机器学习-数值特征

news2024/12/23 17:38:01

离散值处理

import pandas as pd
import numpy as np
vg_df = pd.read_csv('datasets/vgsales.csv', encoding = "ISO-8859-1")
vg_df[['Name', 'Platform', 'Year', 'Genre', 'Publisher']].iloc[1:7]
NamePlatformYearGenrePublisher
1Super Mario Bros.NES1985.0PlatformNintendo
2Mario Kart WiiWii2008.0RacingNintendo
3Wii Sports ResortWii2009.0SportsNintendo
4Pokemon Red/Pokemon BlueGB1996.0Role-PlayingNintendo
5TetrisGB1989.0PuzzleNintendo
6New Super Mario Bros.DS2006.0PlatformNintendo
genres = np.unique(vg_df['Genre'])
genres
array(['Action', 'Adventure', 'Fighting', 'Misc', 'Platform', 'Puzzle',
       'Racing', 'Role-Playing', 'Shooter', 'Simulation', 'Sports',
       'Strategy'], dtype=object)

LabelEncoder

from sklearn.preprocessing import LabelEncoder

gle = LabelEncoder()
genre_labels = gle.fit_transform(vg_df['Genre'])
genre_mappings = {index: label for index, label in enumerate(gle.classes_)}
genre_mappings
{0: 'Action',
 1: 'Adventure',
 2: 'Fighting',
 3: 'Misc',
 4: 'Platform',
 5: 'Puzzle',
 6: 'Racing',
 7: 'Role-Playing',
 8: 'Shooter',
 9: 'Simulation',
 10: 'Sports',
 11: 'Strategy'}
vg_df['GenreLabel'] = genre_labels
vg_df[['Name', 'Platform', 'Year', 'Genre', 'GenreLabel']].iloc[1:7]
NamePlatformYearGenreGenreLabel
1Super Mario Bros.NES1985.0Platform4
2Mario Kart WiiWii2008.0Racing6
3Wii Sports ResortWii2009.0Sports10
4Pokemon Red/Pokemon BlueGB1996.0Role-Playing7
5TetrisGB1989.0Puzzle5
6New Super Mario Bros.DS2006.0Platform4

Map

poke_df = pd.read_csv('datasets/Pokemon.csv', encoding='utf-8')
poke_df = poke_df.sample(random_state=1, frac=1).reset_index(drop=True)

np.unique(poke_df['Generation'])
array(['Gen 1', 'Gen 2', 'Gen 3', 'Gen 4', 'Gen 5', 'Gen 6'], dtype=object)
gen_ord_map = {'Gen 1': 1, 'Gen 2': 2, 'Gen 3': 3, 
               'Gen 4': 4, 'Gen 5': 5, 'Gen 6': 6}

poke_df['GenerationLabel'] = poke_df['Generation'].map(gen_ord_map)
poke_df[['Name', 'Generation', 'GenerationLabel']].iloc[4:10]
NameGenerationGenerationLabel
4OctilleryGen 22
5HelioptileGen 66
6DialgaGen 44
7DeoxysDefense FormeGen 33
8RapidashGen 11
9SwannaGen 55

One-hot Encoding

poke_df[['Name', 'Generation', 'Legendary']].iloc[4:10]
NameGenerationLegendary
4OctilleryGen 2False
5HelioptileGen 6False
6DialgaGen 4True
7DeoxysDefense FormeGen 3True
8RapidashGen 1False
9SwannaGen 5False
from sklearn.preprocessing import OneHotEncoder, LabelEncoder

# transform and map pokemon generations
gen_le = LabelEncoder()
gen_labels = gen_le.fit_transform(poke_df['Generation'])
poke_df['Gen_Label'] = gen_labels

