30 数据分析常见概念(略写可跳)

news2024/11/23 10:24:05

文章目录

  • 数据科学领域概述
    • 数据如何驱动运营给企业带来价值
    • 岗位
    • 关键词说明
    • 业务的商业模式
  • 数据指标
    • 数据指标定义及常用数据指标
    • 如何选取指标
    • 分析角度
      • 计数
      • 流量导向的工具
      • 内容导向的工具
      • 用户导向的工具
      • 业务导向的工具
  • 数据分析方法
    • 对比分析
    • 多维分析
    • 漏斗分析
    • 留存分析
    • 总结
  • 用户画像
    • 标签有什么
    • 如何获得标签
    • 用户画像用于做什么
  • 思考问题的方法
    • 归因查找
    • 路径挖掘
    • 行为序列

数据科学领域概述

数据如何驱动运营给企业带来价值

  1. 原始收集数据
    数据埋点(数据埋点的意思就是用户使用的时候我们采集数据的地方,比如用户鼠标悬停在某张图片的时间,这就可以当作一个数据埋点)收集用户在网页端,APP,小程序等终端的各种数据
    业务数据
    外部数据
  2. 数据加工处理
    将收集的数据转换成可理解、可量化、可观察的业务指标
    单纯的数据没有意义,只有和业务结合才能发挥价值
  3. 数据可视化
    有了数据指标,必须管理好指标
    建立指标体系
  4. 数据决策和执行
    从数据中得到相关信息,需要把这些信息转换成策略
    包括策略制定,并持续优化和改进策略
  5. 数据产品
    将策略制作成数据应用和产品
    开始自动化和系统化运营
  6. 数据战略
    积累了大量数据,大量模型,大量数据应用
    不只是数据分析,可以将数据变现

在这里插入图片描述

岗位

一般存在下面三种岗位:

  1. 业务线 数据分析
  2. 研发线 数据仓库(数据仓库是完全为数据分析人员服务的一个数据库,存储的数据,用户行为路径,新增用户数等)
  3. 算法线 数据挖掘(相对于数据分析,需要建模,模型的目的是做预测)

关键词说明

  1. ETL 清洗 转换 加载
  2. DW 数据仓库
  3. CRM 客户关系管理
  4. CMS:Content Management System "内容管理系统
  5. KPI 绩效

业务的商业模式

  1. B2C : 面向客户的商业模式(比如游戏)
  2. B2B : 面向企业的商业模式(比如淘宝,实际上就是向商家收钱)
  3. B2B2C:面向企业也面向客户的商业模式(比如京东)
  4. B2VC:这种就是拿投资人的钱(吐槽的hh)

数据指标

数据指标定义及常用数据指标

  1. 数据指标的定义:对当前业务有参考价值可统计数据

  2. 常用的数据指标
    用户数据 谁
    行为数据 干了什么
    业务数据 产生了什么结果

  3. 用户数据
    存量 DAU、MAU
    增量 新增用户
    健康程度 留存率
    从哪儿来 渠道来源
    搜索引擎推广 SEO
    Rom 推广
    app 商店(自然流量 也可以推广)
    手机厂商预装
    其它产品挂下载链接
    扫码

  4. 行为数据
    次数、频率 PV UV 访问深度
    关键路径走了多远 转化率
    行为做了多久 时长
    质量 弹出率(跳出率)

  5. 业务数据
    总量 GMV 访问时长
    人均 ARPU AverageRevenuePerUser 每用户平均收入 人均访问时长
    ARPPU Average Revenue Per Paying User 每付费用户平均收益
    人数 付费人数 播放人数
    健康程度 付费率 付费频次 观看率
    被消费对象 SKU 被消费内容

如何选取指标

最终目的出发 梳理业务模块 -> 判断业务模块类型->根据业务模块类型选择
数据指标:

如何梳理业务模块

  1. 目的 比如我要卖货
  2. 实现目的的方法 我通过文章来卖货(如何搞大/搞频繁(手段))
  3. 方法需要的工具 通过社区创作文章来卖货,我提供一个制作精美图文的工具
  4. 实现方法的途径

业务模块:
在这里插入图片描述
根据业务模块选择数据指标

  1. 工具模块:效率
  2. 内容浏览模块:质和量
  3. 交易模块:转化率
  4. 社区模块:活跃度

分析角度

在这里插入图片描述

计数

计数阶段:

可以使用 goaccess 这款工具简单的来统计

通过脚本与代码统计日志
通过 BI 工具进行基本的分析
通过 awk 工具去搞,外加 uniq 去重,wc 去统计

awk '{print $1}' access.log|sort|uniq|wc -l

使用awk 计算pv(总点击量,直接wc -l access.log就是计算总点击量) ,uv(人访问量,上面的代码就是统计每ip访问量)

流量导向的工具

解决的问题
流量依赖性业务,如电商,或者一锤子买卖
优势
能将流量入口分析得较为细致

内容导向的工具

解决的问题
哪些资源被消费
被消费的情况如何
内容表现质量如何
解决的问题
以内容为核心资源的,如媒体、视频网站

优势
能从内容的视角描述其表现

用户导向的工具

解决的问题
用户来了干什么?
用户还会不会再来?
用户在哪流失了?
用户都是啥样的?

Mixpanel 工具
Inspectlet 工具 —通过录制屏幕的行为 还原用户的行为

业务导向的工具

解决的问题
流程是否顺畅?
规模/频次如何?
异常原因何在?

这里可以看下神策数据的,能进入这家公司挺好的。

数据分析方法

对比分析

如何进行对比分析:
事出反常必有妖,不论增减,只要用户不正常上升下降都需要对比

对比分析比什么:

  1. 绝对值
    本身具备价值的数字
    销售金额
    阅读数 微信的 10 万+
  2. 比例值
    在具体环境中看比例,才具备对比价值
    活跃占比
    注册转化率
  3. 绝对值
    不易得知内在问题,比例值,易收到极端值影响 2%~4%怎么比
  4. 环比 7 号 6 号 5 号 7 月 6 月 5 月
    对短期内具备连续性的数据进行分析
  5. 同比 今年国庆销售额 去年国庆销售额
    观察更为长期的数据集
    观察的时间周期里有较多干扰,希望某种程度上消除这些干扰
  6. 和自己比
    从时间维度 环比|同比
  7. 从不同业务线
  8. 从过往经验估计
  9. 和同行业比:是自身因素还是行业趋势

多维分析

例子:

公司做了微博大 V 推广,想看情况

基本思路:
数据怎么样
有 XX 人启动过
APP 关键功能使用率 XXX%
日活和留存是

思路流程:
APP 启动 按设备 iPhone 美图手机比较多 符合产品定位
APP 启动 按来源 用户因 PUSH 下发进入 APP 比较多
APP 启动 按城市等级查看 发现一线城市用户比较多
运营能力有限只有北上广深有推送,因此打开几率大
APP 启动 按新老用户查看 日活量整体变化不大,老用户占比下降,新用户占比上升,留不住用户。

多维分析就是将一个事件分解成多个小的事件,然后逐层去分析讨论

漏斗分析

运作原理
通过一连串向后影响的用户行为来观察目标

适用场景
适用: 有明确的业务流程和业务目标
不太适用:没有明确的流程,跳转关系复杂

漏斗分析就是归结原因,比如我要分析这个软件为什么没人用,第一层宣传是否到位,宣传到位了,再分析安装是否到位,注册是否到位,等等有一系列的时间顺序下去的流程。和多维分析需要区分开

留存分析

验证产品长期价值可以看月留存,将某一时间段的用户 ID 与另一交叉去重。

随着产品不断的优化,月留存是不断增长的

看日留存会数据量特别多,观察重点不知道放在哪里,而一个月我们产品一个迭代,发一个新版本

一般的计算方式 看大盘可能不准,产品 运营 技术 市场每个环节可能都会对留存造成影响,比如搞活动,引入了一个低质量的渠道,造成留存大跌,因为低质量渠道进来的都是垃圾用户,因此需要看精准留存

