Exponentiation

news2024/11/20 20:24:40

Exponentiation is a mathematical operation, written as bn, involving two numbers, the base b and the exponent or power n, and pronounced as “b (raised) to the (power of) n”.[1] When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, bn is the product of multiplying n bases:[1]

{\displaystyle b^{n}=\underbrace {b\times b\times \dots \times b\times b} _{n{\text{ times}}}.}{\displaystyle b^{n}=\underbrace {b\times b\times \dots \times b\times b} _{n{\text{ times}}}.}
The exponent is usually shown as a superscript to the right of the base. In that case, bn is called “b raised to the nth power”, “b (raised) to the power of n”, “the nth power of b”, “b to the nth power”,[2] or most briefly as “b to the nth”.

Starting from the basic fact stated above that, for any positive integer {\displaystyle n}n, {\displaystyle b{n}}b{n} is {\displaystyle n}n occurrences of {\displaystyle b}b all multiplied by each other, several other properties of exponentiation directly follow. In particular:

{\displaystyle {\begin{aligned}b^{n+m}&=\underbrace {b\times \dots \times b} _{n+m{\text{ times}}}\[1ex]&=\underbrace {b\times \dots \times b} _{n{\text{ times}}}\times \underbrace {b\times \dots \times b} _{m{\text{ times}}}\[1ex]&=b^{n}\times b^{m}\end{aligned}}}{\displaystyle {\begin{aligned}b^{n+m}&=\underbrace {b\times \dots \times b} _{n+m{\text{ times}}}\[1ex]&=\underbrace {b\times \dots \times b} _{n{\text{ times}}}\times \underbrace {b\times \dots \times b} _{m{\text{ times}}}\[1ex]&=b^{n}\times b^{m}\end{aligned}}}
In other words, when multiplying a base raised to one exponent by the same base raised to another exponent, the exponents add. From this basic rule that exponents add, we can derive that {\displaystyle b{0}}b{0} must be equal to 1, as follows. For any {\displaystyle n}n, {\displaystyle b^{0}\cdot b{n}=b{0+n}=b^{n}}{\displaystyle b^{0}\cdot b{n}=b{0+n}=b^{n}}. Dividing both sides by {\displaystyle b{n}}b{n} gives {\displaystyle b{0}=b{n}/b^{n}=1}{\displaystyle b{0}=b{n}/b^{n}=1}.

The fact that {\displaystyle b{1}=b}b{1}=b can similarly be derived from the same rule. For example, {\displaystyle (b{1}){3}=b^{1}\cdot b^{1}\cdot b{1}=b{1+1+1}=b^{3}}{\displaystyle (b{1}){3}=b^{1}\cdot b^{1}\cdot b{1}=b{1+1+1}=b^{3}}. Taking the cube root of both sides gives {\displaystyle b{1}=b}b{1}=b.

The rule that multiplying makes exponents add can also be used to derive the properties of negative integer exponents. Consider the question of what {\displaystyle b{-1}}b{-1} should mean. In order to respect the “exponents add” rule, it must be the case that {\displaystyle b^{-1}\cdot b{1}=b{-1+1}=b^{0}=1}{\displaystyle b^{-1}\cdot b{1}=b{-1+1}=b^{0}=1}. Dividing both sides by {\displaystyle b^{1}}{\displaystyle b^{1}} gives {\displaystyle b{-1}=1/b{1}}{\displaystyle b{-1}=1/b{1}}, which can be more simply written as {\displaystyle b^{-1}=1/b}{\displaystyle b^{-1}=1/b}, using the result from above that {\displaystyle b{1}=b}b{1}=b. By a similar argument, {\displaystyle b{-n}=1/b{n}}{\displaystyle b{-n}=1/b{n}}.

The properties of fractional exponents also follow from the same rule. For example, suppose we consider {\displaystyle {\sqrt {b}}}\sqrt{b} and ask if there is some suitable exponent, which we may call {\displaystyle r}r, such that {\displaystyle b^{r}={\sqrt {b}}}{\displaystyle b^{r}={\sqrt {b}}}. From the definition of the square root, we have that {\displaystyle {\sqrt {b}}\cdot {\sqrt {b}}=b}{\displaystyle {\sqrt {b}}\cdot {\sqrt {b}}=b}. Therefore, the exponent {\displaystyle r}r must be such that {\displaystyle b^{r}\cdot b^{r}=b}{\displaystyle b^{r}\cdot b^{r}=b}. Using the fact that multiplying makes exponents add gives {\displaystyle b^{r+r}=b}{\displaystyle b^{r+r}=b}. The {\displaystyle b}b on the right-hand side can also be written as {\displaystyle b^{1}}{\displaystyle b^{1}}, giving {\displaystyle b{r+r}=b{1}}{\displaystyle b{r+r}=b{1}}. Equating the exponents on both sides, we have {\displaystyle r+r=1}{\displaystyle r+r=1}. Therefore, {\displaystyle r={\frac {1}{2}}}r={\frac {1}{2}}, so {\displaystyle {\sqrt {b}}=b^{1/2}}{\displaystyle {\sqrt {b}}=b^{1/2}}.

