler 的调度策略,该匹配规则是强制匹配

vim myapp.yaml
apiVersion: apps/v1  
kind: Deployment  
metadata:
  name: myapp
spec:
  replicas: 3
  selector:
    matchLabels:
      app: myapp
  template:
    metadata:
      labels:
        app: myapp
    spec:
      nodeName: node01
      containers:
      - name: myapp
        image: soscscs/myapp:v1
        ports:
        - containerPort: 80
		
kubectl apply -f myapp.yaml

kubectl get pods -o wide
NAME                     READY   STATUS    RESTARTS   AGE   IP            NODE     NOMINATED NODE   READINESS GATES
myapp-6bc58d7775-6wlpp   1/1     Running   0          14s   10.244.1.25   node01   <none>           <none>
myapp-6bc58d7775-szcvp   1/1     Running   0          14s   10.244.1.26   node01   <none>           <none>
myapp-6bc58d7775-vnxlp   1/1     Running   0          14s   10.244.1.24   node01   <none>           <none>

//查看详细事件(发现未经过 scheduler 调度分配)
kubectl describe pod myapp-6bc58d7775-6wlpp

Type Reason Age From Message


Normal Pulled 95s kubelet, node01 Container image “soscscs/myapp:v1” already present on machine
Normal Created 99s kubelet, node01 Created container nginx
Normal Started 99s kubelet, node01 Started container nginx

●pod.spec.nodeSelector:通过 kubernetes 的 label-selector 机制选择节点,由调度器调度策略匹配 label,然后调度 Pod 到目标节点,该匹配规则属于强制约束
//获取标签帮助
kubectl label --help
Usage:
kubectl label [–overwrite] (-f FILENAME | TYPE NAME) KEY_1=VAL_1 … KEY_N=VAL_N [–resource-version=version] [options]

//需要获取 node 上的 NAME 名称
kubectl get node
NAME     STATUS   ROLES    AGE   VERSION
master   Ready    master   30h   v1.20.11
node01   Ready    <none>   30h   v1.20.11
node02   Ready    <none>   30h   v1.20.11

//给对应的 node 设置标签分别为 kgc=a 和 kgc=b
kubectl label nodes node01 kgc=a

kubectl label nodes node02 kgc=b
//查看标签
kubectl get nodes --show-labels
NAME     STATUS   ROLES    AGE   VERSION   LABELS
master   Ready    master   30h   v1.20.11   beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,kubernetes.io/arch=amd64,kubernetes.io/hostname=master,kubernetes.io/os=linux,node-role.kubernetes.io/master=
node01   Ready    <none>   30h   v1.20.11   beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,kgc=a,kubernetes.io/arch=amd64,kubernetes.io/hostname=node01,kubernetes.io/os=linux
node02   Ready    <none>   30h   v1.20.11   beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,kgc=b,kubernetes.io/arch=amd64,kubernetes.io/hostname=node02,kubernetes.io/os=linux

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1070009.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Acwing.788 逆序对的数量

题目 给定一个长度为n的整数数列&#xff0c;请你计算数列中的逆序对的数量。 逆序对的定义如下:对于数列的第i个和第j个元素&#xff0c;如果满i<j且ali]>ali]&#xff0c;则其为一个逆序对;否则不是. 输入格式 第一行包含整数n&#xff0c;表示数列的长度。 第二行包…

Redis学习(九)SpringBoot实现(Pub/Sub)发布订阅

目录 一、背景二、Redis的发布订阅2.1 订阅单个频道常用命令 2.2 按规则&#xff08;Pattern&#xff09;订阅频道2.3 不推荐使用的原因 三、SpringBoot实现发布订阅3.1 RedisUtil.java 发布类1&#xff09;MessageDTO.java 实体类2&#xff09;发布测试 3.2 订阅实现方式一&am…

day10.8ubentu流水灯

流水灯 .text .global _start _start: 1.设置GPIOE寄存器的时钟使能 RCC_MP_AHB4ENSETR[4]->1 0x50000a28LDR R0,0X50000A28LDR R1,[R0] 从r0为起始地址的4字节数据取出放在R1ORR R1,R1,#(0x1<<4) 第4位设置为1STR R1,[R0] 写回2.设置PE10管脚为输出模式 G…

C#LINQ

LINQ&#xff08;Language Integrated Query )语言集成查询&#xff0c;是一组用于C#和VB语言的拓展&#xff0c;它允许VB或者C#代码以操作内存数据的方式&#xff0c;查询数据库。 LINQ使用的优点&#xff1a; 无需复杂学习过程即可上手。编写更少代码即可创建完整应用。更快…

okhttp4.11源码分析

目录 一&#xff0c;OKHTTP时序图 二&#xff0c;OKHTTP类图 三&#xff0c;OKHTTP流程图 一&#xff0c;OKHTTP时序图 上图是整个okhttp一次完整的请求过程&#xff0c;时序图里面有些部分为了方便采用了简单的描述&#xff0c;描述了主要的流程&#xff0c;细节的话&#…

数据结构之堆,栈的实现

首先我们分析由于只需要尾进尾出&#xff0c;用数组模拟更简单。 实现的功能如上图。 top可以表示栈中元素个数。 capacity表示栈的容量。 首先是堆的初始化 再就是栈的插入和删除 然后实现显示栈顶元素 大小和检测是否为空的实现 销毁栈的实现&#xff08;防止内存泄露&…

