【数据结构与算法】之“堆”介绍

news2024/12/28 22:25:32

目录

堆的基本存储

一、概念及其介绍

二、适用说明

三、结构图示

堆的 shift up

堆的 shift down

基础堆排序

一、概念及其介绍

二、适用说明

三、过程图示

优化堆排序

索引堆及其优化

一、概念及其介绍

二、适用说明

三、结构图示


堆的基本存储

一、概念及其介绍

堆(Heap)是计算机科学中一类特殊的数据结构的统称。

堆通常是一个可以被看做一棵完全二叉树的数组对象。

堆满足下列性质:

  • 堆中某个节点的值总是不大于或不小于其父节点的值。
  • 堆总是一棵完全二叉树。

二、适用说明

堆是利用完全二叉树的结构来维护一组数据,然后进行相关操作,一般的操作进行一次的时间复杂度在 O(1)~O(logn) 之间,堆通常用于动态分配和释放程序所使用的对象。

若为优先队列的使用场景,普通数组或者顺序数组,最差情况为 O(n^2),堆这种数据结构也可以提高入队和出队的效率。

入队出队
普通数组O(1)O(n)
顺序数组O(n)O(1)
O(logn)O(log)

三、结构图示

二叉堆是一颗完全二叉树,且堆中某个节点的值总是不大于其父节点的值,该完全二叉树的深度为 k,除第 k 层外,其它各层 (1~k-1) 的结点数都达到最大个数,第k 层所有的结点都连续集中在最左边。

其中堆的根节点最大称为最大堆,如下图所示:

我们可以使用数组存储二叉堆,右边的标号是数组的索引。

假设当前元素的索引位置为 i,可以得到规律:

parent(i) = i/2(取整)
left child(i) = 2*i
right child(i) = 2*i +1

堆的 shift up

本小节介绍如何向一个最大堆中添加元素,称为 shift up

假设我们对下面的最大堆新加入一个元素52,放在数组的最后一位,52大于父节点16,此时不满足堆的定义,需要进行调整。

首先交换索引为 5 和 11 数组中数值的位置,也就是 52 和 16 交换位置。

此时 52 依然比父节点索引为 2 的数值 41 大,我们还需要进一步挪位置。

这时比较 52 和 62 的大小,52 已经比父节点小了,不需要再上升了,满足最大堆的定义。我们称这个过程为最大堆的 shift up。

堆的 shift down

本小节将介绍如何从一个最大堆中取出一个元素,称为 shift down,只能取出最大优先级的元素,也就是根节点,把原来的 62 取出后,下面介绍如何填补这个最大堆。

第一步,我们将数组最后一位数组放到根节点,此时不满足最大堆的定义。

调整的过程是将这个根节点 16 一步一步向下挪,16 比子节点都小,先比较子节点 52 和 30 哪个大,和大的交换位置。

继续比较 16 的子节点 28 和 41,41 大,所以 16 和 41 交换位置。

继续 16 和孩子节点 15 进行比较,16 大,所以现在不需要进行交换,最后我们的 shift down 操作完成,维持了一个最大堆的性质。

基础堆排序

一、概念及其介绍

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。

堆是一个近似 完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

二、适用说明

我们之前构造堆的过程是一个个数据调用 insert 方法使用 shift up 逐个插入到堆中,这个算法的时候时间复杂度是 O(nlogn),本小节介绍的一种构造堆排序的过程,称为 Heapify,算法时间复杂度为 O(n)

