基于帝国主义竞争优化的BP神经网络(分类应用) - 附代码

news2024/11/16 15:55:21

基于帝国主义竞争优化的BP神经网络(分类应用) - 附代码

文章目录

  • 基于帝国主义竞争优化的BP神经网络(分类应用) - 附代码
    • 1.鸢尾花iris数据介绍
    • 2.数据集整理
    • 3.帝国主义竞争优化BP神经网络
      • 3.1 BP神经网络参数设置
      • 3.2 帝国主义竞争算法应用
    • 4.测试结果:
    • 5.Matlab代码

摘要:本文主要介绍如何用帝国主义竞争算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。

1.鸢尾花iris数据介绍

本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:

特征1特征2特征3类别
单组iris数据5.32.11.21

3种类别用1,2,3表示。

2.数据集整理

iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:

训练集(组)测试集(组)总数据(组)
10545150

类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。

当进行数据训练对所有输入特征数据均进行归一化处理。

3.帝国主义竞争优化BP神经网络

3.1 BP神经网络参数设置

通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:

神经网络结构

图1.神经网络结构

神经网络参数如下:

%创建神经网络
inputnum = 4;     %inputnum  输入层节点数 4维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 3;     %outputnum  隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

3.2 帝国主义竞争算法应用

帝国主义竞争算法原理请参考:https://blog.csdn.net/u011835903/article/details/108517210

帝国主义竞争算法的参数设置为:

popsize = 10;%种群数量
    Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;

第二层权值数量为:3;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)
其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从帝国主义竞争算法的收敛曲线可以看到,整体误差是不断下降的,说明帝国主义竞争算法起到了优化的作用:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1063600.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【BI看板】Superset2.0+图表二次开发初探

Superset图表功能也很丰富了,但一些个性化的定制需求就需要二次开发了。网上二开的superset版本大多是0.xxx版本的或1.5xxx版本,本次用的是2.xxx。 源码相关说明 源码目录 superset-2.0\superset-frontend\plugins\plugin-chart-echarts 插件相关资料 官…

图片批量编辑器,轻松拼接多张图片,创意无限!

你是否曾经遇到这样的问题:需要将多张图片拼接成一张完整的画面,却缺乏专业的图片编辑技能?现在,我们为你带来一款强大的图片批量编辑器——让你轻松实现多张图片拼接,创意无限! 这款图片批量编辑器可以帮助…

IP地址划分知识点总结

目录 1.IP数据报头 2.IP地址 3.IP地址分类 4.特殊IP地址 1.IP数据报头 网络之间的互连协议(Internet Protocol,IP)是方便计算机网络系统之间相互通信的协议,是各大厂家遵循的计算机网络相互通信的规则。 IP数据报报头如下图所示: (1)版…

计算机竞赛 题目:基于python的验证码识别 - 机器视觉 验证码识别

文章目录 0 前言1 项目简介2 验证码识别步骤2.1 灰度处理&二值化2.2 去除边框2.3 图像降噪2.4 字符切割2.5 识别 3 基于tensorflow的验证码识别3.1 数据集3.2 基于tf的神经网络训练代码 4 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 基于pyt…

蓝桥杯---第二讲---二分与前缀和

文章目录 前言Ⅰ. 数的范围0x00 算法思路0x00 代码书写 Ⅱ. 数的三次方根0x00 算法思路0x01代码书写 Ⅲ. 前缀和0x00 算法思路0x01 代码书写 Ⅳ. 子矩阵的和0x00 算法思路0x01 代码书写 Ⅴ. 机器人跳跃问题0x00 算法思路0x01 代码书写 Ⅵ. 四平方和0x00 算法思路0x01 代码书写 …

10.3 C++运算符重载实现的过程,代码

目录 运算符重载背景(operator) 定义 重载的方法 不能重载的运算符 运算符重载注意事项 代码实现 运行结果 运算符重载背景(operator) 自定义的类中,系统默认只提供两个运算符供用户使用,分别是赋值…

1.3.OpenCV技能树--第一单元--图像的基础操作(进阶篇)

目录 1.文章内容来源 2.图像的进阶操作 2.1.边界填充 2.2.数值计算 2.3.图像融合 2.4.图像保存 2.5.视频读取 3.课后习题代码复现 3.1.问题一图像像素颜色 3.2.问题二图片黑客帝国化 3.3.问题三梅西的足球轨迹 4.易错点总结与反思 1.文章内容来源 1.题目来源:https://edu.c…

netcore MediatR

一、安装包 <PackageReference Include"MediatR" Version"12.1.1" /> 二、编写示例 using MediatR;namespace WebApplication7 {public class TestCommand : IRequest<bool>{}public class TestCommandHandler : IRequestHandler<TestCo…

