【高并发优化手段】基于Springboot项目

news2024/12/23 18:28:34

文章目录

  • 一、概述
  • 二、服务器配置
    • 1. 选择合适的机器
    • 2. 配置服务器参数
      • (1)TCP网络层参数
        • 如何配置
      • (2)文件系统参数
        • 仅根据硬件配置,估算机器的最大性能
        • 修改配置
      • (3)内存参数
  • 三、Tomcat配置
      • 1. 调整最大连接数
      • 2. 配置压缩
      • 3. 配置缓存
  • 四、线程池配置

一、概述

Spring Boot是基于Spring Framework的快速开发框架,它提供了许多自动化的配置方法,使得开发者可以更加专注于业务逻辑的实现。

在高并发场景下,Spring Boot的配置也是非常重要的,需要对服务器、Tomcat、线程池等进行优化配置,以达到最优的性能。本文将介绍如何对Spring Boot进行优化配置,在高并发场景下实现最佳的性能表现。
场景如下:提供30秒内2万用户每秒5次请求的10万并发服务支持。

二、服务器配置

1. 选择合适的机器

在高并发场景下,选择合适的机器是非常重要的。首先,需要根据业务需求和预期QPS(每秒请求数)选择合适的机型,例如CPU、内存、硬盘、网络带宽等。

其次,为了提高性能,建议选择高并发优化的系统。例如,针对Java应用,可以选择专门针对Java应用优化的Linux操作系统,例如CentOS、Ubuntu等。

2. 配置服务器参数

在服务器上,可以根据实际情况调整以下参数:

(1)TCP网络层参数

可以设置以下参数,以提高服务器网络性能和稳定性:

①. TCP握手队列长度:默认为128,可以设置为1024,以处理更多的TCP连接请求。

②. TCP连接超时时间:默认为2小时,可以设置为3秒,以加快连接失败的响应速度。

③. TCP连接重试次数:默认为10次,可以设置为3次,以加快连接失败的响应速度。

如何配置

在CentOS 7上,可以使用以下命令来配置TCP网络层参数:

  1. 打开配置文件/etc/sysctl.conf:
sudo vi /etc/sysctl.conf
  1. 添加或编辑以下参数:
# 设置虚拟内存超配值为 1,可以允许分配比实际物理内存更多的内存空间,从而提高应用程序性能,但可能导致 OOM 错误。为 0 时表示内存空间不足时直接拒绝申请
vm.overcommit_memory = 1
# 设置系统脏页(未写入磁盘的页面)达到多少字节时可以开始写入磁盘
vm.dirty_background_bytes = 8388608 
# 设置系统脏页达到多少字节时必须写入磁盘
vm.dirty_bytes = 25165824
# 设置可以在后台写入磁盘的脏页占总脏页的比例(即总脏页数的2%)
vm.dirty_background_ratio = 2
# 设置当系统脏页占总内存的比例超过5%时,系统必须开始写入磁盘
vm.dirty_ratio = 5
# 设置系统判定一个脏页需要写入磁盘的时间,单位为centisecond,即2000分之一秒
vm.dirty_expire_centisecs = 2000
# 设置最小内存分配单位(单位为KB)
vm.min_free_kbytes = 8192 
# 将虚拟内存的 overcommit 比率设置为80%
vm.overcommit_ratio = 80
# 设置堆内存溢出处理方式(0表示不紧急内存压缩,1表示紧急内存压缩,2表示杀死进程)
vm.panic_on_oom = 2
# 设置发送方socket buffer大小的最大值为16MB
net.core.wmem_max = 16777216 
# 设置接收方socket buffer大小的最大值为16MB
net.core.rmem_max = 16777216 
# 当TCP流量控制窗口溢出时,中止连接
net.ipv4.tcp_abort_on_overflow = 1
# 对于高延迟、高带宽的网络,开启窗口缩放
net.ipv4.tcp_adv_win_scale = 1
# 允许使用的TCP拥塞控制算法,可以使用cubic和reno算法
net.ipv4.tcp_allowed_congestion_control = cubic reno
# 应用程序socket buffer的大小,单位为Kbyte
net.ipv4.tcp_app_win = 31
# TCP发送数据时,自动开启corking模式
net.ipv4.tcp_autocorking = 1
# 允许使用的TCP拥塞控制算法,可以使用cubic和reno算法
net.ipv4.tcp_available_congestion_control = cubic reno
# 设置TCP数据包的最小大小,单位为byte
net.ipv4.tcp_base_mss = 512
# 发送方最多允许发送多少个SYN报文段作为challenge ack防范syn flood攻击
net.ipv4.tcp_challenge_ack_limit = 1000
# TCP使用的拥塞控制算法,可以使用cubic算法
net.ipv4.tcp_congestion_control = cubic 
# 开启对方乱序数据的确认,以降低网络延迟
net.ipv4.tcp_dsack = 1
# 当检测到丢包时,提前触发重传
net.ipv4.tcp_early_retrans = 3
# 开启ECNExplicit Congestion Notification)拥塞控制算法
net.ipv4.tcp_ecn = 2
# 使用FACKForward Acknowledgment)作为拥塞控制算法的一部分
net.ipv4.tcp_fack = 1
# 开启TCP Fast Open,以加快连接速度
net.ipv4.tcp_fastopen = 3
# 设置TCP Fast Open使用的密钥,可以使用随机数生成器生成
net.ipv4.tcp_fastopen_key = 6d0c41a3-123fdf85-a7f901e8-59fea180
# TCP连接关闭的超时时间,单位为秒
net.ipv4.tcp_fin_timeout = 10
# 开启TCP Fast Recovery防止网络拥塞
net.ipv4.tcp_frto = 2
# 设置TCP连接每秒允许的最大无效数据包数,超过该值则降低发送速度
net.ipv4.tcp_invalid_ratelimit = 500
# TCP保持连接的时间间隔,单位为秒
net.ipv4.tcp_keepalive_intvl = 15
# 发送TCP保持连接探测报文的次数
net.ipv4.tcp_keepalive_probes = 3
# TCP保持连接的时间,单位为秒
net.ipv4.tcp_keepalive_time = 600
# 限制发送缓存的最大空间,单位为byte
net.ipv4.tcp_limit_output_bytes = 262144
# 开启TCP低延迟模式
net.ipv4.tcp_low_latency = 0
# 操作系统允许的最大TCP半连接数
net.ipv4.tcp_max_orphans = 16384
# TCP拥塞窗口增长算法的阈值,一般设为0不使用该功能
net.ipv4.tcp_max_ssthresh = 0
# 等待建立连接请求的最大个数
net.ipv4.tcp_max_syn_backlog = 262144
# 每秒最多处理的TCP连接数,越高则占用CPU时间越多
net.ipv4.tcp_max_tw_buckets = 5000
# 设置TCP Mem,包括min、default、max三个参数,单位为page数量
net.ipv4.tcp_mem = 88053	117407	176106
# 设置发送方socket buffer大小的最小值,单位为byte
net.ipv4.tcp_min_snd_mss = 48
# 设置TCP使用的最小TSO分段数目(只有在开启TSO时生效)
net.ipv4.tcp_min_tso_segs = 2
# 开启TCP自适应窗口大小控制
net.ipv4.tcp_moderate_rcvbuf = 1
# 开启TCP MTU探测,以避免网络分片
net.ipv4.tcp_mtu_probing = 1
# 禁止保存TCP延迟测量得到的数据
net.ipv4.tcp_no_metrics_save = 1
# 无需等待发送缓存为空,就可以发送数据
net.ipv4.tcp_notsent_lowat = -1
# TCP重传数据包的最大次数
net.ipv4.tcp_orphan_retries = 0
# TCP重传数据包后允许接收的最大乱序数据包个数
net.ipv4.tcp_reordering = 3
# 启用TCP Fast RetransmitFast Recovery算法
net.ipv4.tcp_retrans_collapse = 1
# 第一次重传TCP数据包的次数
net.ipv4.tcp_retries1 = 3
# 第二次重传TCP数据包的次数
net.ipv4.tcp_retries2 = 15
# 拒绝与RFC1337不兼容的数据包
net.ipv4.tcp_rfc1337 = 1
# 设置TCP接收缓存大小,包括min、default、max三个参数,单位为byte
net.ipv4.tcp_rmem = 4096	87380	33554432
# 开启TCP SACKSelective Acknowledgments)支持
net.ipv4.tcp_sack = 1
# 关闭TCP连接空闲一段时间后再次发送数据包
net.ipv4.tcp_slow_start_after_idle = 0
# 禁用TCP Socket Urgent功能
net.ipv4.tcp_stdurg = 0
# TCP SYN请求重试的最大次数
net.ipv4.tcp_syn_retries = 1
# TCP SYN/ACK请求重试的最大次数
net.ipv4.tcp_synack_retries = 1
# 开启TCP SYN Cookie防止syn flood攻击
net.ipv4.tcp_syncookies = 1
# 关闭TCP Thin Dupack
net.ipv4.tcp_thin_dupack = 0
# 关闭TCP Thin Linear Timeouts
net.ipv4.tcp_thin_linear_timeouts = 0
# 开启TCP时间戳
net.ipv4.tcp_timestamps = 1
# 设置TCP TSO窗口大小的除数,只有在开启TSO时生效
net.ipv4.tcp_tso_win_divisor = 3
# 开启TCP TIME_WAIT Socket重用机制
net.ipv4.tcp_tw_recycle = 1
# 允许将TIME_WAIT Socket重用于新的TCP连接
net.ipv4.tcp_tw_reuse = 1
# 开启TCP窗口缩放
net.ipv4.tcp_window_scaling = 1
# 设置发送方socket buffer大小,包括min、default、max三个参数,单位为byte
net.ipv4.tcp_wmem = 4096	16384	33554432
# 关闭TCP workaround signed windows(https://tools.ietf.org/html/rfc7323)
net.ipv4.tcp_workaround_signed_windows = 0
# 当使用conntrack跟踪TCP连接时,设置是否采用liberal模式
net.netfilter.nf_conntrack_tcp_be_liberal = 0
# 当使用conntrack跟踪TCP连接时,设置是否采用loose模式
net.netfilter.nf_conntrack_tcp_loose = 1
# TCP连接最大重传次数
net.netfilter.nf_conntrack_tcp_max_retrans = 3
# TCP连接关闭后,等待fin结束的时间,单位为秒
net.netfilter.nf_conntrack_tcp_timeout_close = 10
# TCP连接关闭后,进入CLOSE_WAIT状态的时间,单位为秒
net.netfilter.nf_conntrack_tcp_timeout_close_wait = 60
# TCP连接已经建立时,如果长期没有数据传输,连接最长保持时间,单位为秒
net.netfilter.nf_conntrack_tcp_timeout_established = 432000
# 当关闭TCP连接时,TCP_FIN等待ACK的超时时间,单位为秒
net.netfilter.nf_conntrack_tcp_timeout_fin_wait = 120
# 当关闭TCP连接时,ACK等待FIN的超时时间,单位为秒
net.netfilter.nf_conntrack_tcp_timeout_last_ack = 30
# TCP连接最大重传次数,以及TCP RTO
net.netfilter.nf_conntrack_tcp_timeout_max_retrans = 300
# 设置 TCP SYN_RECV 状态的超时时间为 60 秒
net.netfilter.nf_conntrack_tcp_timeout_syn_recv = 60
# 设置 TCP SYN_SENT 状态的超时时间为 120 秒
net.netfilter.nf_conntrack_tcp_timeout_syn_sent = 120
# 设置 TCP TIME_WAIT 状态的超时时间为 120 秒
net.netfilter.nf_conntrack_tcp_timeout_time_wait = 120
# 设置 TCP 未确认连接的超时时间为 300 秒
net.netfilter.nf_conntrack_tcp_timeout_unacknowledged = 300
# 设置 sunrpc 协议的 FIN 超时时间为 15 秒
sunrpc.tcp_fin_timeout = 15
# 设置 sunrpc 协议的最大槽位表项数为 65536
sunrpc.tcp_max_slot_table_entries = 65536
# 设置 sunrpc 协议的槽位表项数为 2
sunrpc.tcp_slot_table_entries = 2
# 设置 sunrpc 协议的传输层为 TCP,缓存区大小为 1048576 字节
sunrpc.transports = tcp 1048576
# 设置系统最大连接数为 65535
net.core.somaxconn = 65535
# 设置网络设备缓存队列最大值为 65535
net.core.netdev_max_backlog = 65535
# 设置系统的最大文件句柄数为 65535
fs.file-max = 65535
# 增加文件描述符限制
fs.nr_open = 1000000
# 设置同时为当前用户打开的 inotify 实例的最大数目为 1024
fs.inotify.max_user_instances = 1024 
# 设置当前用户为每个 inotify 实例可同时监视的文件和目录数目上限为 65536
fs.inotify.max_user_watches = 65536 
# 设置 inotify 实例中等待处理的事件队列的最大(未处理)长度为 16384
fs.inotify.max_queued_events = 16384
# 调整文件系统缓存参数
vfs_cache_pressure = 50
# 设置进程ID的最大值为131072
kernel.pid_max = 131072 
# 设置系统支持的最大进程ID值为131072
kernel.max_pid = 131072
# 设置系统的信号量的参数,分别是512个信号量集、每个信号量集的最大值为65535、每个进程最多可以持有的信号量数量为1024、最大的信号量值为2048
kernel.sem = 512 65535 1024 2048
  1. 保存文件并退出。