三、过程图示

完全二叉树有个重要性质,对于第一个非叶子节点的索引是 n/2 取整数得到的索引值,其中 n 是元素个数(前提是数组索引从 1 开始计算)。

索引 5 位置是第一个非叶子节点,我们从它开始逐一向前分别把每个元素作为根节点进行 shift down 操作满足最大堆的性质。

索引 5 位置进行 shift down 操作后,22 和 62 交换位置。

对索引 4 元素进行 shift down 操作

对索引 3 元素进行 shift down 操作

对索引 2 元素进行 shift down 操作

最后对根节点进行 shift down 操作,整个堆排序过程就完成了。

优化堆排序

上一节的堆排序,我们开辟了额外的空间进行构造堆和对堆进行排序。这一小节,我们进行优化,使用原地堆排序。

对于一个最大堆,首先将开始位置数据和数组末尾数值进行交换,那么数组末尾就是最大元素,然后再对W元素进行 shift down 操作,重新生成最大堆,然后将新生成的最大数和整个数组倒数第二位置进行交换,此时倒数第二位置就是倒数第二大数据,这个过程以此类推。

整个过程可以用如下图表示:

 

索引堆及其优化

一、概念及其介绍

索引堆是对堆这个数据结构的优化。

索引堆使用了一个新的 int 类型的数组,用于存放索引信息。

相较于堆,优点如下:

  • 优化了交换元素的消耗。
  • 加入的数据位置固定,方便寻找。

二、适用说明

如果堆中存储的元素较大,那么进行交换就要消耗大量的时间,这个时候可以用索引堆的数据结构进行替代,堆中存储的是数组的索引,我们相应操作的是索引。

三、结构图示

我们需要对之前堆的代码实现进行改造,换成直接操作索引的思维。首先构造函数添加索引数组属性 indexes。

protected T[] data;      // 最大索引堆中的数据
protected int[] indexes;    // 最大索引堆中的索引
protected int count;
protected int capacity;

相应构造函数调整为,添加初始化索引数组。

...
public IndexMaxHeap(int capacity){
    data = (T[])new Comparable[capacity+1];
    indexes = new int[capacity+1];
    count = 0;
    this.capacity = capacity;
}
...

调整插入操作,indexes 数组中添加的元素是真实 data 数组的索引 indexes[count+1] = i。

...
// 向最大索引堆中插入一个新的元素, 新元素的索引为i, 元素为item
// 传入的i对用户而言,是从0索引的
public void insert(int i, Item item){
    assert count + 1 <= capacity;
    assert i + 1 >= 1 && i + 1 <= capacity;
    i += 1;
    data[i] = item;
    indexes[count+1] = i;
    count ++;
    shiftUp(count);
}
...

调整 shift up 操作:比较的是 data 数组中父节点数据的大小,所以需要表示为 data[index[k/2]] < data[indexs[k]],交换 index 数组的索引,对 data 数组不产生任何变动,shift down 同理。

...
//k是堆的索引
// 索引堆中, 数据之间的比较根据data的大小进行比较, 但实际操作的是索引
private void shiftUp(int k){

    while( k > 1 && data[indexes[k/2]].compareTo(data[indexes[k]]) < 0 ){
        swapIndexes(k, k/2);
        k /= 2;
    }
}
...

从索引堆中取出元素,对大元素为根元素 data[index[1]] 中的数据,然后再交换索引位置进行 shift down 操作。

...
public T extractMax(){
    assert count > 0;
    T ret = data[indexes[1]];
    swapIndexes( 1 , count );
    count --;
    shiftDown(1);
    return ret;
}
...

也可以直接取出最大值的 data 数组索引值

...
// 从最大索引堆中取出堆顶元素的索引
public int extractMaxIndex(){
    assert count > 0;
    int ret = indexes[1] - 1;
    swapIndexes( 1 , count );
    count --;
    shiftDown(1);
    return ret;
}
...

修改索引位置数据

...
// 将最大索引堆中索引为i的元素修改为newItem
public void change( int i , Item newItem ){
    i += 1;
    data[i] = newItem;
    // 找到indexes[j] = i, j表示data[i]在堆中的位置
    // 之后shiftUp(j), 再shiftDown(j)
    for( int j = 1 ; j <= count ; j ++ )
        if( indexes[j] == i ){
            shiftUp(j);
            shiftDown(j);
            return;
        }
}
...