# transform and map pokemon legendary status
leg_le = LabelEncoder()
leg_labels = leg_le.fit_transform(poke_df['Legendary'])
poke_df['Lgnd_Label'] = leg_labels

poke_df_sub = poke_df[['Name', 'Generation', 'Gen_Label', 'Legendary', 'Lgnd_Label']]
poke_df_sub.iloc[4:10]
NameGenerationGen_LabelLegendaryLgnd_Label
4OctilleryGen 21False0
5HelioptileGen 65False0
6DialgaGen 43True1
7DeoxysDefense FormeGen 32True1
8RapidashGen 10False0
9SwannaGen 54False0
# encode generation labels using one-hot encoding scheme
gen_ohe = OneHotEncoder()
gen_feature_arr = gen_ohe.fit_transform(poke_df[['Gen_Label']]).toarray()
gen_feature_labels = list(gen_le.classes_)
print (gen_feature_labels)
gen_features = pd.DataFrame(gen_feature_arr, columns=gen_feature_labels)

# encode legendary status labels using one-hot encoding scheme
leg_ohe = OneHotEncoder()
leg_feature_arr = leg_ohe.fit_transform(poke_df[['Lgnd_Label']]).toarray()
leg_feature_labels = ['Legendary_'+str(cls_label) for cls_label in leg_le.classes_]
print (leg_feature_labels)
leg_features = pd.DataFrame(leg_feature_arr, columns=leg_feature_labels)
['Gen 1', 'Gen 2', 'Gen 3', 'Gen 4', 'Gen 5', 'Gen 6']
['Legendary_False', 'Legendary_True']
poke_df_ohe = pd.concat([poke_df_sub, gen_features, leg_features], axis=1)
columns = sum([['Name', 'Generation', 'Gen_Label'],gen_feature_labels,
              ['Legendary', 'Lgnd_Label'],leg_feature_labels], [])
poke_df_ohe[columns].iloc[4:10]
NameGenerationGen_LabelGen 1Gen 2Gen 3Gen 4Gen 5Gen 6LegendaryLgnd_LabelLegendary_FalseLegendary_True
4OctilleryGen 210.01.00.00.00.00.0False01.00.0
5HelioptileGen 650.00.00.00.00.01.0False01.00.0
6DialgaGen 430.00.00.01.00.00.0True10.01.0
7DeoxysDefense FormeGen 320.00.01.00.00.00.0True10.01.0
8RapidashGen 101.00.00.00.00.00.0False01.00.0
9SwannaGen 540.00.00.00.01.00.0False01.00.0

Get Dummy

gen_dummy_features = pd.get_dummies(poke_df['Generation'], drop_first=True)
pd.concat([poke_df[['Name', 'Generation']], gen_dummy_features], axis=1).iloc[4:10]
NameGenerationGen 2Gen 3Gen 4Gen 5Gen 6
4OctilleryGen 210000
5HelioptileGen 600001
6DialgaGen 400100
7DeoxysDefense FormeGen 301000
8RapidashGen 100000
9SwannaGen 500010
gen_onehot_features = pd.get_dummies(poke_df['Generation'])
pd.concat([poke_df[['Name', 'Generation']], gen_onehot_features], axis=1).iloc[4:10]
NameGenerationGen 1Gen 2Gen 3Gen 4Gen 5Gen 6
4OctilleryGen 2010000
5HelioptileGen 6000001
6DialgaGen 4000100
7DeoxysDefense FormeGen 3001000
8RapidashGen 1100000
9SwannaGen 5000010
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
import scipy.stats as spstats

