混合优化算法(optimtool.hybrid)

news2024/11/18 17:33:35
import optimtool as oo
from optimtool.base import np, sp, plt
pip install optimtool>=2.5.0

混合优化算法(optimtool.hybrid)

import optimtool.hybrid as oh
oh.[方法名].[函数名]([目标函数], [参数表], [初始迭代点], [正则化参数], [邻近算子名])

ϕ ( x ) = f ( x ) + h ( x ) \phi(x) = f(x) + h(x) ϕ(x)=f(x)+h(x)
其中 f ( x ) f(x) f(x)是可微的。 h ( x ) h(x) h(x)不是可微的,并且具备简单的形式。optimtool.hybrid能够选择的 h ( x ) h(x) h(x)有: ∣ ∣ x ∣ ∣ 1 ||x||_1 ∣∣x1, ∣ ∣ x ∣ ∣ 2 ||x||_2 ∣∣x2, − ∑ i ln ⁡ ( x i ) -\sum_{i}{\ln(x_i)} iln(xi),实例:
f ( x ) = ∑ i = 1 n ( ( n − ∑ j = 1 n cos ⁡ x j ) + i ( 1 − cos ⁡ x i ) − sin ⁡ x i ) 2 , x 0 = [ 0.2 , 0.2 , . . . , 0.2 ] f(x)=\sum_{i=1}^{n}((n-\sum_{j=1}^{n}\cos x_j)+i(1-\cos x_i)-\sin x_i)^2, x_0=[0.2, 0.2, ...,0.2] f(x)=i=1n((nj=1ncosxj)+i(1cosxi)sinxi)2,x0=[0.2,0.2,...,0.2]

import optimtool.hybrid as oh
x = sp.symbols("x1:3")
f = (2 - (sp.cos(x[0]) + sp.cos(x[1])) + (1 - sp.cos(x[0])) - sp.sin(x[0]))**2 + \
    (2 - (sp.cos(x[0]) + sp.cos(x[1])) + 2 * (1 - sp.cos(x[1])) - sp.sin(x[1]))**2
x_0 = (0.2, 0.2) # Random given

近似点算法(approt)