  2. 使用以下命令使新配置生效:

sudo sysctl -p
  1. 使用命令行工具查看TCP网络参数的值,例如使用命令:
sysctl -a | grep tcp

可以查看到当前TCP网络参数的值,确认修改是否生效。
在这里插入图片描述

以上配置仅供参考,具体的参数设置应根据实际情况进行调整。在更改任何系统参数之前,请确保了解所需的配置和可能的影响。

(2)文件系统参数

可以设置以下参数,以提高服务器的文件系统性能:

①. 文件打开数:默认为1024,可以设置为65535,以支持更多的文件打开。

②. 文件描述符大小:默认为1024,可以设置为65535,以支持更大的文件。

③. 内存缓存大小:默认为32MB,可以设置为512MB,以加快磁盘访问速度。

仅根据硬件配置,估算机器的最大性能

对于2核心4G内存的机器,最大的QPS和TPS取决于三个主要限制因素:

  1. CPU性能

  2. 内存大小

  3. 磁盘速度

在这个配置下,可能的最大QPS和TPS取决于这三个因素中最小的那个。

对于文件打开数和文件描述符大小的设置,655355是足够高的,不太可能成为限制因素。

对于内存缓存大小,512MB也足够大了,对性能的提升是有帮助的,但也不会明显改变最大性能。

考虑到压测的机器ESSD AutoPL云盘 40000 IOPS,可以假设磁盘速度也足够高。因此,最大性能主要取决于CPU和内存。

根据经验,一个CPU核心的最大处理能力通常在1万到10万之间。2核心4线程的CPU最大的处理能力是在2万到20万之间。这个范围是因为处理能力还取决于其他因素,如CPU主频、缓存大小、内存带宽等等。