%matplotlib inline
mpl.style.reload_library()
mpl.style.use('classic')
mpl.rcParams['figure.facecolor'] = (1, 1, 1, 0)
mpl.rcParams['figure.figsize'] = [6.0, 4.0]
mpl.rcParams['figure.dpi'] = 100
poke_df = pd.read_csv('datasets/Pokemon.csv', encoding='utf-8')
poke_df.head()
#NameType 1Type 2TotalHPAttackDefenseSp. AtkSp. DefSpeedGenerationLegendary
01BulbasaurGrassPoison318454949656545Gen 1False
12IvysaurGrassPoison405606263808060Gen 1False
23VenusaurGrassPoison52580828310010080Gen 1False
33VenusaurMega VenusaurGrassPoison6258010012312212080Gen 1False
44CharmanderFireNaN309395243605065Gen 1False
poke_df[['HP', 'Attack', 'Defense']].head()
HPAttackDefense
0454949
1606263
2808283
380100123
4395243
poke_df[['HP', 'Attack', 'Defense']].describe()
HPAttackDefense
count800.000000800.000000800.000000
mean69.25875079.00125073.842500
std25.53466932.45736631.183501
min1.0000005.0000005.000000
25%50.00000055.00000050.000000
50%65.00000075.00000070.000000
75%80.000000100.00000090.000000
max255.000000190.000000230.000000
popsong_df = pd.read_csv('datasets/song_views.csv', encoding='utf-8')
popsong_df.head(10)
user_idsong_idtitlelisten_count
0b6b799f34a204bd928ea014c243ddad6d0be4f8fSOBONKR12A58A7A7E0You're The One2
1b41ead730ac14f6b6717b9cf8859d5579f3f8d4dSOBONKR12A58A7A7E0You're The One0
24c84359a164b161496d05282707cecbd50adbfc4SOBONKR12A58A7A7E0You're The One0
3779b5908593756abb6ff7586177c966022668b06SOBONKR12A58A7A7E0You're The One0
4dd88ea94f605a63d9fc37a214127e3f00e85e42dSOBONKR12A58A7A7E0You're The One0
568f0359a2f1cedb0d15c98d88017281db79f9bc6SOBONKR12A58A7A7E0You're The One0
6116a4c95d63623a967edf2f3456c90ebbf964e6fSOBONKR12A58A7A7E0You're The One17
745544491ccfcdc0b0803c34f201a6287ed4e30f8SOBONKR12A58A7A7E0You're The One0
8e701a24d9b6c59f5ac37ab28462ca82470e27cfbSOBONKR12A58A7A7E0You're The One68
9edc8b7b1fd592a3b69c3d823a742e1a064abec95SOBONKR12A58A7A7E0You're The One0

二值特征

watched = np.array(popsong_df['listen_count']) 
watched[watched >= 1] = 1
popsong_df['watched'] = watched
popsong_df.head(10)
user_idsong_idtitlelisten_countwatched
0b6b799f34a204bd928ea014c243ddad6d0be4f8fSOBONKR12A58A7A7E0You're The One21
1b41ead730ac14f6b6717b9cf8859d5579f3f8d4dSOBONKR12A58A7A7E0You're The One00
24c84359a164b161496d05282707cecbd50adbfc4SOBONKR12A58A7A7E0You're The One00
3779b5908593756abb6ff7586177c966022668b06SOBONKR12A58A7A7E0You're The One00
4dd88ea94f605a63d9fc37a214127e3f00e85e42dSOBONKR12A58A7A7E0You're The One00
568f0359a2f1cedb0d15c98d88017281db79f9bc6SOBONKR12A58A7A7E0You're The One00
6116a4c95d63623a967edf2f3456c90ebbf964e6fSOBONKR12A58A7A7E0You're The One171
745544491ccfcdc0b0803c34f201a6287ed4e30f8SOBONKR12A58A7A7E0You're The One00
8e701a24d9b6c59f5ac37ab28462ca82470e27cfbSOBONKR12A58A7A7E0You're The One681
9edc8b7b1fd592a3b69c3d823a742e1a064abec95SOBONKR12A58A7A7E0You're The One00
from sklearn.preprocessing import Binarizer