oh.approt.[函数名]([目标函数], [参数表], [初始迭代点], [正则化参数], [邻近算子名])
方法头解释
grad(funcs: FuncArray, args: ArgArray, x_0: PointArray, mu: float=1e-3, proxim: str=“L1”, tk: float=0.02, verbose: bool=False, draw: bool=True, output_f: bool=False, epsilon: float=1e-6, k: int=0) -> OutputType基于梯度方法的邻近近似
oh.approt.grad(f, x, x_0, verbose=True, epsilon=1e-4)
(0.2, 0.2)	0.033830304000793295	0
[0.19925643 0.19925643]	0.03371630105707655	1
[0.19849759 0.19849759]	0.033599113758384015	2
[0.19772323 0.19772323]	0.0334786576252087	3
[0.19693311 0.19693311]	0.03335484671764522	4
[0.19612697 0.19612697]	0.03322759368760871	5
[0.19530458 0.19530458]	0.03309680983956681	6
[0.19446568 0.19446568]	0.032962405200405005	7
[0.19361004 0.19361004]	0.03282428859906577	8
[0.19273741 0.19273741]	0.03268236775663266	9
[0.19184754 0.19184754]	0.03253654938754205	10
[0.19094021 0.19094021]	0.03238673931263206	11
[0.19001517 0.19001517]	0.03223284258474419	12
[0.18907219 0.18907219]	0.032074763627614224	13
[0.18811105 0.18811105]	0.031912406388790386	14
[0.18713151 0.18713151]	0.03174567450732931	15
[0.18613337 0.18613337]	0.03157447149700892	16
[0.1851164 0.1851164]	0.03139870094579865	17
[0.18408039 0.18408039]	0.031218266732314086	18
[0.18302515 0.18302515]	0.03103307325995774	19
[0.18195048 0.18195048]	0.03084302570942143	20
[0.18085618 0.18085618]	0.030648030310189818	21
[0.17974209 0.17974209]	0.03044799463163445	22
[0.17860802 0.17860802]	0.030242827894225312	23
[0.17745382 0.17745382]	0.030032441301325655	24
[0.17627935 0.17627935]	0.029816748391938645	25
[0.17508445 0.17508445]	0.029595665414685356	26
[0.17386901 0.17386901]	0.029369111723178076	27
[0.17263291 0.17263291]	0.029137010192819283	28
[0.17137605 0.17137605]	0.028899287658918093	29
[0.17009835 0.17009835]	0.028655875375845567	30
[0.16879974 0.16879974]	0.02840670949677072	31
[0.16748017 0.16748017]	0.02815173157332011	32
[0.1661396 0.1661396]	0.02789088907428339	33
[0.16477802 0.16477802]	0.027624135922245694	34
[0.16339543 0.16339543]	0.02735143304677512	35
[0.16199186 0.16199186]	0.02707274895251694	36
[0.16056734 0.16056734]	0.026788060300246677	37
[0.15912196 0.15912196]	0.026497352498637897	38
[0.15765579 0.15765579]	0.02620062030415762	39
[0.15616897 0.15616897]	0.025897868426188044	40
[0.15466162 0.15466162]	0.02558911213410671	41
[0.15313393 0.15313393]	0.025274377862715594	42
[0.15158608 0.15158608]	0.024953703812053064	43
[0.15001829 0.15001829]	0.024627140537261723	44
[0.14843083 0.14843083]	0.02429475152384472	45
[0.14682398 0.14682398]	0.023956613743302973	46
[0.14519804 0.14519804]	0.023612818183825806	47
[0.14355337 0.14355337]	0.023263470350419237	48
[0.14189035 0.14189035]	0.02290869072858788	49
[0.14020939 0.14020939]	0.022548615205470916	50
[0.13851092 0.13851092]	0.022183395442150533	51
[0.13679544 0.13679544]	0.02181319919073435	52
[0.13506345 0.13506345]	0.021438210549756025	53
[0.13331551 0.13331551]	0.021058630151454174	54
[0.13155219 0.13155219]	0.020674675274577677	55
[0.12977412 0.12977412]	0.02028657987655194	56
[0.12798195 0.12798195]	0.01989459453910834	57
[0.12617636 0.12617636]	0.019498986321851795	58
[0.12435809 0.12435809]	0.01910003851871226	59
[0.12252788 0.12252788]	0.01869805031281132	60
[0.12068653 0.12068653]	0.01829333632594862	61
[0.11883487 0.11883487]	0.01788622605971978	62
[0.11697374 0.11697374]	0.01747706322615784	63
[0.11510403 0.11510403]	0.017066204966793598	64
[0.11322666 0.11322666]	0.016654020960107936	65
[0.11134258 0.11134258]	0.016240892418513574	66
[0.10945276 0.10945276]	0.01582721097723825	67
[0.10755818 0.10755818]	0.015413377478760959	68
[0.10565989 0.10565989]	0.01499980065777625	69
[0.10375891 0.10375891]	0.014586895732992659	70
[0.1018563 0.1018563]	0.014175082913403667	71
[0.09995316 0.09995316]	0.013764785827967332	72
[0.09805056 0.09805056]	0.013356429888878502	73
[0.09614962 0.09614962]	0.012950440599784873	74
[0.09425145 0.09425145]	0.01254724182137033	75
[0.09235718 0.09235718]	0.012147254007661526	76
[0.09046792 0.09046792]	0.011750892427213808	77
[0.08858482 0.08858482]	0.011358565383947966	78
[0.08670899 0.08670899]	0.01097067245284757	79
[0.08484156 0.08484156]	0.010587602745955627	80
[0.08298365 0.08298365]	0.010209733224125174	81
[0.08113635 0.08113635]	0.009837427069776122	82
[0.07930076 0.07930076]	0.009471032135477047	83
[0.07747796 0.07747796]	0.009110879482523235	84
[0.07566899 0.07566899]	0.008757282022810418	85
[0.07387489 0.07387489]	0.008410533276236762	86
[0.07209667 0.07209667]	0.008070906254602977	87
[0.07033531 0.07033531]	0.007738652481558527	88
[0.06859176 0.06859176]	0.007414001156570364	89
[0.06686694 0.06686694]	0.007097158469209606	90
[0.06516172 0.06516172]	0.0067883070682847125	91
[0.06347696 0.06347696]	0.006487605688524489	92
[0.06181345 0.06181345]	0.006195188935681534	93
[0.06017198 0.06017198]	0.005911167229092196	94
[0.05855326 0.05855326]	0.005635626898953724	95
[0.05695796 0.05695796]	0.005368630433870282	96
[0.05538674 0.05538674]	0.005110216872624309	97
[0.05384017 0.05384017]	0.004860402332652406	98
[0.0523188 0.0523188]	0.004619180666398659	99
[0.05082312 0.05082312]	0.004386524235562022	100
[0.04935359 0.04935359]	0.004162384792297757	101
[0.0479106 0.0479106]	0.003946694455662684	102
[0.04649451 0.04649451]	0.003739366771024543	103
[0.04510562 0.04510562]	0.0035402978397843406	104
[0.0437442 0.0437442]	0.0033493675065847757	105
[0.04241045 0.04241045]	0.0031664405911896133	106
[0.04110454 0.04110454]	0.0029913681524116327	107
[0.0398266 0.0398266]	0.002823988771812003	108
[0.0385767 0.0385767]	0.0026641298453995883	109