精准留存
过滤进行过指定行为的用户 ID,再计算
将用户分为不同的群体后,观察之前留存的区别

总结

数据分析基础阶段

数据分析指标:
在这里插入图片描述
跳过率就是跳出率
GMV:总的访问时长
ARPU:每用户平均访问时长
ARPPU:每付费用户平均访问时长
SKU:品类的数量

四个模块:
在这里插入图片描述
转化率就是详情页转化率,就是点击那个详情页占比总点进list页面的比率(就是商品更吸引人)。

分析工具:
在这里插入图片描述
数据分析方法:
还是注意多维分析和漏斗分析的区别
在这里插入图片描述

用户画像

用户画像:通过对用户各类特征进行标识给用户贴上各类标签,通过这些标签将用户分为不同的群体,以便对不同的群体分别进行产品/运营动作用途。

标签有什么

基础属性

  1. 年龄
  2. 性别
  3. 生日
  4. 星座
  5. 教育
  6. 身高
  7. 收入
  8. 职业

社会关系

  1. 婚姻
  2. 有无小孩
  3. 有无女孩
  4. 家有老人
  5. 性取向

行为特征

  1. 基本行为
  2. 注册时间
  3. 来源渠道
  4. 业务行为
  5. 买过特惠商品

业务相关—比如是健身类的产品,就会有下面的业务指标

  1. 胖瘦高矮
  2. 体脂率
  3. 在练胸
  4. 日均 8000 步
  5. 收藏了 100+份健身计划

如何获得标签

  1. 用户直接填写
    就是用户注册的账号的信息。
  2. 通过用户的行为进行推测
    比如这个用户他购买的物品寄到北京,那么大概率他的地址就在北京,这样子。
  3. 通过用户身边的人推断
    距离相近:某些属性,周围的人都具备,用户大概率也具备,例如大学区域。
    行为相似:通过协同过滤,找到行为相似的目标用户,对用户进行分群。

用户画像用于做什么

  1. 从现有用户中找到我们真正的用户
    真正的用户(高留存. 核心行为频次、完成率高)
  2. 找到「真正的用户」的特征
    比如卖书的平台,假如是二手书的交易
    例:通过他们买卖的书籍,
    倒推他们的年龄、受教育程度、地域、消费能力。
    从哪儿来
    例:通过电话访谈等方式,发现很多来自朋友推荐。
    例如,本科,18-30 岁,一线城市,朋友推荐

思考问题的方法

归因查找

找出事件发生的「主要原因」

  1. 末次归因转化路径短,且事件间关联性强的场景(添加好友是因为什么)比如交友软件,通过漂流瓶,附件的人,摇一摇,或者随机推荐好友
  2. 递减归因转化路径长,非目标事件差异不大,没有完全主导的假如是一个时间管理工具,某一个买了 VIP 没有广告了,不能看这一刻和刚刚用的功能有什么关系,我们可以归为 6,3,1 比例
  3. 首次归因强流量依赖的业务场景,拉人比后续所有事都重要

路径挖掘

因为所有的行为都是漏斗过程,路径挖掘分析法的运作原理:逐级展开某一事件的前一级(后一级)事件,观察其流向。

行为序列

上面我们聊了路径挖掘分析法,大家可能会说,我们有了路径挖掘模型之后,单个用户的行为序列还有什么意义呢,其实单个用户的行为序列能让我们回归具体的业务场景,发现隐藏在统计数据下被统计数据抹平了细节的更真实的业务场景。其实,路径挖掘分析法有它的局限性,它只是把一群人放到这个路径里进行分析,它反应的是一群人的趋势,但是对于单个用户来讲,趋势肯定是不一样的,所以这时我们就需要运用到行为序列分析法(追求个性化)。行为序列分析法的运作原理:将单个用户的所有行为以时间线的形式进行排列。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1068920.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