bn = Binarizer(threshold=0.9)
pd_watched = bn.transform([popsong_df['listen_count']])[0]
popsong_df['pd_watched'] = pd_watched
popsong_df.head(11)
user_idsong_idtitlelisten_countwatchedpd_watched
0b6b799f34a204bd928ea014c243ddad6d0be4f8fSOBONKR12A58A7A7E0You're The One211
1b41ead730ac14f6b6717b9cf8859d5579f3f8d4dSOBONKR12A58A7A7E0You're The One000
24c84359a164b161496d05282707cecbd50adbfc4SOBONKR12A58A7A7E0You're The One000
3779b5908593756abb6ff7586177c966022668b06SOBONKR12A58A7A7E0You're The One000
4dd88ea94f605a63d9fc37a214127e3f00e85e42dSOBONKR12A58A7A7E0You're The One000
568f0359a2f1cedb0d15c98d88017281db79f9bc6SOBONKR12A58A7A7E0You're The One000
6116a4c95d63623a967edf2f3456c90ebbf964e6fSOBONKR12A58A7A7E0You're The One1711
745544491ccfcdc0b0803c34f201a6287ed4e30f8SOBONKR12A58A7A7E0You're The One000
8e701a24d9b6c59f5ac37ab28462ca82470e27cfbSOBONKR12A58A7A7E0You're The One6811
9edc8b7b1fd592a3b69c3d823a742e1a064abec95SOBONKR12A58A7A7E0You're The One000
10fb41d1c374d093ab643ef3bcd70eeb258d479076SOBONKR12A58A7A7E0You're The One111

多项式特征

atk_def = poke_df[['Attack', 'Defense']]
atk_def.head()
AttackDefense
04949
16263
28283
3100123
45243
from sklearn.preprocessing import PolynomialFeatures

pf = PolynomialFeatures(degree=2, interaction_only=False, include_bias=False)
res = pf.fit_transform(atk_def)
res
array([[    49.,     49.,   2401.,   2401.,   2401.],
       [    62.,     63.,   3844.,   3906.,   3969.],
       [    82.,     83.,   6724.,   6806.,   6889.],
       ..., 
       [   110.,     60.,  12100.,   6600.,   3600.],
       [   160.,     60.,  25600.,   9600.,   3600.],
       [   110.,    120.,  12100.,  13200.,  14400.]])
intr_features = pd.DataFrame(res, columns=['Attack', 'Defense', 'Attack^2', 'Attack x Defense', 'Defense^2'])
intr_features.head(5)
AttackDefenseAttack^2Attack x DefenseDefense^2
049.049.02401.02401.02401.0
162.063.03844.03906.03969.0
282.083.06724.06806.06889.0
3100.0123.010000.012300.015129.0
452.043.02704.02236.01849.0

binning特征

fcc_survey_df = pd.read_csv('datasets/fcc_2016_coder_survey_subset.csv', encoding='utf-8')
fcc_survey_df[['ID.x', 'EmploymentField', 'Age', 'Income']].head()
ID.xEmploymentFieldAgeIncome
0cef35615d61b202f1dc794ef2746df14office and administrative support28.032000.0
1323e5a113644d18185c743c241407754food and beverage22.015000.0
2b29a1027e5cd062e654a63764157461dfinance19.048000.0
304a11e4bcb573a1261eb0d9948d32637arts, entertainment, sports, or media26.043000.0
49368291c93d5d5f5c8cdb1a575e18beceducation20.06000.0
fig, ax = plt.subplots()
fcc_survey_df['Age'].hist(color='#A9C5D3')
ax.set_title('Developer Age Histogram', fontsize=12)
ax.set_xlabel('Age', fontsize=12)
ax.set_ylabel('Frequency', fontsize=12)
Text(0,0.5,'Frequency')

在这里插入图片描述

Binning based on rounding

Age Range: Bin
---------------
 0 -  9  : 0
10 - 19  : 1
20 - 29  : 2
30 - 39  : 3
40 - 49  : 4
50 - 59  : 5
60 - 69  : 6
  ... and so on
fcc_survey_df['Age_bin_round'] = np.array(np.floor(np.array(fcc_survey_df['Age']) / 10.))
fcc_survey_df[['ID.x', 'Age', 'Age_bin_round']].iloc[1071:1076]
ID.xAgeAge_bin_round
10716a02aa4618c99fdb3e24de522a09943117.01.0
1072f0e5e47278c5f248fe861c5f7214c07a38.03.0
10736e14f6d0779b7e424fa3fdd9e4bd3bf921.02.0
1074c2654c07dc929cdf3dad4d1aec4ffbb353.05.0
1075f07449fc9339b2e57703ec788623252335.03.0