[0.03735488 0.03735488]	0.0025116088721840162	110
[0.03616115 0.03616115]	0.0023662347291712976	111
[0.03499544 0.03499544]	0.002227808923221081	112
[0.03385768 0.03385768]	0.002096126811077554	113
[0.03274776 0.03274776]	0.001970978779829355	114
[0.03166552 0.03166552]	0.0018521513810318142	115
[0.03061077 0.03061077]	0.0017394284127048485	116
[0.0295833 0.0295833]	0.0016325919444068876	117
[0.02858286 0.02858286]	0.0015314232815397497	118
[0.02760917 0.02760917]	0.001435703865969758	119
[0.02666194 0.02666194]	0.0013452161109320454	120
[0.02574084 0.02574084]	0.0012597441690125495	121
[0.02484552 0.02484552]	0.001179074632770029	122
[0.02397562 0.02397562]	0.001102997168258484	123
[0.02313076 0.02313076]	0.0010313050823431134	124
[0.02231052 0.02231052]	0.0009637958252554067	125
[0.0215145 0.0215145]	0.0009002714303206027	126
[0.02074227 0.02074227]	0.0008405388932003743	127
[0.01999338 0.01999338]	0.0007844104933347607	128
[0.01926738 0.01926738]	0.0007317040605428159	129
[0.01856381 0.01856381]	0.0006822431899514119	130
[0.01788221 0.01788221]	0.0006358574085730946	131
[0.01722209 0.01722209]	0.0005923822969516482	132
[0.01658299 0.01658299]	0.0005516595693425212	133
[0.01596441 0.01596441]	0.0005135371158985923	134
[0.01536588 0.01536588]	0.00047786901029846864	135
[0.01478692 0.01478692]	0.0004445154861861646	136
[0.01422703 0.01422703]	0.0004133428856947098	137
[0.01368574 0.01368574]	0.0003842235832073654	138
[0.01316255 0.01316255]	0.0003570358873697328	139
[0.01265701 0.01265701]	0.00033166392421483536	140
[0.01216862 0.01216862]	0.0003079975040960318	141
[0.01169692 0.01169692]	0.00028593197495247396	142
[0.01124144 0.01124144]	0.00026536806425459664	143
[0.01080172 0.01080172]	0.0002462117117987103	144
[0.01037731 0.01037731]	0.00022837389534282435	145
[0.00996775 0.00996775]	0.00021177045090091796	146
[0.00957262 0.00957262]	0.0001963218893420302	147
[0.00919146 0.00919146]	0.00018195321077671775	148
[0.00882387 0.00882387]	0.000168593718055502	149
[0.00846941 0.00846941]	0.00015617683055352998	150
[0.00812768 0.00812768]	0.0001446398992749004	151
[0.00779828 0.00779828]	0.0001339240241768505	152
[0.00748082 0.00748082]	0.00012397387449037303	153
[0.0071749 0.0071749]	0.000114737512699174	154
[0.00688016 0.00688016]	0.00010616622273352944	155
[0.00659622 0.00659622]	9.821434283851575e-05	156
[0.00632274 0.00632274]	9.08391034888525e-05	157
[0.00605935 0.00605935]	8.400047064208593e-05	158
[0.00580573 0.00580573]	7.766099455120823e-05	159
[0.00556154 0.00556154]	7.17856642930692e-05	160
[0.00532645 0.00532645]	6.63417681125835e-05	161
[0.00510016 0.00510016]	6.129875963233148e-05	162
[0.00488236 0.00488236]	5.6628129933378544e-05	163
[0.00467276 0.00467276]	5.23032854751192e-05	164
[0.00447106 0.00447106]	4.829943178895962e-05	165
[0.00427699 0.00427699]	4.459346285271314e-05	166
[0.00409028 0.00409028]	4.116385602937666e-05	167
[0.00391066 0.00391066]	3.799057243413012e-05	168
[0.00373789 0.00373789]	3.505496257755243e-05	169
[0.00357171 0.00357171]	3.2339677120730474e-05	170
[0.0034119 0.0034119]	2.982858256774279e-05	171
[0.0032582 0.0032582]	2.7506681714183043e-05	172
[0.00311041 0.00311041]	2.5360038665186197e-05	173
[0.00296831 0.00296831]	2.337570823368496e-05	174
[0.00283169 0.00283169]	2.154166952822405e-05	175
[0.00270034 0.00270034]	1.9846763539975257e-05	176
[0.00257407 0.00257407]	1.8280634540178872e-05	177
[0.00245269 0.00245269]	1.6833675101623048e-05	178
[0.00233602 0.00233602]	1.549697456151136e-05	179
[0.00222389 0.00222389]	1.4262270747130963e-05	180
[0.00211612 0.00211612]	1.3121904790621107e-05	181
[0.00201254 0.00201254]	1.206877886445294e-05	182
[0.00191301 0.00191301]	1.1096316674962034e-05	183
[0.00181737 0.00181737]	1.0198426557197656e-05	184
[0.00172546 0.00172546]	9.36946702044605e-06	185
[0.00163716 0.00163716]	8.60421460020984e-06	186
[0.00155231 0.00155231]	7.897833878607748e-06	187
[0.0014708 0.0014708]	7.245849541505941e-06	188
[0.00139249 0.00139249]	6.644120347093789e-06	189
[0.00131725 0.00131725]	6.088814886589323e-06	190
[0.00124498 0.00124498]	5.576389024080719e-06	191
[0.00117555 0.00117555]	5.103564908254004e-06	192
[0.00110886 0.00110886]	4.667311454629785e-06	193
[0.0010448 0.0010448]	4.26482620251418e-06	194
[0.00098327 0.00098327]	3.89351845623686e-06	195
[0.00092417 0.00092417]	3.5509936254760143e-06	196
[0.00086741 0.00086741]	3.2350386844359184e-06	197
[0.00081289 0.00081289]	2.9436086744619057e-06	198
[0.00076053 0.00076053]	2.6748141791812922e-06	199
[0.00071025 0.00071025]	2.4269097056574906e-06	200
[0.00066196 0.00066196]	2.1982829091729086e-06	201
[0.00061559 0.00061559]	1.9874446031613262e-06	202
[0.00057106 0.00057106]	1.7930194995873036e-06	203
[0.00052829 0.00052829]	1.613737628526414e-06	204
[0.00048723 0.00048723]	1.4484263891181658e-06	205
[0.0004478 0.0004478]	1.2960031871400677e-06	206
[0.00040993 0.00040993]	1.1554686174483923e-06	207
[0.00037357 0.00037357]	1.025900152341892e-06	208
[0.00033867 0.00033867]	9.064462994919141e-07	209
[0.00030515 0.00030515]	7.963211955915816e-07	210
[0.00027296 0.00027296]	6.947996041620743e-07	211
[0.00024206 0.00024206]	6.01212288158414e-07	212
[0.00021239 0.00021239]	5.14941730029167e-07	213
[0.00018391 0.00018391]	4.3541817380762416e-07	214
[0.00015656 0.00015656]	3.621159655820409e-07	215
[0.0001303 0.0001303]	2.9455017038155757e-07	216
[0.0001051 0.0001051]	2.3227344505032461e-07	217
[8.08945057e-05 8.08945057e-05]	1.748731481504906e-07	218
[5.76602959e-05 5.76602959e-05]	1.2196866929042707e-07	219
[3.53546819e-05 3.53546819e-05]	7.320896153659465e-08	220