Python为Excel中每一个单元格计算其在多个文件中的平均值

本文介绍基于Python语言&#xff0c;对大量不同的Excel文件加以跨文件、逐单元格平均值计算的方法。 首先&#xff0c;我们来明确一下本文的具体需求。现有一个文件夹&#xff0c;其中有如下所示的大量Excel文件&#xff0c;我们这里就以.csv文件为例来介绍。其中&#xff0c;每…

Linux友人帐之账号用户管理

一、账号管理 1.1简介 Linux系统是一个多用户多任务的分时操作系统&#xff0c;任何一个要使用系统资源的用户&#xff0c;都必须首先向系统管理员申请一个账号&#xff0c;然后以这个账号的身份进入系统。 用户的账号一方面可以帮助系统管理员对使用系统的用户进行跟踪&#…

不死马的利用与克制(基于条件竞争)及变种不死马

不死马即内存马&#xff0c;它会写进进程里&#xff0c;并且无限地在指定目录中生成木马文件 这里以PHP不死马为例 测试代码&#xff1a; <?phpignore_user_abort(true);set_time_limit(0);unlink(__FILE__);$file .test.php;$code <?php if(md5($_GET["pass…

理解自动驾驶感知技术

理解自动驾驶感知技术 文章目录 什么是自动驾驶感知技术&#xff1f;自动驾驶感知技术的关键组成部分1. 雷达&#xff08;Radar&#xff09;2. 摄像头&#xff08;Camera&#xff09;3. 激光雷达&#xff08;Lidar&#xff09;4. 超声波传感器&#xff08;Ultrasonic Sensors&a…

一文搞懂APT攻击

APT攻击 1. 基本概念2. APT的攻击阶段3. APT的典型案例参考 1. 基本概念 高级持续性威胁&#xff08;APT&#xff0c;Advanced Persistent Threat&#xff09;&#xff0c;又叫高级长期威胁&#xff0c;是一种复杂的、持续的网络攻击&#xff0c;包含高级、长期、威胁三个要素…

法国乐天下单支付流程,自养号测评技术环境揭秘。

Rakuten的前身是PriceMinister一家法国公司&#xff0c;经营电子商务网站PriceMinister&#xff0c;按访问量计算&#xff0c;该网站是法国第五大电子商务网站。2010年&#xff0c;它被乐天公司收购&#xff0c;2018年&#xff0c;它更名为Rakuten。乐天法国Rakuten France&…

蓝桥等考Python组别十四级002

第一部分&#xff1a;选择题 1、Python L14 &#xff08;15分&#xff09; 运行下面程序&#xff0c;输出的结果是&#xff08; &#xff09;。 d {A: 11, B: 12, C: 13, D: 14} print(d[B]) 11121314 正确答案&#xff1a;B 2、Python L14 &#xff08;15分&#x…

蓝桥等考Python组别十四级003

第一部分&#xff1a;选择题 1、Python L14 &#xff08;15分&#xff09; 运行下面程序&#xff0c;输出的结果是&#xff08; &#xff09;。 d {A: 1, B: 2, C: 3, D: 4} print(d[B]) 1234 正确答案&#xff1a;B 2、Python L14 &#xff08;15分&#xff09; 运…

idea多项目复合启动Compound

1、配置多项目同时启动 2、给每个项目分配最大使用内存&#xff08;非必要&#xff0c;内存大的可以不设置&#xff09;

SpringBoot自带模板引擎Thymeleaf使用详解①

目录 前言 一、SpringBoot静态资源相关目录 二、变量输出 2.1 在templates目录下创建视图index.html 2.2 创建对应的Controller 2.3 在视图展示model中的值 三、操作字符串和时间 3.1 操作字符串 3.2 操作时间 前言 Thymeleaf是一款用于渲染XML/HTML5内容的模板引擎&am…

基于Java的企业人事管理系统设计与实现(源码+lw+ppt+部署文档+视频讲解等)

文章目录 前言具体实现截图论文参考详细视频演示为什么选择我自己的网站自己的小程序&#xff08;小蔡coding&#xff09;有保障的售后福利 代码参考源码获取 前言 &#x1f497;博主介绍&#xff1a;✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计划导师、全栈领域优质创作…

微信开放平台第三方代小程序开发,授权事件、消息与事件通知总结

大家好&#xff0c;我是小悟 时间过得真快&#xff0c;转眼就到了国庆节尾巴&#xff0c;小伙伴们吃好喝好玩好了么。 关于微信开放平台第三方代小程序开发的两个事件接收推送通知&#xff0c;是开放平台代小程序实现业务的重要功能。 授权事件推送&#xff0c;事件类型以In…