以我本机i9-12900k为例,根据Intel官方资料,i9-12900k是一款16核32线程的处理器,其主频为3.2GHz,最大增强主频为5.2GHz。因此,其最大处理能力可以计算为:
最大处理能力 = 核心数 x 主频 x 指令执行效率
其中,指令执行效率可以用IPC(Instructions Per Cycle)来表示指令执行效率通常是通过 CPU 的性能指标来评估,例如时钟频率、IPC (Instructions Per Cycle) 等指标。在 Linux 中,可以使用一些工具来查看 CPU 的性能指标,例如 top、perf、htop 等。i9-12900k的IPC约为2。因此,i9-12900k的最大处理能力约为:
16 x 5.2GHz x 2 = 166.4万
即最大处理能力为166.4万。需要注意的是,实际应用中的性能取决于多种因素,包括软件优化程度、内存速度、硬盘速度等,因此实际性能可能会有所不同。

修改配置

修改文件系统参数需要以管理员身份登录系统,然后按照以下步骤进行操作:

①. 修改文件打开数:

  1. 打开命令行终端,输入以下命令:
sudo vi /etc/sysctl.conf
  1. 在打开的配置文件中添加以下代码:
# 设置系统的最大文件句柄数为 65535
fs.file-max = 65535
  1. 保存文件并关闭。

  2. 输入以下命令,使配置修改生效:

sudo sysctl -p

②. 修改文件描述符大小:

  1. 打开命令行终端,输入以下命令:
sudo vi /etc/security/limits.conf
  1. 在打开的配置文件中添加以下代码:
*    soft    nofile    65535
*    hard    nofile    65535
  1. 保存文件并关闭。

  2. 输入以下命令,使配置修改生效:

ulimit -n 65535

注意:此配置只对当前用户有效,如果要对所有用户生效,需要重启系统。

③. 修改内存缓存大小:

要修改CentOS 7系统的内存缓存大小,可以执行以下步骤:

  1. 打开终端并以root用户身份登录。
  2. 编辑 /etc/sysctl.conf 文件,如下所示:
vi /etc/sysctl.conf
  1. 在文件的末尾添加以下行:
# 设置系统脏页(未写入磁盘的页面)达到多少字节时可以开始写入磁盘
vm.dirty_background_bytes = 8388608 
# 设置系统脏页达到多少字节时必须写入磁盘
vm.dirty_bytes = 25165824
# 设置可以在后台写入磁盘的脏页占总脏页的比例(即总脏页数的2%)
vm.dirty_background_ratio = 2
# 设置当系统脏页占总内存的比例超过5%时,系统必须开始写入磁盘
vm.dirty_ratio = 5
# 设置系统判定一个脏页需要写入磁盘的时间,单位为centisecond,即2000分之一秒
vm.dirty_expire_centisecs = 2000

这些参数表示内存缓存的大小,可以根据需要进行修改。上述示例将默认值设置为16 MB和48 MB。
4. 保存并关闭文件。
5. 执行以下命令以使更改生效:

sysctl -p

现在,您已成功修改了CentOS 7系统的内存缓存大小。

(3)内存参数

可以设置以下参数,以提高服务器的内存管理效率:

①. 最小内存分配单位:默认为4KB,可以设置为1KB,以节省内存开销。

②. 堆内存大小:默认为1/4的物理内存大小,可以根据应用需求和机器配置进行调整。

③. 堆内存溢出处理方式:可以选择直接退出应用,或者打印错误信息并继续运行。

三、Tomcat配置

Tomcat是Spring Boot默认的Web容器,它的配置也需要进行优化,以提高性能。

1. 调整最大连接数

sever:
  tomcat:
    # 12g内存为200,线程数经验值20048g内存,线程数经验值800,以此类推
    threads:
      # 最多的工作线程数,默认大小是200。该参数相当于临时工,如果并发请求的数量在10200之间,就会使用这些临时工线程进行处理。建议设置为 2 倍到 4 倍的 QPS
      max: 6667
      # 最少的工作线程数,默认大小是10。该参数相当于长期工,如果并发请求的数量达不到10,就会依次使用这几个线程去处理请求。如果min-spare设置得太低,那么当应用程序接收到高并发请求时,线程池将无法满足服务要求而导致请求失败。较高的min-spare值可能会导致系统响应时间变慢,因为它会创建大量线程来处理请求,这可能会占用过多的CPU和内存资源。如果将min-spare值设置得太低,则线程池可能无法及时响应请求。当系统负载较高时,有些请求可能会被暂时挂起,等待线程变得可用。如果没有足够的空闲线程,则请求将会等待更长时间。设置较高的min-spare值会占用更多的内存资源。如果线程池中的线程数超出了系统的实际需求,则会浪费内存资源。因此,将min-spare值设置为1020是一种平衡内存和线程利用率的方式。
      min-spare: 20
      # 最大连接数,默认大小是8192。表示Tomcat可以处理的最大请求数量,超过8192的请求就会被放入到等待队列。如果设置为-1,则禁用maxconnections功能,表示不限制tomcat容器的连接数。建议设置为 2 倍到 4 倍的 QPS。如果设置的值太低,将会限制服务器处理客户端请求的能力,从而可能导致应用程序出现性能问题。如果设置的值太高,则会浪费服务器资源,因为服务器的处理能力可能不足以处理所有的连接。通过经验和测试,24倍的QPS值通常会在服务器处理客户端请求时提供最佳性能和稳定性。这个范围也会提供一定的缓冲以应对突发流量,从而在服务器资源短缺时避免过载。
    max-connections: 6667
    # 等待队列的长度,默认大小是100。建议设置为 25 倍的 max-connections。将accept-count设置为25倍的max-connections可以确保Tomcat能够处理足够的连接请求,同时避免因过多排队连接导致的性能问题。但是,设置过高的accept-count会增加系统负担和内存压力,同时也可能会引起其他问题,如拒绝服务攻击等。至于为什么建议不超过5倍,是因为实际上超过这个范围的设置已经很少能带来明显的性能提升,反而会增加系统负担。同时,设置过高的accept-count还可能会导致频繁的连接请求失败和性能下降,甚至可能会导致Tomcat崩溃。
    accept-count: 13334

2. 配置压缩

Spring Boot使用内嵌的Tomcat作为其默认的Web容器,支持HTTP协议下的数据压缩。

要启用数据压缩,需要在application.properties文件中添加以下配置:

server.compression.enabled=true
server.compression.mime-types=application/json,application/xml,text/html,text/xml,text/plain
server.compression.min-response-size=2048

解释一下每一个配置项的含义:

  • server.compression.enabled:启用数据压缩,默认为false。
  • server.compression.mime-types:需要压缩的数据类型列表,支持多个值,用逗号分隔。
  • server.compression.min-response-size:响应数据的最小大小(字节),只有响应数据大小超过该值才会进行压缩。

配置完成后,当客户端请求的Accept-Encoding头中包含“gzip”或“deflate”时,Tomcat会自动压缩响应数据并返回。

需要注意的是,如果使用了反向代理服务器(如Nginx),则需要确保代理服务器不会重复压缩响应数据,否则可能会导致网页无法正确加载。可以通过设置代理服务器的“proxy_set_header Accept-Encoding ”和“proxy_set_header TE ”选项来解决该问题。

3. 配置缓存

Spring Boot的默认配置会自动将静态资源缓存一段时间,并指定缓存路径。默认情况下,静态资源的缓存时间是1小时(3600秒),缓存路径为“/static/”和“/public/” 。

如果需要自定义静态资源的缓存配置,可以在application.properties中添加如下配置:

# 配置静态资源缓存时间为10分钟
spring.resources.cache.cachecontrol.max-age=600 

# 配置缓存路径
spring.resources.static-locations=classpath:/static/,classpath:/public/

在上述配置中,通过spring.resources.cache.cachecontrol.max-age可以配置缓存时间,单位为秒;通过spring.resources.static-locations可以配置缓存路径。在配置路径时,需要指定静态资源存放的位置,多个位置可以使用逗号分隔。

需要注意的是,如果静态资源名带有版本号或者时间戳等动态变化的参数,那么缓存路径需要指定到该参数前面的部分,否则可能会导致缓存无效。

四、线程池配置

在高并发场景下,线程池的配置也是非常重要的,可以大大提高系统的并发处理能力。

Spring Boot默认使用Tomcat线程池,它提供了以下参数可以进行调整:

(1)最大工作线程数(maxThreads):表示Tomcat可以处理的并发请求数量,超过最大线程数的请求将会被拒绝。可以根据预期并发请求量进行调整,建议设置为CPU核心数量的2~4倍。

(2)最小工作线程数(minSpareThreads):表示Tomcat最少保持的空闲工作线程。可以根据预期并发请求量进行调整,建议设置为CPU核心数量。

(3)最大连接数(maxConnections):表示Tomcat可以处理的最大请求数量,超过最大连接数的请求将会被放入等待队列。可以根据预期并发请求量进行调整,建议设置为maxThreads的2~4倍。

(4)等待队列长度(acceptCount):表示Tomcat等待队列的长度,超过等待队列长度的请求将会被拒绝。可以根据预期并发请求量进行调整,建议设置为maxConnections的2~4倍。