【无标题】Delayed延迟队列不工作

背景 项目中使用java 自带的延迟队列Delayed&#xff0c;只有添加进队列的消息&#xff0c;并没有被消费到 版本 jdk1.8 问题原因 上一个消费队列出现异常并且没有捕获&#xff0c;下一个队列就没有进行消费 复现代码 没有抛异常的情况下 package com.ccb.core.config.…

10.8c++作业

#include <iostream>using namespace std; class Rect {int width; //宽int height; //高 public://初始化函数void init(int w,int h){widthw;heighth;}//更改宽度void set_w(int w){widthw;}//更改高度void set_h(int h){heighth;}//输出矩形周长和面积void show(){co…

2023年铷铁硼行业分析:低端供应过剩,高性能材料供应不足[图]

铷铁硼材料是一种Fe基磁性材料&#xff0c;主要由钕铁硼按一定比例组成的四方晶体结构&#xff0c;其中Fe元素约占总质量的三分之二&#xff0c;Nd元素约占总量的三分之一&#xff0c;而B等含量最少&#xff0c;约占1%。铷铁硼是现今磁性最强的永久磁铁&#xff0c;也是最常使用…

波奇学C++:用红黑树模拟实现map和set

用同一个树的类模板封装map(key/value)和set(key) 红黑树的Node template<class T> struct RBTreeNode {RBTreeNode<T>* _left;RBTreeNode<T>* _right;RBTreeNode<T>* _parent;T _data;Colour _col;RBTreeNode(const T& data):_left(nullptr),_r…

python工具-内存采集展示

1. 查看某个进程的内存占用 1. 查看某个进程的内存占用 1.1. 采集1.2. 分析 1.1. 采集 下边内存保存为 cat-memory.sh 脚本文件&#xff0c;赋予可执行权限执行 ./cat-memory.sh pid 会生成 pid.txt #!/bin/bashprocess$1 out$1.txt pid$1echo 时间 内存(KB) >> $ou…

复旦大学EMBA:揭秘科创企业,领略未来战略!

智能制造&#xff0c;国之重器。作为制造强国建设的主攻方向&#xff0c;智能制造的发展水平关系到我国未来制造业在全球的地位与影响力。发展智能制造&#xff0c;是加快建设现代化产业体系的重要手段&#xff0c;提升供给体系适配性的有力抓手&#xff0c;也是建设数字中国的…

E. Monsters

Problem - 1810E - Codeforces 思路&#xff1a;我们总结一下题意&#xff0c;能够得到这个题其实就是让我们从某个0开始搜索&#xff0c;然后看看是否可以遍历所有得节点&#xff0c;那么如果采用暴力得话那就是n^2logn&#xff0c;因为我们遍历一次使用优先队列得话是nlogn的…

Stm32_标准库_8_ADC_光敏传感器_测量具体光照强度

ADC简介 测量方式 采用二分法比较数据 IO通道 ADC基本结构及配置路线 获取数字变量需要用到用到光敏电阻的AO口&#xff0c;AO端口接在PA0引脚即可 测得的模拟数据与实际光照强度之间的关系为 光照强度 100 - 模拟量 / 40;代码&#xff1a; 完整朴素代码&#xff1a; #in…

Mysql存储-EAV模式

Mysql存储-EAV模式 最近又又又搞一点新东西&#xff0c;要整合不同业务进行存储和查询&#xff0c;一波学习过后总结了一下可扩展性MAX的eav模式存储。 在eav这里的数据结构设计尤为关键&#xff0c;需要充分考虑你需要使用的字段、使用场景&#xff0c;当数据结构设计完成后便…

skywalking功能介绍

服务 服务信息 请求接口后查看skywalking&#xff0c;可以看到有一个请求&#xff0c;响应时间为1852ms&#xff0c;性能指数Apdex为0.5。 详细表盘 点进应用可以看到表盘 可以看到显示有一个slow endpoints&#xff0c;就是我请求的这个接口。 JVM信息 也可以看到JVM信息。…

点餐小程序实战教程06-首页开发

用户注册功能开发好了之后&#xff0c;我们就要开发小程序&#xff0c;首先我们是规划小程序的功能模块&#xff0c;我们一共是四个模块&#xff0c;分别是首页、订单、消息和我的。 首页我们主要是点餐的功能&#xff0c;可以选择菜品&#xff0c;加入到购物车&#xff0c;然…

deckGL自定义图层学习笔记

1.自定义图层 当使用DeckGL提供的图层还无法满足需求时&#xff08;https://deck.gl/docs/api-reference/layers&#xff09;&#xff0c;可能就需要自定义图层了。在DeckGL中有常见的三种自定义图层的方式 创建复合层&#xff08;composite layers.&#xff09;——复合层是一…

ffmpeg从一个视频中提取音频

ffmpeg -i ~/video/video.mp4 -vn -acodec copy ~/video/audioFile.m4a 从video.mp4中提取音频到文件audioFile.m4a中 查看提取的音频文件 ffprobe ~/video/audioFile.m4a

OneDrive下的OneNote扩容方法,及查看OneDrive容量的方法(详细图文教程)

目录 一、内存不足的问题二、土豪续费扩容法三、X宝扩容法3.1 购买链接3.2 登录接口3.3 详细图文操作过程3.3.1 获取链接&#xff1a;3.3.2 用订单号和获取链接扩容&#xff1a; 3.4 扩容后的容量 四、查看自己OneDrive的容量五、总结 一、内存不足的问题 一直都在用OneNote记…