(array([3.53546819e-05, 3.53546819e-05]), 220)

FISTA算法(fista)

oh.fista.[函数名]([目标函数], [参数表], [初始迭代点], [正则化参数], [邻近算子名])
方法头解释
normal(funcs: FuncArray, args: ArgArray, x_0: PointArray, mu: float=1e-3, proxim: str=“L1”, tk: float=0.02, verbose: bool=False, draw: bool=True, output_f: bool=False, epsilon: float=1e-6, k: int=0) -> OutputType两步计算一个新点
variant(funcs: FuncArray, args: ArgArray, x_0: PointArray, mu: float=1e-3, proxim: str=“L1”, tk: float=0.02, verbose: bool=False, draw: bool=True, output_f: bool=False, epsilon: float=1e-6, k: int=0) -> OutputTypenormal法的等价变形
decline(funcs: FuncArray, args: ArgArray, x_0: PointArray, mu: float=1e-3, proxim: str=“L1”, tk: float=0.02, verbose: bool=False, draw: bool=True, output_f: bool=False, epsilon: float=1e-6, k: int=0) -> OutputType基于函数下降趋势的变体
oh.fista.normal(f, x, x_0, verbose=True, epsilon=1e-4)
(0.2, 0.2)	0.033830304000793295	0
[0.19925643 0.19925643]	0.03371630105707655	1
[0.19849759 0.19849759]	0.033599113758384015	2
[0.19752965 0.19752965]	0.03344840822740475	3
[0.19634058 0.19634058]	0.03326140386972337	4
[0.19491599 0.19491599]	0.03303467660717308	5
[0.19323907 0.19323907]	0.03276408584834668	6
[0.19129038 0.19129038]	0.03244469143441093	7
[0.18904782 0.18904782]	0.03207066253319544	8
[0.18648645 0.18648645]	0.03163518232735821	9
[0.18357846 0.18357846]	0.031130355220309	10
[0.18029315 0.18029315]	0.03054712756229315	11
[0.17659697 0.17659697]	0.02987523906813377	12
[0.17245376 0.17245376]	0.029103230710925534	13
[0.16782507 0.16782507]	0.028218546457533245	14
[0.16267078 0.16267078]	0.02720778105084813	15
[0.15695006 0.15695006]	0.02605714379032019	16
[0.15062263 0.15062263]	0.02475322722482501	17
[0.1436507 0.1436507]	0.023284185711105593	18
[0.13600142 0.13600142]	0.02164143378200551	19
[0.12765019 0.12765019]	0.019821954357666566	20
[0.11858478 0.11858478]	0.017831241286453643	21
[0.10881027 0.10881027]	0.01568676317570666	22
[0.09835481 0.09835481]	0.01342160091785943	23
[0.08727586 0.08727586]	0.01108757276749394	24
[0.0756663 0.0756663]	0.008756758818819103	25
[0.06365966 0.06365966]	0.006519996602965627	26
[0.05143318 0.05143318]	0.004480874877680786	27
[0.03920737 0.03920737]	0.0027443108743679394	28
[0.0272407 0.0272407]	0.0014001940854970719	29
[0.01581839 0.01581839]	0.0005047242448837863	30
[0.00523537 0.00523537]	6.4288746819883e-05	31
[-0.00418665 -0.00418665]	4.3944790650174575e-05	32
[-0.01221648 -0.01221648]	0.0003358041809499229	33
[-0.01868558 -0.01868558]	0.000782018176888592	34
[-0.02349934 -0.02349934]	0.001243963960329223	35
[-0.02664181 -0.02664181]	0.001608014900872538	36
[-0.02817331 -0.02817331]	0.0018038384618738578	37
[-0.02822152 -0.02822152]	0.001810201114210672	38
[-0.02696779 -0.02696779]	0.0016486746491471192	39
[-0.02463074 -0.02463074]	0.0013692472198611092	40
[-0.02144946 -0.02144946]	0.001033310326812164	41
[-0.01766789 -0.01766789]	0.0006987912458611627	42
[-0.01352189 -0.01352189]	0.0004102193974182509	43
[-0.00922928 -0.00922928]	0.0001943611548287423	44
[-0.00498303 -0.00498303]	6.0496796608013615e-05	45
[-0.00094732 -0.00094732]	3.6954413794614425e-06	46
[0.00270463 0.00270463]	1.9901129925390336e-05	47
[0.00587664 0.00587664]	7.94091094216332e-05	48
[0.00850264 0.00850264]	0.00015732135728718983	49
[0.01054374 0.01054374]	0.00023529252758100567	50
[0.01198517 0.01198517]	0.00029932348310261373	51
[0.0128333 0.0128333]	0.00034041104566886213	52
[0.01311286 0.01311286]	0.0003545027009827691	53
[0.01286437 0.01286437]	0.0003419638510109866	54
[0.01214176 0.01214176]	0.0003067200850132879	55
[0.01100998 0.01100998]	0.00025519907496466464	56
[0.0095427 0.0095427]	0.00019517498982886958	57
[0.00781981 0.00781981]	0.00013461228868992265	58
[0.00592486 0.00592486]	8.060873795925052e-05	59
[0.00394224 0.00394224]	3.853955135280601e-05	60
[0.00195435 0.00195435]	1.149547685501415e-05	61
[3.86693674e-05 3.86693674e-05]	8.032897007816521e-08	62
[-0.00169515 -0.00169515]	9.17148721695113e-06	63
[-0.00319296 -0.00319296]	2.7004334602874763e-05	64
[-0.00441392 -0.00441392]	4.8397238412822366e-05	65
[-0.00533136 -0.00533136]	6.857481635587594e-05	66
[-0.00593302 -0.00593302]	8.373629979419888e-05	67
[-0.0062205 -0.0062205]	9.15235913915823e-05	68
[-0.0062082 -0.0062082]	9.118306879630649e-05	69
[-0.00592161 -0.00592161]	8.34343820763833e-05	70
[-0.0053953 -0.0053953]	7.01133065277566e-05	71
[-0.00467068 -0.00467068]	5.368776346101515e-05	72
[-0.00379356 -0.00379356]	3.6752630190872105e-05	73
[-0.00281189 -0.00281189]	2.1593233635829933e-05	74
[-0.00177358 -0.00177358]	9.877481468752762e-06	75
[-0.00072459 -0.00072459]	2.501921465760068e-06	76
[0.00025271 0.00025271]	6.330306539194115e-07	77
[0.00112552 0.00112552]	4.7746896689738605e-06	78
[0.00186791 0.00186791]	1.0668443587263032e-05	79
[0.00246108 0.00246108]	1.6931895980111533e-05	80
[0.00289345 0.00289345]	2.2361878461997472e-05	81
[0.00316041 0.00316041]	2.6076758170315184e-05	82
[0.00326391 0.00326391]	2.7591230673255495e-05	83
[0.00321191 0.00321191]	2.682517662881479e-05	84
[0.00301765 0.00301765]	2.405576611892222e-05	85
[0.00269879 0.00269879]	1.9827263265911833e-05	86
[0.00227655 0.00227655]	1.4835994988390612e-05	87
[0.00177463 0.00177463]	9.808812559984457e-06	88
[0.00121826 0.00121826]	5.392209040060288e-06	89
[0.00063314 0.00063314]	2.0662326628037452e-06	90
[4.4412847e-05 4.4412847e-05]	9.277008269260652e-08	91
[-0.00048426 -0.00048426]	1.4383293148952407e-06	92
[-0.00093604 -0.00093604]	3.6301580781364767e-06	93
[-0.00129827 -0.00129827]	5.9828727580486845e-06	94
[-0.00156272 -0.00156272]	8.03638649505745e-06	95
[-0.00172564 -0.00172564]	9.442956816861173e-06	96
[-0.00178759 -0.00178759]	1.000614664689354e-05	97
[-0.00175314 -0.00175314]	9.691006528007353e-06	98
[-0.0016304 -0.0016304]	8.607546021477958e-06	99
[-0.00143044 -0.00143044]	6.973690459175214e-06	100
[-0.00116663 -0.00116663]	5.066443040807669e-06	101
[-0.00085394 -0.00085394]	3.170660486780329e-06	102
[-0.0005082 -0.0005082]	1.5338563099619648e-06	103
[-0.00014544 -0.00014544]	3.33212610205221e-07	104
[0.00017878 0.00017878]	4.214390667731358e-07	105
[0.00045421 0.00045421]	1.3203776625245732e-06	106
[0.00067324 0.00067324]	2.250832733219641e-06	107
[0.00083097 0.00083097]	3.038967555581645e-06	108
[0.00092526 0.00092526]	3.557218652962131e-06	109
[0.00095658 0.00095658]	3.737100302233256e-06	110
[0.0009278 0.0009278]	3.5716314819327603e-06	111
[0.00084399 0.00084399]	3.1084058923828957e-06	112
[0.00071203 0.00071203]	2.4354998352661786e-06	113
[0.00054025 0.00054025]	1.6631435338735005e-06	114
[0.00033803 0.00033803]	9.043319121947985e-07	115
[0.00011537 0.00011537]	2.573406355634432e-07	116
[-7.75729405e-05 -7.75729405e-05]	1.671842709922099e-07	117
[-0.00023501 -0.00023501]	5.805689223087464e-07	118
[-0.00035294 -0.00035294]	9.55330129339356e-07	119
[-0.00042919 -0.00042919]	1.2273575895614658e-06	120
[-0.00046338 -0.00046338]	1.3569078800428007e-06	121
[-0.00045682 -0.00045682]	1.3316868956475513e-06	122
[-0.00041237 -0.00041237]	1.1653229296710031e-06	123
[-0.0003342 -0.0003342]	8.920309869145119e-07	124
[-0.00022756 -0.00022756]	5.587686146122985e-07	125
[-9.85008103e-05 -9.85008103e-05]	2.1641313021020493e-07	126
[6.43207414e-06 6.43207414e-06]	1.2946889566740209e-08	127