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1066524.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SiegedSec 黑客组织袭击北约网络系统

Security Affairs 网站披露&#xff0c;一个名为 SiegedSec 的网络攻击组织近期成功入侵了北约网络系统&#xff0c;并在网上散布盗取的大量非机密文件。 目前&#xff0c;北约正在就此事展开积极调查&#xff0c;其所属官员发表声明表示&#xff0c;北约内部已经组织了大量的网…

智能导览与实时监测:数字孪生助力景区管理

在当今旅游业快速发展的背景下&#xff0c;景区“人流管理”成为了一个越来越重要的问题。数字孪生技术由于其自身优势&#xff0c;可以为景区管理者提供更智能、更高效的管理方案。本文结合山海鲸可视化几个数字孪生案例带大家一起了解数字孪生在景区人流管理方面的应用&#…

计算机竞赛 题目:基于深度学习卷积神经网络的花卉识别 - 深度学习 机器视觉

文章目录 0 前言1 项目背景2 花卉识别的基本原理3 算法实现3.1 预处理3.2 特征提取和选择3.3 分类器设计和决策3.4 卷积神经网络基本原理 4 算法实现4.1 花卉图像数据4.2 模块组成 5 项目执行结果6 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 基…

架构师选择题--计算机网络

架构师选择题--计算机网络 真题 真题 d http:80 https:httpssl &#xff1a;443 b b pop3是邮件接收协议&#xff1a;110 SMTP是邮件发送协议&#xff1a;25 http:80 A 网络隔离&#xff1a;防火墙&#xff08;逻辑&#xff09;&#xff0c;网闸&#xff08;物理&#xff09; …

OpenCV4(C++) —— 图像数据类型转换和颜色模型转换

文章目录 一、图像数据类型转换二、颜色模型转换三、通道的分离和融合 一、图像数据类型转换 OpenCV中使用imread读取一张彩色图像时&#xff0c;默认采用的是BGR通道和整数类型(0-255&#xff0c;CV_8U)。 在某些情况下&#xff0c;会将整数类型(0-255)转换为浮点类型(0-1)&a…

助力电力行业数字化转型:智慧风电项目介绍

智慧电力作为电力领域的突破性进展&#xff0c;旨在实现能源领域的数字化转型。智慧电力借助数字孪生、IOT、云计算等技术&#xff0c;将传统的电力系统升级为高智能、高效能的系统&#xff0c;助力传统能源企业实现数字化转型。下面让我们来看一看山海鲸可视化提供的智慧电力相…

c#利用Chart 画图

c#利用Chart 画图 添加画图组件 编写代码 using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Threading.Tasks; using System.Windows.Forms; …

【网络安全-sql注入(5)】sqlmap以及几款自动化sql注入工具的详细使用过程(提供工具)

一&#xff0c;sqlmap 工具的详细使用 kali系统自带这个工具&#xff0c;无需安装直接sqlmap 后面接参数使用 Windows上参照以下方法安装即可 1-1 工具下载 1-1-1 sqlmap下载 sqlmap 工具下载地址&#xff1a; GitHub - sqlmapproject/sqlmap: Automatic SQL injection a…

6-6 两个有序链表序列的合并 分数 10

List Merge(List L1, List L2) {if (L1 NULL)return L2;if (L2 NULL)return L1;// 定义指针p和q分别指向链表L1和L2的头结点List p L1->Next;List q L2->Next;// 定义新链表的头结点和指针rList head (List)malloc(sizeof(struct Node));head->Next NULL;List r…

WinScope跟踪window/layer pb文件

WinScope web用来跟踪分析WindowManager或SurfaceFlinger在window转换期间和转换后的状态&#xff0c;跟踪记录会被写入 /data/misc/wmtrace/wm_trace.pb 和 /data/misc/wmtrace/layers_trace.pb&#xff0c;同时还会包含在错误报告中。 一、下载winscope.html curl https://a…