# server配置
server:
  compression:
    # 启用数据压缩,默认为false。配置完成后,当客户端请求的Accept-Encoding头中包含“gzip”或“deflate”时,Tomcat会自动压缩响应数据并返回。
    enabled: true
    # 需要压缩的数据类型列表,支持多个值,用逗号分隔。
    mime-types: application/json,application/xml,text/html,text/xml,text/plain
    # 响应数据的最小大小(字节),只有响应数据大小超过该值才会进行压缩。
    min-response-size: 2048
  # 服务端口
  port: 8097
  tomcat:
    # 1核2g内存为200,线程数经验值200;4核8g内存,线程数经验值800,以此类推
    threads:
      # 最多的工作线程数,默认大小是200。该参数相当于临时工,如果并发请求的数量在10到200之间,就会使用这些临时工线程进行处理。建议设置为 2 倍到 4 倍的 QPS
      max: 6667
      # 最少的工作线程数,默认大小是10。该参数相当于长期工,如果并发请求的数量达不到10,就会依次使用这几个线程去处理请求。如果min-spare设置得太低,那么当应用程序接收到高并发请求时,线程池将无法满足服务要求而导致请求失败。较高的min-spare值可能会导致系统响应时间变慢,因为它会创建大量线程来处理请求,这可能会占用过多的CPU和内存资源。如果将min-spare值设置得太低,则线程池可能无法及时响应请求。当系统负载较高时,有些请求可能会被暂时挂起,等待线程变得可用。如果没有足够的空闲线程,则请求将会等待更长时间。设置较高的min-spare值会占用更多的内存资源。如果线程池中的线程数超出了系统的实际需求,则会浪费内存资源。因此,将min-spare值设置为10至20是一种平衡内存和线程利用率的方式。
      min-spare: 20
      # 最大连接数,默认大小是8192。表示Tomcat可以处理的最大请求数量,超过8192的请求就会被放入到等待队列。如果设置为-1,则禁用maxconnections功能,表示不限制tomcat容器的连接数。建议设置为 2 倍到 4 倍的 QPS。如果设置的值太低,将会限制服务器处理客户端请求的能力,从而可能导致应用程序出现性能问题。如果设置的值太高,则会浪费服务器资源,因为服务器的处理能力可能不足以处理所有的连接。通过经验和测试,2到4倍的QPS值通常会在服务器处理客户端请求时提供最佳性能和稳定性。这个范围也会提供一定的缓冲以应对突发流量,从而在服务器资源短缺时避免过载。
    max-connections: 6667
    # 等待队列的长度,默认大小是100。建议设置为 2 至 5 倍的 max-connections。将accept-count设置为2至5倍的max-connections可以确保Tomcat能够处理足够的连接请求,同时避免因过多排队连接导致的性能问题。但是,设置过高的accept-count会增加系统负担和内存压力,同时也可能会引起其他问题,如拒绝服务攻击等。至于为什么建议不超过5倍,是因为实际上超过这个范围的设置已经很少能带来明显的性能提升,反而会增加系统负担。同时,设置过高的accept-count还可能会导致频繁的连接请求失败和性能下降,甚至可能会导致Tomcat崩溃。
    accept-count: 13334
# mybatis配置
mybatis:
  configuration:
    # 日志输出实现使用stdoutImpl
    log-impl: org.apache.ibatis.logging.stdout.StdOutImpl
    # 启用下划线转驼峰
    map-underscore-to-camel-case: true
# mybatis-plus配置
mybatis-plus:
  # mapper文件所在路径
  mapper-locations: classpath*:/mapper/*.xml
  # 实体类所在包路径
  typeAliasesPackage: com.example.redpacketrain.model
  global-config:
    # 数据库表字段名转换为驼峰命名
    db-column-underline: true
    # 字段插入策略,填充器顺序执行
    field-strategy: 1
    # ID类型 0:"数据库ID自增",1:"用户输入ID",2:"全局唯一ID(UUID)"
    id-type: 0
# actuator暴露端点配置
management:
  endpoints:
    web:
      exposure:
        # 包含所有端点
        include: '*'
# spring配置
spring:
  profiles:
    # 配置文件的前缀,默认是application.name的值,如果配了prefix,就取prefix的值。开发环境dev,测试环境test,生产环境prod。
    # nacos会根据当前环境去拼接配置名称查找相应配置文件,示例:{spring.application.name}-{spring.profiles.active}-{spring.cloud.nacos.config.file-extension},获取到值:nacos-config-dev.yml
    active: dev
  application:
    # 配置应用的名称,用于获取配置
    name: red-packet-rain
  jackson:
    # 日期格式
    date-format: yyyy-MM-dd HH:mm:ss
    # 时区
    time-zone: GMT+8
  main:
    # 允许覆盖bean定义
    allow-bean-definition-overriding: true
  devtools:
    restart:
      # 启用自动重启
      enable: true
  redis:
    # 数据库
    database: 0
    # 主机地址
    host: r-uf63c2kc5bhsl6sw94pd.tairpdb.rds.aliyuncs.com
    # 密码
    password: 2023@Liao
    # 端口
    port: 6379
    timeout: 60000
  datasource:
    # 数据库驱动
    driver-class-name: com.mysql.jdbc.Driver
    # 用户名
    username: root
    # 密码
    password: 2023@Liao
    # 数据库连接地址
    url: jdbc:mysql://rm-uf6613ss8xgiqpdkiao.mysql.rds.aliyuncs.com:3306/red-packet-rain?characterEncoding=UTF-8&allowMultiQueries=true&serverTimezone=GMT%2B8
    # 初始连接数
    initial-size: 100
    # 最大连接数
    max-active: 300
    # 最小空闲连接数
    min-idle: 100
    # 最长等待时间
    max-wait: 60000
    # 连接池配置
    pool-prepared-statements: true # 启用预编译语句池
    max-pool-prepared-statement-per-connection-size: 20 # 每个连接的预编译语句数
    time-between-eviction-runs-millis: 60000 # 检查需要关闭的连接间隔毫秒数
    min-evictable-idle-time-millis: 300000 # 连接在池中最小生存时间
    test-while-idle: true  # 空闲连接是否在连接池被空闲连接回收器进行检测
    test-on-borrow: false # 申请连接时是否检测连接可用性
    test-on-return: false # 归还连接时是否检测连接可用性
    # Druid 监控配置
    stat-view-servlet:
      enabled: true # 启用监控
      url-pattern: /druid/* # 访问路径
    # 过滤器配置
    filter:
      stat:
        log-slow-sql: true # 开启慢 SQL 记录
        slow-sql-millis: 1000 # 慢 SQL 阈值
        merge-sql: false # 是否合并 SQL
      wall:
        config:
          multi-statement-allow: true # 是否允许多个 SQL 语句同时执行
  cloud:
    sentinel:
      transport:
        # 添加sentinel的控制台地址
        dashboard: 139.224.215.67:8080
    stream:
      default-binder: rocketmq #选择默认绑定器
      rocketmq:
        binder:
          transaction:
            producer:
              transactionalIdPrefix: tx- #事务ID的前缀,用于区分不同的应用
              corePoolSize: 5 #事务Producer线程池初始大小
              maxPoolSize: 10 #事务Producer线程池最大大小
          # RocketMQ的NameServer地址
          name-server: rmq-cn-uax3f2kxe03.cn-shanghai.rmq.aliyuncs.com:8080
          access-key: tAPs290605b36eJh
          secret-key: 08qWfJh5ZQ793h0U
      binders: #可以绑定多个消息中间件
        rocketmq: #表示定义的名称,用于binding整合 名字可以自定义 在此处配置要绑定的rocket的服务信息
          type: rocketmq
      bindings: # 服务的整合处理
        rocketmqOutput: # 通道名称
          # 消息发往的目的地,对应topic 在发送消息的配置里面,group是不用配置的
          destination: rocket-destination
          # 设置消息类型,本次为json,文本则设置“text/plain” 如果我们需要传输json的信息,那么在发送消息端需要设置content-type为json(其实可以不写,默认content-type就是json)
          content-type: application/json
          default-binder: rocketmq # 如果没设定,就使用default-binder默认的
          # 指定了消息分区的数量
          partitionCount: 2
          # 指定分区键的表达式规则,我们可以根据实际的输出消息规则来配置SpEL来生成合适的分区键;
          partition-key-expression: headers.id3
        rocketmqInput:
          # 消息发往的目的地,对应topic
          destination: rocket-destination
          # 设置消息类型,本次为json,如果是文本则设置“text/plain”
          content-type: application/json
          # 设置要绑定的消息服务的具体设置
          default-binder: rocketmq
          # 分组名称,在rocket当中其实就是交换机绑定的队列名称
          group: my-rocketmq-group
          consumer:
            # 初始/最少/空闲时消费者数量,默认为1
            concurrency: 2
            # 重试次数
            max-attempts: 3
            # 通过该参数开启消费者分区功能;
            partitioned: true
file:
  path: D://opt