在这里插入图片描述

(array([6.43207414e-06, 6.43207414e-06]), 127)

Nesterov算法(nesterov)

oh.nesterov.[函数名]([目标函数], [参数表], [初始迭代点], [正则化参数], [邻近算子名])
方法头解释
seckin(funcs: FuncArray, args: ArgArray, x_0: PointArray, mu: float=1e-3, proxim: str=“L1”, tk: float=0.02, verbose: bool=False, draw: bool=True, output_f: bool=False, epsilon: float=1e-6, k: int=0) -> OutputType第二类Nesterov加速法
accer(funcs: FuncArray, args: ArgArray, x_0: PointArray, mu: float=1e-3, proxim: str=“L1”, lk: float=0.01, tk: float=0.02, verbose: bool=False, draw: bool=True, output_f: bool=False, epsilon: float=1e-6, k: int=0) -> OutputType复合优化算法的加速框架
(0.2, 0.2)	0.033830304000793295	0
[0.19925643 0.19925643]	0.03371630105707655	1
[0.19873208 0.19873208]	0.033635416161269645	2
[0.19824625 0.19824625]	0.033560113282182814	3
[0.19779193 0.19779193]	0.03348937977771688	4
[0.1973583 0.1973583]	0.03342158708171633	5
[0.19693596 0.19693596]	0.03335529505960039	6
[0.19651836 0.19651836]	0.03328949344326663	7
[0.19610149 0.19610149]	0.03322355499940229	8
[0.19568304 0.19568304]	0.033157115543780515	9
[0.19526174 0.19526174]	0.033089970332591104	10
[0.19483691 0.19483691]	0.033022004801464444	11
[0.19440817 0.19440817]	0.032953153342586375	12
[0.19397531 0.19397531]	0.03288337625764423	13
[0.19353821 0.19353821]	0.032812647334081416	14
[0.1930968 0.1930968]	0.03274094729563452	15
[0.19265102 0.19265102]	0.03266826039819621	16
[0.19220083 0.19220083]	0.032594572677139846	17
[0.19174619 0.19174619]	0.032519871051184146	18
[0.19128706 0.19128706]	0.03244414286707404	19
[0.19082343 0.19082343]	0.032367375670024706	20
[0.19035525 0.19035525]	0.0322895570894612	21
[0.1898825 0.1898825]	0.03221067478356757	22
[0.18940514 0.18940514]	0.03213071641385224	23
[0.18892316 0.18892316]	0.03204966963507849	24
[0.18843651 0.18843651]	0.031967522093123764	25
[0.18794517 0.18794517]	0.03188426142698723	26
[0.18744912 0.18744912]	0.03179987527304022	27
[0.18694832 0.18694832]	0.031714351270546136	28
[0.18644275 0.18644275]	0.03162767706796477	29
[0.18593238 0.18593238]	0.03153984032980098	30
[0.18541719 0.18541719]	0.03145082874386781	31
[0.18489715 0.18489715]	0.03136063002891287	32
[0.18437222 0.18437222]	0.03126923194257793	33
[0.1838424 0.1838424]	0.031176622289681582	34
[0.18330765 0.18330765]	0.03108278893081914	35
[0.18276794 0.18276794]	0.03098771979128425	36
[0.18222326 0.18222326]	0.03089140287031154	37
[0.18167359 0.18167359]	0.030793826250645626	38
[0.18111889 0.18111889]	0.030694978108438714	39
[0.18055915 0.18055915]	0.03059484672348252	40
[0.17999435 0.17999435]	0.030493420489773625	41
[0.17942446 0.17942446]	0.030390687926420742	42
[0.17884946 0.17884946]	0.03028663768889194	43
[0.17826935 0.17826935]	0.030181258580608418	44
[0.17768409 0.17768409]	0.030074539564881035	45
[0.17709367 0.17709367]	0.02996646977719818	46
[0.17649807 0.17649807]	0.029857038537858628	47
[0.17589728 0.17589728]	0.02974623536495526	48
[0.17529127 0.17529127]	0.02963404998770624	49
[0.17468005 0.17468005]	0.029520472360134945	50
[0.17406359 0.17406359]	0.029405492675093462	51
[0.17344188 0.17344188]	0.029289101378632255	52
[0.1728149 0.1728149]	0.029171289184710302	53
[0.17218266 0.17218266]	0.029052047090239855	54
[0.17154513 0.17154513]	0.028931366390468057	55
[0.17090231 0.17090231]	0.028809238694680148	56
[0.17025419 0.17025419]	0.028685655942228945	57
[0.16960076 0.16960076]	0.028560610418873568	58
[0.16894202 0.16894202]	0.028434094773425688	59
[0.16827797 0.16827797]	0.028306102034691773	60
[0.1676086 0.1676086]	0.02817662562869971	61
[0.16693391 0.16693391]	0.028045659396202398	62
[0.1662539 0.1662539]	0.027913197610440834	63
[0.16556856 0.16556856]	0.0277792349951582	64
[0.16487791 0.16487791]	0.027643766742844578	65
[0.16418194 0.16418194]	0.027506788533203375	66
[0.16348066 0.16348066]	0.02736829655181286	67
[0.16277408 0.16277408]	0.02722828750897477	68
[0.1620622 0.1620622]	0.027086758658721198	69
[0.16134503 0.16134503]	0.02694370781796281	70
[0.16062258 0.16062258]	0.026799133385756447	71
[0.15989486 0.15989486]	0.026653034362663773	72
[0.1591619 0.1591619]	0.026505410370182444	73
[0.15842369 0.15842369]	0.026356261670214508	74
[0.15768027 0.15768027]	0.026205589184552146	75
[0.15693165 0.15693165]	0.026053394514344092	76
[0.15617784 0.15617784]	0.02589967995951506	77
[0.15541887 0.15541887]	0.025744448538108148	78
[0.15465477 0.15465477]	0.02558770400550724	79
[0.15388556 0.15388556]	0.025429450873514402	80
[0.15311126 0.15311126]	0.0252696944292389	81
[0.15233191 0.15233191]	0.02510844075376142	82
[0.15154753 0.15154753]	0.0249456967405326	83
[0.15075817 0.15075817]	0.024781470113468172	84
[0.14996385 0.14996385]	0.024615769444693614	85
[0.14916461 0.14916461]	0.02444860417189907	86
[0.14836049 0.14836049]	0.024279984615258984	87
[0.14755153 0.14755153]	0.02410992199386683	88
[0.14673778 0.14673778]	0.023938428441643678	89
[0.14591927 0.14591927]	0.02376551702266892	90
[0.14509606 0.14509606]	0.023591201745887268	91
[0.14426819 0.14426819]	0.02341549757913816	92
[0.14343572 0.14343572]	0.023238420462463397	93
[0.1425987 0.1425987]	0.02305998732063617	94
[0.14175718 0.14175718]	0.022880216074865917	95
[0.14091122 0.14091122]	0.022699125653621477	96
[0.14006088 0.14006088]	0.022516736002528296	97
[0.13920622 0.13920622]	0.022333068093279024	98
[0.13834731 0.13834731]	0.022148143931513993	99
[0.13748421 0.13748421]	0.02196198656361456	100
[0.136617 0.136617]	0.021774620082362042	101
[0.13574573 0.13574573]	0.02158606963140784	102
[0.13487049 0.13487049]	0.02139636140851093	103
[0.13399135 0.13399135]	0.02120552266748679	104
[0.13310839 0.13310839]	0.021013581718826876	105
[0.13222168 0.13222168]	0.020820567928938712	106
[0.13133131 0.13133131]	0.020626511717963182	107
[0.13043736 0.13043736]	0.02043144455612627	108
[0.12953992 0.12953992]	0.020235398958584165	109
[0.12863908 0.12863908]	0.02003840847872382	110
[0.12773492 0.12773492]	0.01984050769987993	111
[0.12682754 0.12682754]	0.019641732225440522	112
[0.12591704 0.12591704]	0.019442118667302975	113
[0.1250035 0.1250035]	0.019241704632659312	114
[0.12408704 0.12408704]	0.019040528709081284	115
[0.12316775 0.12316775]	0.018838630447888367	116
[0.12224573 0.12224573]	0.018636050345776825	117
[0.12132109 0.12132109]	0.018432829824700743	118
[0.12039394 0.12039394]	0.01822901120999248	119
[0.11946438 0.11946438]	0.01802463770671741	120
[0.11853253 0.11853253]	0.017819753374264793	121
[0.1175985 0.1175985]	0.017614403099174197	122
[0.11666241 0.11666241]	0.017408632566209822	123
[0.11572436 0.11572436]	0.01720248822769215	124
[0.11478448 0.11478448]	0.016996017271108478	125
[0.11384289 0.11384289]	0.016789267585023703	126
[0.11289972 0.11289972]	0.016582287723316894	127
[0.11195507 0.11195507]	0.01637512686778442	128
[0.11100909 0.11100909]	0.016167834789139506	129
[0.11006189 0.11006189]	0.015960461806458145	130
[0.1091136 0.1091136]	0.015753058745119824	131
[0.10816436 0.10816436]	0.015545676893292247	132
[0.10721428 0.10721428]	0.015338367957028396	133
[0.10626351 0.10626351]	0.015131184014033131	134
[0.10531218 0.10531218]	0.014924177466172134	135
[0.10436042 0.10436042]	0.014717400990799457	136
[0.10340836 0.10340836]	0.014510907490978745	137
[0.10245615 0.10245615]	0.014304750044688593	138
[0.10150391 0.10150391]	0.014098981853094075	139
[0.10055179 0.10055179]	0.013893656187982946	140
[0.09959992 0.09959992]	0.01368882633845935	141
[0.09864844 0.09864844]	0.013484545556998294	142
[0.09769749 0.09769749]	0.013280867004964954	143
[0.09674722 0.09674722]	0.013077843697704697	144