Cocos Creator3.8 项目实战(四)巧用九宫格图像拉伸

一、为什么要使用九宫格图像拉伸 相信做过前端的同学都知道&#xff0c;ui &#xff08;图片&#xff09;资源对包体大小和内存都有非常直接的影响。 通常ui 资源都是图片&#xff0c;也是最占资源量的资源类型&#xff0c;游戏中的ui 资源还是人机交互的最重要的部分&#xff…

阿里影业+大麦,开启大文娱新纪元?

被“精心呵护”长达十年后&#xff0c;阿里大文娱在今年终于踏上了关键节点。 3月份&#xff0c;阿里“16N”组织大变革后&#xff0c;大文娱集团独自上路。8月&#xff0c;“分家”后的第一份财报显示&#xff0c;阿里大文娱集团成功大幅扭亏&#xff0c;实现了首次季度经调整…

ToBeWritten之狩猎恶意攻击者

也许每个人出生的时候都以为这世界都是为他一个人而存在的&#xff0c;当他发现自己错的时候&#xff0c;他便开始长大 少走了弯路&#xff0c;也就错过了风景&#xff0c;无论如何&#xff0c;感谢经历 转移发布平台通知&#xff1a;将不再在CSDN博客发布新文章&#xff0c;敬…

如何下载修复xinput1_3.dll并避免常见错误 ,详解多种实用解决方法

在运行某些应用程序或游戏时&#xff0c;您可能会遇到xinput1_3.dll丢失或损坏的错误提示。这是由于操作系统缺少xinput1_3.dll文件所引起的。针对以上问题&#xff0c;我们提供了几种解决方法来修复这个问题。本文将详细介绍如何下载修复xinput1_3.dll&#xff0c;并提供一些建…

【LeetCode75】第六十六题 编辑距离

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 题目给我们三种操作方式&#xff0c;插入一个字符&#xff0c;删除一个字符&#xff0c;替换一个字符。 问我们最少操作几次可以把字符串…

图形学中一些基本知识的总结与复习

前言 在过完games101课程后仍然觉得自己还有许多地方不懂与遗漏&#xff0c;以此来补充与复习一些其中的知识。 参考&#xff1a;Games101、《Unity Shader 入门精要》 GPU渲染流水线(GPU Rendering Pipeline) ----注&#xff1a;Games101课程中所展示渲染流程与书中有所不同&…

前端作业(17)

之后的20个作业&#xff0c;学自【20个JavaScript经典案例-哔哩哔哩】 https://b23.tv/kVj1P5f 支付倒计时 1. 支付10s倒计时 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta http-equiv"X-UA-Compat…

【UE】在游戏运行时,通过选择uasset来生成静态网格体

目录 主要流程 步骤 一、创建用于包含静态网格体的Actor蓝图 二、按钮点击事件 效果 主要流程 用户点击按钮后产生一个文件对话框&#xff0c;用户通过文件对话框选择指定的文件夹&#xff0c;我们获取到这个文件夹路径后处理成“按路径获取资产”节点所需的输入&#x…

AdaBoost(下):数据分析 | 数据挖掘 | 十大算法之一

⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ &#x1f434;作者&#xff1a;秋无之地 &#x1f434;简介&#xff1a;CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作&#xff0c;主要擅长领域有&#xff1a;爬虫、后端、大数据…

录音编辑软件推荐,让你的音频制作更上一层楼!

“有没有好用的录音编辑软件推荐呀&#xff1f;就是可以用来剪辑录音的&#xff0c;领导要求我们对基层工作人员进行访谈&#xff0c;需要录音&#xff0c;可是录制的声音杂音很多&#xff0c;听不清在讲什么&#xff0c;求大家推荐一个录音编辑软件&#xff0c;谢谢啦&#xf…