王兰去(黑客)自学

前言: 想自学网络安全(黑客技术)首先你得了解什么是网络安全!什么是黑客 网络安全可以基于攻击和防御视角来分类,我们经常听到的 “红队”、“渗透测试” 等就是研究攻击技术,而“蓝队”、“安全运营”、“…

京东数据分析软件:2023年8月京东彩妆行业品牌销售排行榜

鲸参谋监测的京东平台8月份彩妆市场销售数据已出炉! 根据鲸参谋平台的数据显示,今年8月份,京东平台上彩妆行业的销量将近390万,其中,环比来看增长约11%,同比则降低约34%;销售额为6.3亿&#xf…

springcloud之项目实战环境准备

写在前面 为了更好的学习springcloud,我们来一起开发一个实战项目,加深理解。 1:项目介绍 在开始项目实战之前先来做一个整体的项目介绍,从而能够让对项目的整体架构和模板有一个比较清晰的认知。 大家都知道双11,…

百元开放式耳机哪款好一点耐用、百元耳放推荐

在耳机品类中,佩戴无需入耳、可保持耳道舒适的开放式耳机正成为新的潮流,不仅不少消费者趋之若鹜,相对于传统入耳式耳机,开放式耳机具备开放双耳的特性,能敞开耳道,让耳朵随时呼吸,保持干燥透气…

华为云CodeArts Check代码检查插件(CodeArts IDE本地版本)使用指南

CodeArts Check 代码检查插件(CodeArts IDE本地版本) 本插件致力于守护开发人员代码质量,成为开发人员的助手和利器。秉承极简、极速、即时看护的理念,提供业界规范(含华为云)的检查、代码风格一键格式化及…

基于 Kettle + StarRocks + FineReport 的大数据处理分析方案

Kettle StarRocks FineReport 的大数据处理分析方案 其中 Kettle 负责数据的ETL处理,StarRocks 负责海量数据的存储及检索,FineReport 负责数据的可视化展示。整体过程如下所示: 如果多上面三个组件不了解可以先参考下下面的文章&#xff…

【数据分享】1901-2022年1km分辨率的逐月潜在蒸散发栅格数据(免费获取/全国/分省)

气象指标在日常研究中非常常用,之前我们给大家分享过来源于国家青藏高原科学数据中心提供的气象指标栅格数据(均可查看之前的文章获悉详情): 1901-2022年1km分辨率逐月平均气温栅格数据 1901-2022年1km分辨率逐年平均气温栅格数据…

计算机竞赛 题目:基于LSTM的预测算法 - 股票预测 天气预测 房价预测

文章目录 0 简介1 基于 Keras 用 LSTM 网络做时间序列预测2 长短记忆网络3 LSTM 网络结构和原理3.1 LSTM核心思想3.2 遗忘门3.3 输入门3.4 输出门 4 基于LSTM的天气预测4.1 数据集4.2 预测示例 5 基于LSTM的股票价格预测5.1 数据集5.2 实现代码 6 lstm 预测航空旅客数目数据集预…

ctfshow-web5(md5弱比较)

打开题目链接是html和php代码 html没啥有用信息,这里审一下php代码 : 要求使用get方式传入两个参数 v1,v2 ctype_alpha()函数:用于检查给定的字符串是否仅包含字母; is_numeric()函数:检测字符串是否只由…

浏览器唤起钉钉 各项功能

浏览器唤起钉钉对应人员聊天 文档地址 https://open.dingtalk.com/document/client/unified-routing-protocol 唤起聊天 不过只能唤起叮叮的名片 id为叮叮号 <a href"dingtalk://dingtalkclient/action/sendmsg?dingtalk_id{id}"></a>id&#xff1a; …