[0.09579776 0.09579776]	0.01287552844931507	145
[0.09484925 0.09484925]	0.01267397381721372	146
[0.09390183 0.09390183]	0.012473232046613741	147
[0.09295564 0.09295564]	0.012273355015029202	148
[0.09201083 0.09201083]	0.012074394176923015	149
[0.09106754 0.09106754]	0.011876400508619371	150
[0.09012589 0.09012589]	0.011679424453601839	151
[0.08918605 0.08918605]	0.011483515868314823	152
[0.08824814 0.08824814]	0.01128872396858924	153
[0.0873123 0.0873123]	0.011095097276812349	154
[0.08637867 0.08637867]	0.010902683569959014	155
[0.0854474 0.0854474]	0.010711529828601291	156
[0.08451862 0.08451862]	0.01052168218701202	157
[0.08359246 0.08359246]	0.010333185884471796	158
[0.08266906 0.08266906]	0.01014608521789343	159
[0.08174856 0.08174856]	0.00996042349586558	160
[0.08083108 0.08083108]	0.009776242994221208	161
[0.07991677 0.07991677]	0.009593584913228696	162
[0.07900575 0.07900575]	0.009412489336499564	163
[0.07809816 0.07809816]	0.009232995191701765	164
[0.07719411 0.07719411]	0.009055140213166078	165
[0.07629375 0.07629375]	0.008878960906460193	166
[0.07539718 0.07539718]	0.008704492515007505	167
[0.07450455 0.07450455]	0.008531768988817391	168
[0.07361596 0.07361596]	0.008360822955386055	169
[0.07273153 0.07273153]	0.008191685692826979	170
[0.0718514 0.0718514]	0.008024387105275749	171
[0.07097566 0.07097566]	0.007858955700613185	172
[0.07010445 0.07010445]	0.007695418570540102	173
[0.06923786 0.06923786]	0.007533801373033395	174
[0.068376 0.068376]	0.007374128317203251	175
[0.06751899 0.06751899]	0.007216422150565665	176
[0.06666693 0.06666693]	0.007060704148737249	177
[0.06581992 0.06581992]	0.006906994107553427	178
[0.06497806 0.06497806]	0.00675531033760118	179
[0.06414146 0.06414146]	0.006605669661154516	180
[0.06331019 0.06331019]	0.006458087411491039	181
[0.06248436 0.06248436]	0.006312577434564489	182
[0.06166406 0.06166406]	0.006169152092997068	183
[0.06084938 0.06084938]	0.006027822272356063	184
[0.06004039 0.06004039]	0.005888597389665743	185
[0.05923718 0.05923718]	0.005751485404107095	186
[0.05843983 0.05843983]	0.005616492829845886	187
[0.05764842 0.05764842]	0.005483624750930617	188
[0.05686301 0.05686301]	0.0053528848381917	189
[0.05608369 0.05608369]	0.00522427536807383	190
[0.05531051 0.05531051]	0.005097797243323587	191
[0.05454354 0.05454354]	0.00497345001545756	192
[0.05378285 0.05378285]	0.00485123190892543	193
[0.05302849 0.05302849]	0.004731139846886088	194
[0.05228051 0.05228051]	0.004613169478506701	195
[0.05153898 0.05153898]	0.004497315207696919	196
[0.05080394 0.05080394]	0.004383570223184056	197
[0.05007544 0.05007544]	0.004271926529837656	198
[0.04935352 0.04935352]	0.0041623749811483205	199
[0.04863823 0.04863823]	0.004054905312763828	200
[0.0479296 0.0479296]	0.003949506176988748	201
[0.04722767 0.04722767]	0.003846165178149841	202
[0.04653248 0.04653248]	0.003744868908731468	203
[0.04584405 0.04584405]	0.00364560298618641	204
[0.0451624 0.0451624]	0.003548352090325825	205
[0.04448758 0.04448758]	0.00345310000119703	206
[0.04381958 0.04381958]	0.0033598296373552653	207
[0.04315845 0.04315845]	0.003268523094439369	208
[0.04250418 0.04250418]	0.0031791616839638233	209
[0.04185681 0.04185681]	0.003091725972240079	210
[0.04121632 0.04121632]	0.0030061958193431815	211
[0.04058275 0.04058275]	0.002922550418043142	212
[0.03995608 0.03995608]	0.0028407683326218945	213
[0.03933633 0.03933633]	0.002760827537500723	214
[0.0387235 0.0387235]	0.002682705455604866	215
[0.03811758 0.03811758]	0.002606378996397809	216
[0.03751857 0.03751857]	0.0025318245935165348	217
[0.03692646 0.03692646]	0.0024590182419483536	218
[0.03634126 0.03634126]	0.0023879355346878837	219
[0.03576293 0.03576293]	0.002318551698819148	220
[0.03519148 0.03519148]	0.0022508416309721096	221
[0.03462689 0.03462689]	0.0021847799321037384	222
[0.03406913 0.03406913]	0.0021203409415594945	223
[0.0335182 0.0335182]	0.0020574987703744028	224
[0.03297407 0.03297407]	0.0019962273337760157	225
[0.03243671 0.03243671]	0.0019365003828540328	226
[0.03190611 0.03190611]	0.001878291535368826	227
[0.03138223 0.03138223]	0.001821574305668823	228
[0.03086505 0.03086505]	0.0017663221336947984	229
[0.03035453 0.03035453]	0.0017125084130502617	230
[0.02985065 0.02985065]	0.0016601065181208472	231
[0.02935337 0.02935337]	0.0016090898302279768	232
[0.02886266 0.02886266]	0.0015594317628068093	233
[0.02837848 0.02837848]	0.0015111057855995852	234
[0.02790078 0.02790078]	0.0014640854478586128	235
[0.02742955 0.02742955]	0.0014183444005574958	236
[0.02696472 0.02696472]	0.0013738564176089946	237
[0.02650626 0.02650626]	0.001330595416092694	238
[0.02605413 0.02605413]	0.001288535475496316	239
[0.02560829 0.02560829]	0.001247650855978515	240
[0.02516868 0.02516868]	0.0012079160156600926	241
[0.02473526 0.02473526]	0.0011693056269562992	242
[0.02430798 0.02430798]	0.0011317945919609778	243
[0.0238868 0.0238868]	0.0010953580568974848	244
[0.02347166 0.02347166]	0.0010599714256517984	245
[0.02306252 0.02306252]	0.001025610372404541	246
[0.02265933 0.02265933]	0.0009922508533802834	247
[0.02226202 0.02226202]	0.0009598691177337821	248
[0.02187056 0.02187056]	0.0009284417175927542	249
[0.02148488 0.02148488]	0.0008979455172794812	250
[0.02110493 0.02110493]	0.000868357701732434	251
[0.02073067 0.02073067]	0.0008396557841512164	252
[0.02036202 0.02036202]	0.0008118176128884495	253
[0.01999895 0.01999895]	0.0007848213776115862	254
[0.01964139 0.01964139]	0.0007586456147596944	255
[0.01928928 0.01928928]	0.0007332692123195464	256
[0.01894257 0.01894257]	0.0007086714139457371	257
[0.01860121 0.01860121]	0.0006848318224496608	258
[0.01826513 0.01826513]	0.0006617304026828131	259
[0.01793428 0.01793428]	0.0006393474838384433	260
[0.01760859 0.01760859]	0.0006176637611976787	261
[0.01728803 0.01728803]	0.0005966602973436125	262
[0.01697251 0.01697251]	0.0005763185228690176	263
[0.01666199 0.01666199]	0.0005566202366011656	264
[0.01635641 0.01635641]	0.0005375476053680995	265
[0.01605571 0.01605571]	0.0005190831633299191	266
[0.01575982 0.01575982]	0.0005012098108984406	267
[0.01546871 0.01546871]	0.0004839108132677776	268
[0.01518229 0.01518229]	0.0004671697985785609	269
[0.01490052 0.01490052]	0.0004509707557372565	270
[0.01462335 0.01462335]	0.00043529803191223943	271
[0.0143507 0.0143507]	0.0004201363297273299	272
[0.01408252 0.01408252]	0.00040547070417281143	273
[0.01381876 0.01381876]	0.0003912865592539738	274
[0.01355935 0.01355935]	0.0003775696443959911	275
[0.01330425 0.01330425]	0.0003643060506235078	276
[0.01305339 0.01305339]	0.00035148220653310216	277
[0.01280671 0.01280671]	0.0003390848740755047	278
[0.01256417 0.01256417]	0.0003271011441643905	279
[0.0123257 0.0123257]	0.000315518432127678	280
[0.01209124 0.01209124]	0.00030432447301666937	281
[0.01186075 0.01186075]	0.0002935073167876891	282
[0.01163416 0.01163416]	0.00028305532337051406	283
[0.01141143 0.01141143]	0.0002729571576369438	284
[0.01119249 0.01119249]	0.000263201784282491	285
[0.01097729 0.01097729]	0.00025377846263343733	286
[0.01076579 0.01076579]	0.00024467674139096147	287
[0.01055792 0.01055792]	0.0002358864533235877	288
[0.01035363 0.01035363]	0.0002273977099183539	289
[0.01015287 0.01015287]	0.0002192008960007555	290
[0.00995559 0.00995559]	0.00021128666433314824	291
[0.00976174 0.00976174]	0.00020364593020011297	292
[0.00957126 0.00957126]	0.00019626986598967865	293
[0.00938411 0.00938411]	0.00018914989577801418	294
[0.00920023 0.00920023]	0.00018227768992514276	295
[0.00901957 0.00901957]	0.00017564515968864142	296