分位数切分

fcc_survey_df[['ID.x', 'Age', 'Income']].iloc[4:9]
ID.xAgeIncome
49368291c93d5d5f5c8cdb1a575e18bec20.06000.0
5dd0e77eab9270e4b67c19b0d6bbf621b34.040000.0
67599c0aa0419b59fd11ffede98a3665d23.032000.0
76dff182db452487f07a47596f314bddc35.040000.0
89dc233f8ed1c6eb2432672ab4bb3924933.080000.0
fig, ax = plt.subplots()
fcc_survey_df['Income'].hist(bins=30, color='#A9C5D3')
ax.set_title('Developer Income Histogram', fontsize=12)
ax.set_xlabel('Developer Income', fontsize=12)
ax.set_ylabel('Frequency', fontsize=12)
Text(0,0.5,'Frequency')

在这里插入图片描述

quantile_list = [0, .25, .5, .75, 1.]
quantiles = fcc_survey_df['Income'].quantile(quantile_list)
quantiles
0.00      6000.0
0.25     20000.0
0.50     37000.0
0.75     60000.0
1.00    200000.0
Name: Income, dtype: float64
fig, ax = plt.subplots()
fcc_survey_df['Income'].hist(bins=30, color='#A9C5D3')

for quantile in quantiles:
    qvl = plt.axvline(quantile, color='r')
ax.legend([qvl], ['Quantiles'], fontsize=10)

ax.set_title('Developer Income Histogram with Quantiles', fontsize=12)
ax.set_xlabel('Developer Income', fontsize=12)
ax.set_ylabel('Frequency', fontsize=12)
Text(0,0.5,'Frequency')

在这里插入图片描述

quantile_labels = ['0-25Q', '25-50Q', '50-75Q', '75-100Q']
fcc_survey_df['Income_quantile_range'] = pd.qcut(fcc_survey_df['Income'], 
                                                 q=quantile_list)
fcc_survey_df['Income_quantile_label'] = pd.qcut(fcc_survey_df['Income'], 
                                                 q=quantile_list, labels=quantile_labels)
fcc_survey_df[['ID.x', 'Age', 'Income', 
               'Income_quantile_range', 'Income_quantile_label']].iloc[4:9]
ID.xAgeIncomeIncome_quantile_rangeIncome_quantile_label
49368291c93d5d5f5c8cdb1a575e18bec20.06000.0(5999.999, 20000.0]0-25Q
5dd0e77eab9270e4b67c19b0d6bbf621b34.040000.0(37000.0, 60000.0]50-75Q
67599c0aa0419b59fd11ffede98a3665d23.032000.0(20000.0, 37000.0]25-50Q
76dff182db452487f07a47596f314bddc35.040000.0(37000.0, 60000.0]50-75Q
89dc233f8ed1c6eb2432672ab4bb3924933.080000.0(60000.0, 200000.0]75-100Q

对数变换 COX-BOX

fcc_survey_df['Income_log'] = np.log((1+ fcc_survey_df['Income']))
fcc_survey_df[['ID.x', 'Age', 'Income', 'Income_log']].iloc[4:9]
ID.xAgeIncomeIncome_log
49368291c93d5d5f5c8cdb1a575e18bec20.06000.08.699681
5dd0e77eab9270e4b67c19b0d6bbf621b34.040000.010.596660
67599c0aa0419b59fd11ffede98a3665d23.032000.010.373522
76dff182db452487f07a47596f314bddc35.040000.010.596660
89dc233f8ed1c6eb2432672ab4bb3924933.080000.011.289794
income_log_mean = np.round(np.mean(fcc_survey_df['Income_log']), 2)

fig, ax = plt.subplots()
fcc_survey_df['Income_log'].hist(bins=30, color='#A9C5D3')
plt.axvline(income_log_mean, color='r')
ax.set_title('Developer Income Histogram after Log Transform', fontsize=12)
ax.set_xlabel('Developer Income (log scale)', fontsize=12)
ax.set_ylabel('Frequency', fontsize=12)
ax.text(11.5, 450, r'$\mu$='+str(income_log_mean), fontsize=10)
Text(11.5,450,'$\\mu$=10.43')