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1066827.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

11.2 基本电路和基本分析方法

一、基本电路 电路类型电路名称特点和典型功能指标参数或功能描述方法基本放大电路共射放大 ∣ A ˙ ∣ |\dot A| ∣A˙∣大;适用于小信号电压放大 A ˙ u \dot A_u A˙u​、 R i R_i Ri​、 R o R_o Ro​、 f L f_L fL​、 f H f_H fH​、 f b w f_{bw} fbw​共集…

echarts的bug,在series里写tooltip,不起作用,要在全局先写tooltip:{}才起作用,如果在series里写的不起作用就写到全局里

echarts的bug,在series里写tooltip,不起作用,要在全局先写tooltip:{show:true}才起作用,如果在series里写的不起作用就写到全局里 series里写tooltip不起作用,鼠标悬浮在echarts图表上时不显示提示 你需要…

(一)Log4Net - 介绍

0、相关概念 Log4j 几乎每个大型应用程序都包含自己的日志记录或跟踪 API。根据这一规则,E.U. SEMPER 🌹项目决定编写自己的跟踪 API。那是在 1996 年初。经过无数次的增强、几个化身和大量的工作,API 已经发展成为 log4j —— 一个流行的 Ja…

LabVIEW利用以太网开发智能液位检测仪

LabVIEW利用以太网开发智能液位检测仪 目前,工业以太网接口在国内外的发展已经达到了相当深入的程度,特别是在自动化控制和工业控制领域有着非常广泛的应用。在工业生产过程中,钢厂的连铸机是前后的连接环节,其中钢水从大钢包进入…