[0.00884209 0.00884209]	0.00016924445186189735	297
[0.00866774 0.00866774]	0.0001630679434428663	298
[0.00849646 0.00849646]	0.00015710823633906235	299
[0.00832821 0.00832821]	0.00015135815211410862	300
[0.00816295 0.00816295]	0.00014581072678047656	301
[0.00800062 0.00800062]	0.00014045920564314938	302
[0.00784118 0.00784118]	0.0001352970381981069	303
[0.00768459 0.00768459]	0.00013031787308957817	304
[0.00753079 0.00753079]	0.00012551555312920109	305
[0.00737975 0.00737975]	0.00012088411038074003	306
[0.00723141 0.00723141]	0.00011641776131247725	307
[0.00708575 0.00708575]	0.00011211090202042497	308
[0.0069427 0.0069427]	0.0001079581035241948	309
[0.00680224 0.00680224]	0.00010395410713774198	310
[0.00666431 0.00666431]	0.00010009381991663805	311
[0.00652888 0.00652888]	9.637231018341094e-05	312
[0.0063959 0.0063959]	9.278480313214474e-05	313
[0.00626534 0.00626534]	8.932667651360674e-05	314
[0.00613715 0.00613715]	8.599345640158698e-05	315
[0.0060113 0.0060113]	8.27808130411733e-05	316
[0.00588774 0.00588774]	7.96845567797724e-05	317
[0.00576644 0.00576644]	7.670063408066092e-05	318
[0.00564737 0.00564737]	7.382512361986245e-05	319
[0.00553047 0.00553047]	7.105423246593916e-05	320
[0.00541572 0.00541572]	6.838429234300977e-05	321
[0.00530307 0.00530307]	6.581175597650488e-05	322
[0.0051925 0.0051925]	6.333319352139349e-05	323
[0.00508397 0.00508397]	6.094528907257019e-05	324
[0.00497744 0.00497744]	5.864483725688187e-05	325
[0.00487287 0.00487287]	5.64287399059034e-05	326
[0.00477024 0.00477024]	5.4294002809103636e-05	327
[0.00466952 0.00466952]	5.223773254648501e-05	328
[0.00457066 0.00457066]	5.025713339975743e-05	329
[0.00447363 0.00447363]	4.8349504341251034e-05	330
[0.00437841 0.00437841]	4.65122360995673e-05	331
[0.00428496 0.00428496]	4.4742808300888244e-05	332
[0.00419325 0.00419325]	4.3038786684965573e-05	333
[0.00410325 0.00410325]	4.1397820394612525e-05	334
[0.00401493 0.00401493]	3.9817639337442446e-05	335
[0.00392826 0.00392826]	3.829605161899657e-05	336
[0.00384322 0.00384322]	3.683094104558913e-05	337
[0.00375976 0.00375976]	3.542026469609136e-05	338
[0.00367787 0.00367787]	3.406205056101091e-05	339
[0.00359752 0.00359752]	3.275439524784383e-05	340
[0.00351868 0.00351868]	3.149546175131387e-05	341
[0.00344132 0.00344132]	3.028347728723066e-05	342
[0.00336541 0.00336541]	2.9116731188578645e-05	343
[0.00329094 0.00329094]	2.7993572862673044e-05	344
[0.00321787 0.00321787]	2.6912409807924855e-05	345
[0.00314617 0.00314617]	2.587170568900249e-05	346
[0.00307583 0.00307583]	2.486997846903073e-05	347
[0.00300682 0.00300682]	2.3905798597549508e-05	348
[0.00293912 0.00293912]	2.2977787252856655e-05	349
[0.0028727 0.0028727]	2.20846146376197e-05	350
[0.00280753 0.00280753]	2.1224998326240244e-05	351
[0.00274361 0.00274361]	2.0397701662919066e-05	352
[0.00268089 0.00268089]	1.9601532208991935e-05	353
[0.00261937 0.00261937]	1.883534023843161e-05	354
[0.00255901 0.00255901]	1.809801728017769e-05	355
[0.0024998 0.0024998]	1.7388494706163496e-05	356
[0.00244172 0.00244172]	1.670574236376479e-05	357
[0.00238475 0.00238475]	1.6048767251580275e-05	358
[0.00232886 0.00232886]	1.5416612237305273e-05	359
[0.00227403 0.00227403]	1.480835481659927e-05	360
[0.00222026 0.00222026]	1.4223105911786891e-05	361
[0.00216751 0.00216751]	1.366000870937832e-05	362
[0.00211576 0.00211576]	1.311823753518719e-05	363
[0.00206501 0.00206501]	1.2596996766101033e-05	364
[0.00201523 0.00201523]	1.2095519777400712e-05	365
[0.0019664 0.0019664]	1.1613067924637512e-05	366
[0.0019185 0.0019185]	1.1148929559048495e-05	367
[0.00187152 0.00187152]	1.0702419075553807e-05	368
[0.00182545 0.00182545]	1.0272875992311643e-05	369
[0.00178025 0.00178025]	9.859664061011676e-06	370
[0.00173593 0.00173593]	9.462170406882034e-06	371
[0.00169245 0.00169245]	9.079804697563365e-06	372
[0.00164981 0.00164981]	8.711998339975418e-06	373
[0.00160799 0.00160799]	8.358203704318186e-06	374
[0.00156698 0.00156698]	8.017893374369995e-06	375
[0.00152675 0.00152675]	7.690559423282887e-06	376
[0.0014873 0.0014873]	7.375712714069477e-06	377
[0.00144861 0.00144861]	7.072882224024897e-06	378
[0.00141066 0.00141066]	6.781614392332616e-06	379
[0.00137344 0.00137344]	6.501472490098185e-06	380
[0.00133695 0.00133695]	6.232036012135668e-06	381
[0.00130115 0.00130115]	5.972900089786467e-06	382
[0.00126605 0.00126605]	5.723674924106858e-06	383
[0.00123162 0.00123162]	5.4839852387632465e-06	384
[0.00119786 0.00119786]	5.253469752014746e-06	385
[0.00116476 0.00116476]	5.031780667124716e-06	386
[0.00113229 0.00113229]	4.8185831806585625e-06	387
[0.00110045 0.00110045]	4.61355500800892e-06	388
[0.00106923 0.00106923]	4.416385925655004e-06	389
[0.00103861 0.00103861]	4.2267773295451844e-06	390
[0.00100858 0.00100858]	4.044441809096762e-06	391
[0.00097913 0.00097913]	3.869102736298022e-06	392
[0.00095026 0.00095026]	3.700493869380984e-06	393
[0.00092194 0.00092194]	3.5383589705979077e-06	394
[0.00089418 0.00089418]	3.3824514376269443e-06	395
[0.00086695 0.00086695]	3.232533948133618e-06	396
[0.00084025 0.00084025]	3.0883781170478396e-06	397
[0.00081407 0.00081407]	2.94976416613777e-06	398
[0.00078839 0.00078839]	2.8164806054292237e-06	399
[0.00076322 0.00076322]	2.6883239261085353e-06	400
[0.00073853 0.00073853]	2.5650983044683457e-06	401
[0.00071432 0.00071432]	2.44661531656334e-06	402
[0.00069059 0.00069059]	2.3326936631592584e-06	403
[0.00066731 0.00066731]	2.2231589046593196e-06	404
[0.00064449 0.00064449]	2.11784320563874e-06	405
[0.00062211 0.00062211]	2.016585088657386e-06	406
[0.00060017 0.00060017]	1.919229197033664e-06	407
[0.00057865 0.00057865]	1.825626066258607e-06	408
[0.00055755 0.00055755]	1.7356319037491587e-06	409
[0.00053687 0.00053687]	1.6491083766527646e-06	410
[0.00051658 0.00051658]	1.5659224074112806e-06	411
[0.0004967 0.0004967]	1.4859459768213094e-06	412
[0.00047719 0.00047719]	1.4090559343083683e-06	413
[0.00045807 0.00045807]	1.335133815183569e-06	414
[0.00043932 0.00043932]	1.2640656646134436e-06	415
[0.00042094 0.00042094]	1.1957418680721542e-06	416
[0.00040292 0.00040292]	1.1300569880437374e-06	417
[0.00038524 0.00038524]	1.0669096067619877e-06	418
[0.00036791 0.00036791]	1.0062021747454344e-06	419
[0.00035092 0.00035092]	9.478408649510595e-07	420
[0.00033427 0.00033427]	8.917354323201652e-07	421
[0.00031793 0.00031793]	8.377990785361823e-07	422
[0.00030192 0.00030192]	7.85948321800158e-07	423
[0.00028621 0.00028621]	7.36102871446234e-07	424
[0.00027082 0.00027082]	6.881855072200287e-07	425
[0.00025572 0.00025572]	6.421219630515972e-07	426
[0.00024092 0.00024092]	5.978408151566175e-07	427
[0.00022641 0.00022641]	5.552733743151943e-07	428
[0.00021219 0.00021219]	5.143535821732855e-07	429
[0.00019824 0.00019824]	4.750179114116801e-07	430
[0.00018456 0.00018456]	4.372052696607062e-07	431
[0.00017115 0.00017115]	4.008569069992713e-07	432
[0.00015801 0.00015801]	3.65916326928599e-07	433
[0.00014512 0.00014512]	3.323292006813797e-07	434
[0.00013248 0.00013248]	3.0004328474480166e-07	435
[0.00012009 0.00012009]	2.690083414838671e-07	436
[0.00010794 0.00010794]	2.3917606274719583e-07	437
[9.60311213e-05 9.60311213e-05]	2.1049999634564198e-07	438
[8.43542062e-05 8.43542062e-05]	1.8293547530152638e-07	439
[7.29058658e-05 7.29058658e-05]	1.5643954975844092e-07	440
[6.16816554e-05 6.16816554e-05]	1.3097092146267022e-07	441
[5.06772157e-05 5.06772157e-05]	1.064898807130837e-07	442
[3.98882708e-05 3.98882708e-05]	8.29582456925748e-08	443
[2.93106273e-05 2.93106273e-05]	6.03393040914673e-08	444