日期相关特征

import datetime
import numpy as np
import pandas as pd
from dateutil.parser import parse
import pytz
time_stamps = ['2015-03-08 10:30:00.360000+00:00', '2017-07-13 15:45:05.755000-07:00',
               '2012-01-20 22:30:00.254000+05:30', '2016-12-25 00:30:00.000000+10:00']
df = pd.DataFrame(time_stamps, columns=['Time'])
df

在这里插入图片描述

Time
02015-03-08 10:30:00.360000+00:00
12017-07-13 15:45:05.755000-07:00
22012-01-20 22:30:00.254000+05:30
32016-12-25 00:30:00.000000+10:00
ts_objs = np.array([pd.Timestamp(item) for item in np.array(df.Time)])
df['TS_obj'] = ts_objs
ts_objs
array([Timestamp('2015-03-08 10:30:00.360000+0000', tz='UTC'),
       Timestamp('2017-07-13 15:45:05.755000-0700', tz='pytz.FixedOffset(-420)'),
       Timestamp('2012-01-20 22:30:00.254000+0530', tz='pytz.FixedOffset(330)'),
       Timestamp('2016-12-25 00:30:00+1000', tz='pytz.FixedOffset(600)')], dtype=object)
df['Year'] = df['TS_obj'].apply(lambda d: d.year)
df['Month'] = df['TS_obj'].apply(lambda d: d.month)
df['Day'] = df['TS_obj'].apply(lambda d: d.day)
df['DayOfWeek'] = df['TS_obj'].apply(lambda d: d.dayofweek)
df['DayName'] = df['TS_obj'].apply(lambda d: d.weekday_name)
df['DayOfYear'] = df['TS_obj'].apply(lambda d: d.dayofyear)
df['WeekOfYear'] = df['TS_obj'].apply(lambda d: d.weekofyear)
df['Quarter'] = df['TS_obj'].apply(lambda d: d.quarter)

df[['Time', 'Year', 'Month', 'Day', 'Quarter', 
    'DayOfWeek', 'DayName', 'DayOfYear', 'WeekOfYear']]
TimeYearMonthDayQuarterDayOfWeekDayNameDayOfYearWeekOfYear
02015-03-08 10:30:00.360000+00:0020153816Sunday6710
12017-07-13 15:45:05.755000-07:00201771333Thursday19428
22012-01-20 22:30:00.254000+05:30201212014Friday203
32016-12-25 00:30:00.000000+10:002016122546Saturday36051

时间相关特征

df['Hour'] = df['TS_obj'].apply(lambda d: d.hour)
df['Minute'] = df['TS_obj'].apply(lambda d: d.minute)
df['Second'] = df['TS_obj'].apply(lambda d: d.second)
df['MUsecond'] = df['TS_obj'].apply(lambda d: d.microsecond)   #毫秒
df['UTC_offset'] = df['TS_obj'].apply(lambda d: d.utcoffset()) #UTC时间位移

df[['Time', 'Hour', 'Minute', 'Second', 'MUsecond', 'UTC_offset']]
TimeHourMinuteSecondMUsecondUTC_offset
02015-03-08 10:30:00.360000+00:001030036000000:00:00
12017-07-13 15:45:05.755000-07:0015455755000-1 days +17:00:00
22012-01-20 22:30:00.254000+05:302230025400005:30:00
32016-12-25 00:30:00.000000+10:000300010:00:00

按照早晚切分时间

hour_bins = [-1, 5, 11, 16, 21, 23]
bin_names = ['Late Night', 'Morning', 'Afternoon', 'Evening', 'Night']
df['TimeOfDayBin'] = pd.cut(df['Hour'], 
                            bins=hour_bins, labels=bin_names)
df[['Time', 'Hour', 'TimeOfDayBin']]
TimeHourTimeOfDayBin
02015-03-08 10:30:00.360000+00:0010Morning
12017-07-13 15:45:05.755000-07:0015Afternoon
22012-01-20 22:30:00.254000+05:3022Night
32016-12-25 00:30:00.000000+10:000Late Night

