指数分布优化器(EDO)(含MATLAB代码)

news2024/11/20 18:27:53

先做一个声明:文章是由我的个人公众号中的推送直接复制粘贴而来,因此对智能优化算法感兴趣的朋友,可关注我的个人公众号:启发式算法讨论。我会不定期在公众号里分享不同的智能优化算法,经典的,或者是近几年提出的新型智能优化算法,并附MATLAB代码。

“今天给大家推送的也是2023年提出的一种新算法,发表在AIRE上,这个期刊目前影响因子12,还是很有含金量。就这个算法效果而言,我觉得还可以,并且它框架也简单~

另外,这个算法基于指数分布理论,没有什么好看的图,更多的是数学公式,学起来可能有点枯燥~”

图片

该研究提出了一种新的基于种群的元启发式算法,称为指数分布优化器(Exponential Distribution Optimizer, EDO)。EDO的主要灵感来自于数学中的指数概率分布模型。EDO算法包括了开发策略和勘探策略。利用CEC2014、CEC2017、CEC2020和CEC2022等测试套件以及6个工程设计问题将EDO算法与L-SHADE、LSHADE-cnEpSin和AGSK进行了比较。EDO得到了更理想的结果,并且统计分析在95%的置信区间上证明了EDO的优越性。它的原始参考文献如下:

Abdel-Basset M, El-Shahat D, Jameel M, et al. Exponential distribution optimizer (EDO): a novel math-inspired algorithm for global optimization and engineering problems[J]. Artificial Intelligence Review, 2023: 1-72.

01
预备知识

指数分布理论是EDO算法的灵感来源。

指数分布是一种连续分布,常用于描述各种自然现象。例如,从现在到地震袭击的等待时间呈指数分布。此外,车辆到达收费站的概率随时间呈指数分布。假设有一个指数随机变量x,参数为λ,可以写成xEXP(λ)。该随机变量的概率密度函数(Probability Density Function, PDF)可表示为:

图片

其中,x表示在事件发生前的等待时间。时间是连续的,不能是一个负值,即x≥0。此外,参数λ>0是指数分布的速率。利用该公式可计算得到指数累积分布函数(Cumulative Distribution Function, CDF):

图片

图1显示了衰减参数λ对指数PDF的影响,使用相同的x值和四个不同的λ值(0.25、0.5、0.75和1)。曲线从λ值开始,并逐渐下降。因此,指数分布总是一个关于PDF的递减函数。指数率的值越大,相关的指数随机变量的PDF值就越小。图2展现了使用不同的λ值的CDF曲线的情况。它是一个递增函数,从指数速率开始,CDF随指数随机变量的增加而增加。

图片

图1 不同λ值对应的PDF

图片

图2 不同λ值对应的指数CDF

指数分布随机变量的均值(μ)和方差(σ^2)可以表示为:

图片

从前面的方程中,可以认为参数λ的值与均值和方差值成反比,反之亦然。换句话说,λ值越大,均值和方差值就越小。那么,标准差(σ)与均值相等,可计算如下:

图片

如果只想了解算法的计算流程,可以不看这一节的。这一节就是介绍一下指数分布模型,知不知道都不怎么影响。不是数学专业的同学,可以了解一下。

02
算法设计

为了便于大家理解,介绍算法时就直接抬出公式和流程,就不过多讨论作者的设计思路和出发点了(哎呀,动机、思路、出发点这些都是写给审稿人看的,能自圆其说就行的,了解来也没啥用,知道算法怎么计算的就行了)。与往期推送一样,这部分内容在Word文档里先写好,然后做成图片,最后导入。

图片

图片

03
计算流程

EDO算法的计算流程伪代码如下(公式序号对应上文):

图片

04
实验仿真

这里对EDO算法的性能进行简单的测试。首先将EDO用于函数寻优,算法的MATLAB程序是严格按照它的原始参考文献进行编码的。此外,种群规模取N等于50,Benchmark函数分别采用了CEC2005测试集、CEC2013测试集、CEC2014测试集、CEC2017测试集、CEC2020优化函数测试集和CEC2022优化函数测试集。仅对仿真结果进行简要展示,不再进一步分析。
 首先,检验一下EDO对全局勘探和局部开发的平衡能力。不知道我在说啥的,看一下之前的这一期推送:
种群的勘探(Exploration)与开发(Exploitation)(含MATLAB代码)

如图3所示,是EDO在CEC2005测试函数f7上的勘探和开发占比曲线。

图片

图3 EDO在CEC2005 f7上的勘探和开发百分占比变化曲线

其次,利用CEC2005测试集验证EDO的性能,这里选择今年很火热的蜣螂优化(DBO)算法进行对比(为了对比的公平,两种算法的种群大小设置为30,最大迭代次数为200)。对比结果如下所示:

EDO Vs DBO

可以看到,EDO的竞争力还是很可观的,在一些函数上收敛曲线突然不见了,是因为已经收敛到理论最优值0了。我使用的是semilogy来绘制的收敛曲线,而semilogy画的是y轴的对数,因此,若曲线收敛到0,semilogy是画不出来的。那么,EDO在绝大部分的函数上,用了不到两百次迭代就收敛到了最优值。在CEC2005的大部分函数上,相比于DBO,EDO算法更简单,收敛速度更快,且收敛精度更高。对EDO算法,我本人还是比较推荐的,简单易实现,并且没有调参,不涉及需要用户改动的参数。

再次,以CEC2013测试集中的单峰函数F1为例,展示EDO在30维环境下的收敛效果,如图4所示。(注意是画的误差曲线)

图片

图4 EDO在CEC2013 F1上的误差收敛曲线

接着,以CEC2014测试集中的多模态函数F14为例,展示EDO在30维环境下的收敛效果,如图5所示。(注意是画的误差曲线)

图片

图5 EDO在CEC2014 F14上的误差收敛曲线

再然后,以CEC2017测试集中的多模态函数F4为例,展示EDO在30维环境下的收敛效果,如图6所示。(注意是画的误差曲线)

图片

图6 EDO在CEC2017 F4上的误差收敛曲线

在此之后,以CEC2020优化函数测试集中的单峰函数F2为例,展示EDO在10维环境下的收敛效果,如图7所示。(注意是画的误差曲线)

图片

图7 EDO在CEC2020优化函数F2上的误差收敛曲线

最后,以CEC2022优化函数测试集中的单峰函数F1为例,展示EDO在10维环境下的收敛效果,如图8所示。(注意是画的误差曲线)

图片

图8 EDO在CEC2022优化函数F1上的误差收敛曲线

进一步,可将EDO应用于复杂工程约束优化问题,例如之前推送的两期算法应用内容:

算法应用:基于DBO算法的工程优化设计(第1期)(含MATLAB代码)

算法应用:工程优化设计(第2期)(含MATLAB代码)

这里以行星轮系设计优化问题(Planetary gear train design optimization problem)为例,展示EDO求解效果。该问题的主要目标是使汽车齿轮传动比的最大误差最小化,如图9所示。为了使最大误差最小化,计算了自动行星传动系统的总齿数。

图片

图9 行星轮系设计优化问题(Planetary gear train design)

该问题包含6个整数变量和11个不同的几何约束和装配约束(10个不等式约束,1个等式约束)。这个问题可以定义如下:

图片

采用罚函数处理约束条件,然后利用EDO算法进行求解,最优值和最优解如下所示。目标函数的收敛曲线如图10所示。

图片

图片

图10 EDO在行星轮系设计问题上的目标函数收敛曲线

05
MATLAB代码

EDO算法对应的MATLAB代码链接如下:

EDO跑CEC2005测试集公众号里有链接
EDO跑CEC2013测试集公众号里有链接
EDO跑CEC2014测试集公众号里有链接
EDO跑CEC2017测试集公众号里有链接
EDO跑CEC2020优化函数测试集公众号里有链接
EDO跑CEC2022优化函数测试集公众号里有链接
EDO的勘探(Exploration)和开发(Exploitation)占比分析公众号里有链接
EDO的工程应用(第1期):压力容器设计、滚动轴承设计、拉伸/压缩弹簧设计、悬臂梁设计、轮系设计、三杆桁架设计公众号里有链接
EDO的工程应用(第2期):焊接梁设计、多盘离合器制动器设计问题、步进圆锥滑轮问题、减速机设计问题、行星轮系设计优化问题、机器人夹持器问题公众号里有链接

可通过下方链接下载代码清单,在里面寻找需要的算法代码,然后去对应的链接获取。清单会同步更新,一旦有新的代码,就可以在清单里找到。清单里面有部分代码是开源获取的。可随时免费下载。

链接:https://pan.baidu.com/s/1n2vpbwuhpA8oyXSJGsAsmA

提取码:8023

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1064317.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

局部放电发生的现象特点以及解决方案

局部放电发生的现象特点:   1、局部放电是局部过热,电器元件和机械元件老化的预兆;   2、局部放电趋势是局放随着时间的上升指数,这是个曲折的过程,某个阶段可能下降,但某个阶段上升;   3…

C# - Opencv应用(1) 之VS下环境配置详解

C# - Opencv应用(1) 之VS下环境配置详解 有时候,单纯c#做前端时会联合C实现的dll来落地某些功能由于有时候会用C - Opencv实现算法后封装成dll,但是有时候会感觉麻烦,不如直接通过C#直接调用Opencv在此慢慢总结下C# -…

练[极客大挑战 2019]RCE ME

[极客大挑战 2019]RCE ME 文章目录 [极客大挑战 2019]RCE ME掌握知识解题思路关键paylaod 掌握知识 ​ RCE无数字和字母的bypass,取反 异或 递增 解题思路 打开题目链接,发现是代码审计的题目,而且代码比较简单,似乎关键就是RC…

一个很愚蠢的游戏(中)!!!