ToBeWritten之改进威胁猎杀:自动化关键角色与成功沟通经验

也许每个人出生的时候都以为这世界都是为他一个人而存在的,当他发现自己错的时候,他便开始长大 少走了弯路,也就错过了风景,无论如何,感谢经历 转移发布平台通知:将不再在CSDN博客发布新文章,敬…

uni-app--》基于小程序开发的电商平台项目实战(四)

🏍️作者简介:大家好,我是亦世凡华、渴望知识储备自己的一名在校大学生 🛵个人主页:亦世凡华、 🛺系列专栏:uni-app 🚲座右铭:人生亦可燃烧,亦可腐败&#xf…

八大排序详解(默认升序)

一、直接插入排序 直接插入排序:直接插入排序就是像打扑克牌一样,每张牌依次与前面的牌比较,遇到比自己大的就将大的牌挪到后面,遇到比自己小的就把自己放在它后面(如果自己最小就放在第一位),所有牌排一遍后就完成了排…

PX4仿真添加world模型文件,并使用yolov8进行跟踪

前言 目的:我们是为了在无人机仿真中使用一个汽车模型,然后让仿真的无人机能够识别到这个汽车模型。所以我们需要在无人机仿真的环境中添加汽车模型。 无人机仿真中我们默认使用的empty.world文件,所以只需要将我们需要的模型添加到一起写进这个empty.world文件中去就可以…

电脑多开微信教程,可以多开n个

下载地址 链接:https://pan.baidu.com/s/1uWXIhfTZ-aD0A4RBxrI8bg?pwdy2s5 提取码:y2s5 效果如图:

地下水数值模拟软件如何选择?GMS、Visual MODFLOW Flex、FEFLOW、MODFLOW

强调模块化教学,分为前期数据收集与处理;三维地质结构建模;地下水流动模型构建;地下水溶质运移模型构建和反应性溶质运移构建5个模块;采用全流程模式将地下水数值模拟软件GMS的操作进行详细剖析和案例联系。不仅使学员…

Android中的RxJava入门及常用操作符

文章目录 1.定义2.作用3.特点4.使用4.1创建被观察者(Observable)4.2创建观察者(Observer)4.3订阅(Subscribe)4.4Dispose 5.操作符5.1操作符类型5.2just操作符5.2链式调用5.3 fromArray操作符5.4 fromIterab…

服务器文件备份

服务器上,做好跟应用程序有关的文件备份(一般备份到远程的盘符),有助于当服务器发生硬件等故障时,可以对系统进行进行快速恢复。 下面以Windows服务器为例,记录如何做文件的备份操作。 具体操作如下&#…

贷款行业,教你如何直接沟通客户

信贷行业拓展业务的人力与时间成本非常高。如是做小微贷款业务的公司可能在寻找贷款客户、筛选客户资质这两项初始工作上花掉超过50%的精力。 并且由于行业特殊性,金融信贷受政策的影响比较大,没法形成固定的推广渠道,线上营销不好做&#x…

什么是站内搜索引擎?如何在网站中加入站内搜索功能?

在当今数字时代,用户体验对于网站的成功起着至关重要的作用。提升用户体验和改善整体网站性能的一种方法是引入站内搜索引擎。站内搜索引擎是一种强大的工具,它的功能类似于Google或Bing等流行搜索引擎,但它专注于实施自己网站上的内容。用户…

工业路由器项目应用(4g+5g两种工业路由器项目介绍)

引言: 随着工业智能化的不断发展,工业路由器在各个领域的应用越来越广泛。本文将介绍两个工业路由器项目的应用案例,一个是使用SR500 4g工业路由器,另一个是使用SR800 5g工业路由器。 详情:https://www.key-iot.com/i…

IPO观察丨重新启动上市,“小而美”能让科迪乳业再次出圈吗?

如今,乳制品市场俨然是一片红海,尽管市场竞争激烈,但对于一些企业而言,发展机会仍然相当可观。 近日举办的2023年中工作会议上,科迪乳业母公司科迪集团对外表示,要部署好下个阶段的重点工作,为…

Jenkins 添加节点Node报错JNI error has occurred UnsupportedClassVersionError

节点日志 报错信息如下 Error: A JNI error has occurred, please check your installation and try again Exception in thread “main” java.lang.UnsupportedClassVersionError: hudson/remoting/Launcher has been compiled by a more recent version of the Java Runtime…

阿里云服务器通用算力型、经济型、七代云服务器实例、倚天云服务器实例区别参考

目前阿里云服务器的实例规格中,既有五代六代实例规格,也有七代和八代倚天云服务器,同时还有通用算力型及经济型这些刚推出不久的新品云服务器实例,其中第五代实例规格已经不是主推的实例规格了,现在主售的实例规格是七…

windows server 2012 R2的C盘空间满了,但是找不到大文件的两种原因

目录 一、第一种原因:windows server backup备份导致C盘空间耗尽 二、第二种原因:超级桌管软件生成的文件放在C盘被隐藏 最近经历了两次C盘满了,但是又找不到大文件的问题,定位了许久,以下是两种原因。 一、第一种原…