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1068921.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

30 数据分析常见概念(略写可跳)

文章目录 数据科学领域概述数据如何驱动运营给企业带来价值岗位关键词说明业务的商业模式 数据指标数据指标定义及常用数据指标如何选取指标分析角度计数流量导向的工具内容导向的工具用户导向的工具业务导向的工具 数据分析方法对比分析多维分析漏斗分析留存分析总结 用户画像…

王兰去(黑客)自学

前言: 想自学网络安全(黑客技术)首先你得了解什么是网络安全!什么是黑客 网络安全可以基于攻击和防御视角来分类,我们经常听到的 “红队”、“渗透测试” 等就是研究攻击技术,而“蓝队”、“安全运营”、“…

京东数据分析软件:2023年8月京东彩妆行业品牌销售排行榜

鲸参谋监测的京东平台8月份彩妆市场销售数据已出炉! 根据鲸参谋平台的数据显示,今年8月份,京东平台上彩妆行业的销量将近390万,其中,环比来看增长约11%,同比则降低约34%;销售额为6.3亿&#xf…

springcloud之项目实战环境准备

写在前面 为了更好的学习springcloud,我们来一起开发一个实战项目,加深理解。 1:项目介绍 在开始项目实战之前先来做一个整体的项目介绍,从而能够让对项目的整体架构和模板有一个比较清晰的认知。 大家都知道双11,…

百元开放式耳机哪款好一点耐用、百元耳放推荐

在耳机品类中,佩戴无需入耳、可保持耳道舒适的开放式耳机正成为新的潮流,不仅不少消费者趋之若鹜,相对于传统入耳式耳机,开放式耳机具备开放双耳的特性,能敞开耳道,让耳朵随时呼吸,保持干燥透气…

华为云CodeArts Check代码检查插件(CodeArts IDE本地版本)使用指南

CodeArts Check 代码检查插件(CodeArts IDE本地版本) 本插件致力于守护开发人员代码质量,成为开发人员的助手和利器。秉承极简、极速、即时看护的理念,提供业界规范(含华为云)的检查、代码风格一键格式化及…

基于 Kettle + StarRocks + FineReport 的大数据处理分析方案

Kettle StarRocks FineReport 的大数据处理分析方案 其中 Kettle 负责数据的ETL处理,StarRocks 负责海量数据的存储及检索,FineReport 负责数据的可视化展示。整体过程如下所示: 如果多上面三个组件不了解可以先参考下下面的文章&#xff…

【数据分享】1901-2022年1km分辨率的逐月潜在蒸散发栅格数据(免费获取/全国/分省)

气象指标在日常研究中非常常用,之前我们给大家分享过来源于国家青藏高原科学数据中心提供的气象指标栅格数据(均可查看之前的文章获悉详情): 1901-2022年1km分辨率逐月平均气温栅格数据 1901-2022年1km分辨率逐年平均气温栅格数据…

计算机竞赛 题目:基于LSTM的预测算法 - 股票预测 天气预测 房价预测

文章目录 0 简介1 基于 Keras 用 LSTM 网络做时间序列预测2 长短记忆网络3 LSTM 网络结构和原理3.1 LSTM核心思想3.2 遗忘门3.3 输入门3.4 输出门 4 基于LSTM的天气预测4.1 数据集4.2 预测示例 5 基于LSTM的股票价格预测5.1 数据集5.2 实现代码 6 lstm 预测航空旅客数目数据集预…

ctfshow-web5(md5弱比较)

打开题目链接是html和php代码 html没啥有用信息,这里审一下php代码 : 要求使用get方式传入两个参数 v1,v2 ctype_alpha()函数:用于检查给定的字符串是否仅包含字母; is_numeric()函数:检测字符串是否只由…