系列文章目录 c小游戏_睡觉觉觉得的博客-CSDN博客一个很愚蠢的游戏(上)!!!_睡觉觉觉得的博客-CSDN博客 文章目录 系列文章目录前言一、个人名片二、描述三、代码1.代码 总结 前言 无 (嘻嘻) 一、个人名片 个人主页&a…

[NewStarCTF 2023 公开赛道] week1

最近没什么正式比赛,都是入门赛,有moectf,newstar,SHCTF,0xGame都是漫长的比赛。一周一堆制。 这周newstar第1周结束了,据说py得很厉害,第2周延期了,什么时候开始还不一定,不过第一周已经结束提交了&#…

python --在2x2的子图中绘制三个子图,并使第三个子图居中

python – 在2x2的子图中绘制三个子图,并使第三个子图居中 基于python,绘制一个2x2的子图范围,但是只显示3个子图,并使得第三个子图居中显示’ 思路: 建立一个2x2的子图前两个正常画,其中第三个子图跨越两…

[开源项目推荐]privateGPT使用体验和修改

文章目录 一.跑通简述二.解读ingest.py1.导入库和读取环境变量2.文档加载3.文档处理(调用文件加载函数和文本分割函数) 三.injest.py效果演示1.main函数解读2.测试 四.修改代码,使之适配多知识库需求1.修改配置文件:constants.py2…

H桥级联型五电平三相逆变器Simulink仿真模型

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

天线基础知识概述

一、天线方向图(一) 图1 天线方向图的辐射能量 辐射能量完全集中在天线方向图的主瓣。这样就不会有副瓣。所有的辐射能量都在天线的半功率波束宽度内。在这些−3dB边界之外,没有能量辐射。在−3dB范围内,能量分布均匀。为了能够对天线进行计算,通常会对计算进行一些简化甚…

MATLAB中syms函数使用

目录 语法 说明 示例 创建符号标量变量 创建符号标量变量的向量 创建符号标量变量矩阵 管理符号标量变量的假设 创建和评估符号函数 syms函数的作用是创建符号标量和函数,以及矩阵变量和函数。 语法 syms var1 ... varN syms var1 ... varN [n1 ... nM] …

VBA_MF系列技术资料1-197

MF系列VBA技术资料 为了让广大学员在VBA编程中有切实可行的思路及有效的提高自己的编程技巧,我参考大量的资料,并结合自己的经验总结了这份MF系列VBA技术综合资料,而且开放源码(MF04除外),其中MF01-04属于定…

剑指offer——JZ27 二叉树的镜像 解题思路与具体代码【C++】

一、题目描述与要求 二叉树的镜像_牛客题霸_牛客网 (nowcoder.com) 题目描述 操作给定的二叉树,将其变换为源二叉树的镜像。 数据范围:二叉树的节点数 0≤n≤1000 , 二叉树每个节点的值 0≤val≤1000 要求: 空间复杂度 O(n) …

批量输出生成宗地图斑界址点成果表,支持自动分页,纯FME实现

目录 一、实现效果 二、实现过程 1.图斑转点 2.设置界址点号 3.计算界址点输出Excel的位置 4.计算边长 5.提取每页最后一个界址点 6.设置界址点成果表其他信息 7.输出Excel 三、总结 制作图斑界址点成果表是经常遇到的工作,除了要输出界址点坐标&#xff…

Docker基本操作【一篇学会项目部署】

文章目录 一、Docker简介二、Docker安装三、配置镜像加速四、Docker部署五、Docker基础操作1. 常见命令2. 操作演示3. 数据卷①nginx的html目录挂载②分析匿名数据卷③MySQL的本地目录挂载 4. 自定义镜像①Dockerfile②构建镜像 5. 网络①常见命令②自定义网络 六、DockerCompo…

五种雷达波束模式简介及其应用场景

图1 雷达天线方向图一览 一、铅笔光束——Pencil beam: 方位角和仰角都很窄的光束(像铅笔一样细);用于三维雷达,如仪表雷达、天气雷达和防空雷达。 二、扇形波束——Fan beam 方位角非常窄(接近1至2)&am…

Spring框架数据访问

🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🦄 博客首页——🐅🐾猫头虎的博客🎐 🐳 《面试题大全专栏》 🦕 文章图文…

机器学习:随机森林

集成学习 集成学习(Ensemble Learning)是一种机器学习方法,通过将多个基本学习算法的预测结果进行组合,以获得更好的预测性能。集成学习的基本思想是通过结合多个弱分类器或回归器的预测结果,来构建一个更强大的集成模…

《Spring框架前世今生》

🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🦄 博客首页——🐅🐾猫头虎的博客🎐 🐳 《面试题大全专栏》 🦕 文章图文…

Meta分析的流程及方法

Meta分析是针对某一科研问题,根据明确的搜索策略、选择筛选文献标准、采用严格的评价方法,对来源不同的研究成果进行收集、合并及定量统计分析的方法,最早出现于“循证医学”,现已广泛应用于农林生态,资源环境等方面。…

基于SSM的在线电影评价系统设计与实现

末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:采用JSP技术开发 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目&#x…