数据结构与算法(Data Structures and Algorithm)——跟着Mark Allen Weiss用Java语言学习数据结构与算法

前言 数据结构与算法作为计算机科学的基础&#xff0c;是一个重点和难点&#xff0c;在实际编程中似乎看不它们的身影&#xff0c;但是它们有随处不在&#xff0c;如影随形。 虽然实际工作中可能基本用不到数据结构与算法的相关知识&#xff0c;但是作为计算机行业的从业者&a…

C++——多态底层原理

虚函数表 先来看这个问题&#xff1a; class Base { public: virtual void Func1() { cout << "Func1()" << endl; } private: int _b 1; }; sizeof(Base)是多少&#xff1f; 答案是&#xff1a;8 因为Base中除了成员变量_b,还有一个虚函数表_vfp…

报考浙江工商大学2024年工商管理硕士(MBA)联考指南

1. 预报名时间&#xff1a;2023年9月24日-27日每天09&#xff1a;00-22&#xff1a;00 2. 正式报名时间&#xff1a;2023年10月8日-25日每天09&#xff1a;00-22&#xff1a;00 3. 浙江省网上确认&#xff08;现场确认&#xff09;时间&#xff1a;2023年10月31日-11月4日17&…

ThinkPHP团购拼购商城源码/带分销团购商城网站源码/完美版

ThinkPHP团购拼购商城源码&#xff0c;带分销团购商城网站源码&#xff0c;很完美的一套基于ThinkPHP开发的团购分销商城源码&#xff0c;界面也很大气&#xff0c;站长亲测。有需要的可以借鉴一下。 下载地址&#xff1a;https://bbs.csdn.net/topics/613231434

深入解析 const 关键字:指针、参数、返回值和类成员函数

文章目录 const 关键字的理解一、 修饰普通类型的变量二、const 修饰指针变量三、const 作参数传递 和 函数返回值&#xff08;1&#xff09;const 修饰函数参数&#xff08;2&#xff09;const 修饰函数返回值 四、const修饰类成员函数结尾 const 关键字的理解 const 在 C 中…

免杀对抗-宏免杀

CS生成宏&上线 生成宏 1.cs生成宏&#xff0c;如下图操作 2.点击复制宏代码&#xff0c;保存下来 cs上线 注&#xff1a;如下操作使用的是word&#xff0c;同样的操作也适用于Excel 1.新建一个word文档&#xff0c;使用word打开。点击文件—— 2.更多——选项—— 3.自定义…

一文教你如何发挥好 TDengine Grafana 插件作用

作为当前最流行的图形化运维监控解决方案之一&#xff0c;Grafana 提供了一个灵活易用的界面&#xff0c;可以连接多种不同的数据源&#xff0c;包括时序数据库&#xff08;Time Series Database&#xff09;、云服务、监控系统等&#xff0c;然后从这些数据源中提取数据并实时…

从零开始的C++(七)

1.malloc、free和new、delete的区别&#xff1a; 1、.malloc、free是函数&#xff0c;new、delete是运算符。 2、malloc不会调用构造函数&#xff0c;new可以调用构造函数。 3、malloc开辟失败返回NULL&#xff0c;new失败会捕捉异常。 4、malloc不会自动计算类型大小&…

Intewell工业操作系统的来龙去脉

Intewell操作系统是由科东软件自主研发的工业嵌入式实时操作系统&#xff0c;是新一代工业控制系统承上启下的平台&#xff0c;致力于解决工业现场层操作系统的自主可控、安全可信问题&#xff0c;助力企业数字化转型&#xff0c;实现工业互联网的数字化、网络化、智能化发展&a…

Uniapp 新手专用 抖音登录 获取用户头像、名称、openid、unionid、anonymous_openid、session_key

TC-dylogin 一定请选择 源码授权版 教程 第一步 将代码拷贝至您所需要的页面 该代码位置&#xff1a;pages/index.vue 第二步 修改appid和secret 第三步 获取appid和secret 获取appid和secret链接 注意事项 为了安全&#xff0c;我将默认的自己的appid和secret在云函数中删…