(array([2.93106273e-05, 2.93106273e-05]), 444)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1065075.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【5G PHY】5G BWP(BandWidth Part)介绍

博主未授权任何人或组织机构转载博主任何原创文章,感谢各位对原创的支持! 博主链接 本人就职于国际知名终端厂商,负责modem芯片研发。 在5G早期负责终端数据业务层、核心网相关的开发工作,目前牵头6G算力网络技术标准研究。 博客…

1.Window10 JDK8安装与配置(更新版)

Window10 JDK8安装与配置(更新版) 1,JDK安装 版本知识 注意:安装目录绝对不能出现中文及特殊符号,不能以数字开头。一定要以管理员身份打开。 具体下载步骤可参考:Window10 JDK8安装与配置详细步骤 安装尽量不要到系统盘&…

如何一步步优化负载均衡策略

发展到一定阶段后,Web 应用程序就会增长到单服务器部署无法承受的地步。这时候企业要么提升可用性,要么提升可扩展性,甚至两者兼而有之。为此,他们会将应用程序部署在多台服务器上,并在服务器之前使用负载均衡器来分配…

C++设计模式-抽象工厂(Abstract Factory)

目录 C设计模式-抽象工厂(Abstract Factory) 一、意图 二、适用性 三、结构 四、参与者 五、代码 C设计模式-抽象工厂(Abstract Factory) 一、意图 提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们…

unity脚本_生命周期函数 c#

帧:fps 即每秒钟跑的游戏帧数 游戏的本质 是一个死循环 每一次循环处理游戏逻辑就会更新一次画面 之所以能看到画面在动 是因为切换画面的速度达到一定时人眼就认为画面时流畅的 一帧就是执行一次循环 人眼舒适放松时可视帧数 24帧/s 游戏卡顿的原因: …

C 语言的标识符,保留标识符,关键字

C99 和 C11 允许使用更长的标识符(identifier),但是编译器只能识别前 63 个字符,对于外部标识符,只允许使用 31 个字符。 实际上,可以使用更长的字符,但是编译器会忽略超出部分的字符。 如果两…

Stack和quque

102. 二叉树的层序遍历 - 力扣(LeetCode) 如图:层序遍历即一层一层遍历,从左到右。 先遍历第一层,把第一层的节点放到队列里面,levesizeq.size(),即代表队列里面有多少个值。 然后现在把队里里…

笔试编程ACM模式JS(V8)、JS(Node)框架、输入输出初始化处理、常用方法、技巧

目录 考试注意事项 先审完题意,再动手 在本地编辑器(有提示) 简单题515min 通过率0%,有额外log 常见输入处理 str-> num arr:line.split( ).map(val>Number(val)) 初始化数组 new Array(length).fill(v…

windows terminal终端美化

1,安装Windows terminal 可以选择window商店安装或者GitHub安装,安装步骤省略。 2.oh my posh 安装 安装步骤可以选择window 商店或者GitHub安装,步骤省略 3.安装字体 nerd font[官网链接] 4.配置 oh my posh ####第一次要输入以下命…

视频号规则改动,不再支持拍单,传统无货源模式已行不通!

视频号小店批量铺货行不通了,大家好我是派大星,这两天视频号发布了一个公告, 核心信息呢就是10月7号,视频号小店,将无法直接查看消费者的详细下单信息,只能通过电子面单的形式,打单发货。每个店…

RDP协议流程详解(二)Basic Settings Exchange 阶段

RDP连接建立过程,在Connection Initiation后,RDP客户端和服务端将进行双方基础配置信息交换,也就是basic settings exchange阶段。在此阶段,将包含两条消息Client MCS Connect Initial PDU和Server MCS Connect Response PDU&…

vulnhub靶机doubletrouble

下载地址:doubletrouble: 1 ~ VulnHub 主机发现 arp-scan -l 端口扫描 nmap --min-rate 1000 -p- 192.168.21.151 端口服务扫描 nmap -sV -sT -O -p22,80 192.168.21.151 漏洞扫描 nmap --scriptvuln -p22,80 192.168.21.151 先去看看web页面 这里使用的是qdpm …

【JavaEE重点知识归纳】第5节:方法

目录 一:方法的概念和使用 1.什么是方法 2.方法的定义 3.方法的调用过程 4.实参和形参的关系(重点) 二:方法重载 1.方法重载概念 2.方法签名 三:递归 1.递归的概念 2.递归执行的过程分析 一:方法的概念和使…

HttpStatusCodeException.getResponseBodyAsString 乱码

场景: 项目a进行了spring boot版本升级, 使用了2.7.15 项目b是做接口转发 (没升级spring boot版本, 用的是2.1.5) 调用过程: 请求方>>项目b>>项目a 现象: postman直接调用a中的接口, 接口报错, msg里的错误信息是正常显示 当调用接口报错时, msg里的错误信息是…

算法笔记:0-1背包问题

n个商品组成集合O,每个商品有两个属性vi(体积)和pi(价格),背包容量为C。 求解一个商品子集S,令 优化目标 1. 枚举所有商品组合 共2^n - 1种情况 2. 递归求解 KnapsackSR(h, i, c)&#xff…

Vue中如何进行数据可视化雷达图展示

在Vue中进行数据可视化雷达图展示 数据可视化是将数据以图形方式呈现的过程,雷达图是其中一种常用的图表类型,用于可视化多个维度的数据。Vue.js作为一个流行的JavaScript框架,提供了许多工具和库来实现数据可视化。本文将介绍如何使用Vue来…

git与github的交互(文件与文件夹的上传)

git与github的交互(文件与文件夹的上传) 准备:gitHub账号(创建一个新项目)与Git软件的安装 一:开启公钥SSH登录(之前配置过就跳过) 1.安装SSH 在本地新创建文件夹负责装载项目&a…

Java虚拟机内存模型

JVM虚拟机将内存数据分为: 程序计数器、虚拟机栈、本地方法栈、Java堆、方法区等部分。 程序计数器用于存放下一条运行的指令; 虚拟机栈和本地方法栈用于存放函数调用堆栈信息; Java堆用于存放Java程序运行时所需的对象等数据&#xff1b…

桌面应用开发:Go 语言和 Web 技术的融合创新 | 开源日报 No.46

TheAlgorithms/Python Stars: 161.5k License: MIT 这个开源项目是一个用 Python 实现的算法库,旨在提供教育目的下使用的各种算法。 提供了大量常见算法的 Python 实现。适合学习和教育目的,可以帮助读者更好地理解不同类型的算法。 airbnb/javascri…

AI:08-基于深度学习的车辆识别

随着汽车行业的迅速发展,车型识别在交通管理、智能驾驶和车辆安全等方面变得越来越重要。基于深度学习的车型识别技术为实现高效准确的车辆分类和检测提供了强大的工具。本文将介绍如何利用深度学习技术来实现车型识别,并提供相应的代码示例。 数据收集和预处理: 为了训练…