浏览器唤起钉钉 各项功能

浏览器唤起钉钉对应人员聊天 文档地址 https://open.dingtalk.com/document/client/unified-routing-protocol 唤起聊天 不过只能唤起叮叮的名片 id为叮叮号 <a href"dingtalk://dingtalkclient/action/sendmsg?dingtalk_id{id}"></a>id&#xff1a; …

数据结构与算法(Data Structures and Algorithm)——跟着Mark Allen Weiss用Java语言学习数据结构与算法

前言 数据结构与算法作为计算机科学的基础&#xff0c;是一个重点和难点&#xff0c;在实际编程中似乎看不它们的身影&#xff0c;但是它们有随处不在&#xff0c;如影随形。 虽然实际工作中可能基本用不到数据结构与算法的相关知识&#xff0c;但是作为计算机行业的从业者&a…

C++——多态底层原理

虚函数表 先来看这个问题&#xff1a; class Base { public: virtual void Func1() { cout << "Func1()" << endl; } private: int _b 1; }; sizeof(Base)是多少&#xff1f; 答案是&#xff1a;8 因为Base中除了成员变量_b,还有一个虚函数表_vfp…

报考浙江工商大学2024年工商管理硕士(MBA)联考指南

1. 预报名时间&#xff1a;2023年9月24日-27日每天09&#xff1a;00-22&#xff1a;00 2. 正式报名时间&#xff1a;2023年10月8日-25日每天09&#xff1a;00-22&#xff1a;00 3. 浙江省网上确认&#xff08;现场确认&#xff09;时间&#xff1a;2023年10月31日-11月4日17&…

ThinkPHP团购拼购商城源码/带分销团购商城网站源码/完美版

ThinkPHP团购拼购商城源码&#xff0c;带分销团购商城网站源码&#xff0c;很完美的一套基于ThinkPHP开发的团购分销商城源码&#xff0c;界面也很大气&#xff0c;站长亲测。有需要的可以借鉴一下。 下载地址&#xff1a;https://bbs.csdn.net/topics/613231434

深入解析 const 关键字:指针、参数、返回值和类成员函数

文章目录 const 关键字的理解一、 修饰普通类型的变量二、const 修饰指针变量三、const 作参数传递 和 函数返回值&#xff08;1&#xff09;const 修饰函数参数&#xff08;2&#xff09;const 修饰函数返回值 四、const修饰类成员函数结尾 const 关键字的理解 const 在 C 中…

免杀对抗-宏免杀

CS生成宏&上线 生成宏 1.cs生成宏&#xff0c;如下图操作 2.点击复制宏代码&#xff0c;保存下来 cs上线 注&#xff1a;如下操作使用的是word&#xff0c;同样的操作也适用于Excel 1.新建一个word文档&#xff0c;使用word打开。点击文件—— 2.更多——选项—— 3.自定义…

一文教你如何发挥好 TDengine Grafana 插件作用

作为当前最流行的图形化运维监控解决方案之一&#xff0c;Grafana 提供了一个灵活易用的界面&#xff0c;可以连接多种不同的数据源&#xff0c;包括时序数据库&#xff08;Time Series Database&#xff09;、云服务、监控系统等&#xff0c;然后从这些数据源中提取数据并实时…

从零开始的C++(七)

1.malloc、free和new、delete的区别&#xff1a; 1、.malloc、free是函数&#xff0c;new、delete是运算符。 2、malloc不会调用构造函数&#xff0c;new可以调用构造函数。 3、malloc开辟失败返回NULL&#xff0c;new失败会捕捉异常。 4、malloc不会自动计算类型大小&…

Intewell工业操作系统的来龙去脉

Intewell操作系统是由科东软件自主研发的工业嵌入式实时操作系统&#xff0c;是新一代工业控制系统承上启下的平台&#xff0c;致力于解决工业现场层操作系统的自主可控、安全可信问题&#xff0c;助力企业数字化转型&#xff0c;实现工业互联网的数字化、网络化、智能化发展&a…