The definition of exponentiation can be extended to allow any real or complex exponent. Exponentiation by integer exponents can also be defined for a wide variety of algebraic structures, including matrices.

Exponentiation is used extensively in many fields, including economics, biology, chemistry, physics, and computer science, with applications such as compound interest, population growth, chemical reaction kinetics, wave behavior, and public-key cryptography.

在这里插入图片描述

Graphs of y = bx for various bases b: base 10, base e, base 2, base
1
/
2
. Each curve passes through the point (0, 1) because any nonzero number raised to the power of 0 is 1. At x = 1, the value of y equals the base because any number raised to the power of 1 is the number itself.

Contents
1 History of the notation
2 Terminology
3 Integer exponents
3.1 Positive exponents
3.2 Zero exponent
3.3 Negative exponents
3.4 Identities and properties
3.5 Powers of a sum
3.6 Combinatorial interpretation
3.7 Particular bases
3.7.1 Powers of ten
3.7.2 Powers of two
3.7.3 Powers of one
3.7.4 Powers of zero
3.7.5 Powers of negative one
3.8 Large exponents
3.9 Power functions
3.10 Table of powers of decimal digits
4 Rational exponents
5 Real exponents
5.1 Limits of rational exponents
5.2 The exponential function
5.3 Powers via logarithms
6 Complex exponents with a positive real base
7 Non-integer powers of complex numbers
7.1 nth roots of a complex number
7.1.1 Roots of unity
7.2 Complex exponentiation
7.2.1 Principal value
7.2.2 Multivalued function
7.2.3 Computation
7.2.3.1 Examples
7.2.4 Failure of power and logarithm identities
8 Irrationality and transcendence
9 Integer powers in algebra
9.1 In a group
9.2 In a ring
9.3 Matrices and linear operators
9.4 Finite fields
10 Powers of sets
10.1 Sets as exponents
10.2 In category theory
11 Repeated exponentiation
12 Limits of powers
13 Efficient computation with integer exponents
14 Iterated functions
15 In programming languages
16 See also

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/106341.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Mac卸载mysql并重新安装mysql

一、Mac卸载mysql 1、在系统偏好设置找到MySQL服务—>停止 2、打开终端 sudo rm /usr/local/mysql sudo rm -rf /usr/local/var/mysql sudo rm -rf /usr/local/mysql* sudo rm -rf /Library/StartupItems/MySQLCOM sudo rm -rf /Library/PreferencePanes/My* vim /etc/ho…

财务分析和经营分析有什么区别和联系

财务分析是基础,经营分析是建立在财务分析基础之上的专项分析。财务分析做诊断,经营分析要治病。财务分析旨在通过财务指标发现和洞察问题,经营分析针对财务分析发现的问题进行深入的重点分析,以解决最终问题为目标。 财务分析 -…

世界上最伟大最邪恶的软件发明

有这么一个伟大而“邪恶”的软件发明,它被安装在超过10亿台电脑中,每天被使用超过3000万次。世界上几乎每个组织都在使用它,不仅有大大小小的公司,还有企业家、艺术家、非营利组织、学校、政府和宗教领袖,它已经成了公…

Allegro如何翻转PCB视图操作指导

Allegro如何翻转PCB视图操作指导 Allegro可以翻转PCB的视图,利于查看和检查,如下图 翻转前:器件和走线在bottom层 翻转后:走线和器件仍然在bottom层,但是视图翻转了 具体操作如下

高等数学(第七版)同济大学 习题11-2 个人解答

高等数学(第七版)同济大学 习题11-2 函数作图软件:Mathematica 1.设L为xOy面内直线xa上的一段,证明:∫LP(x,y)dx0.\begin{aligned}&1. \ 设L为xOy面内直线xa上的一段,证明:\int_{L}P(x, \ …

【运维有小邓】Active Directory的NTFS权限报表程序

使用此简化的NTFS权限工具分析和优化共享权限和访问控制列表(ACL)。 ADManager Plus是我们的Active Directory管理和报表解决方案,可以兼用作共享文件夹权限报表工具。它提供预定义的报表,以查看,分析和修改NTFS并共享…

CSS -- 07. CSS3新特性汇总(属性选择器,结构伪类,伪元素,过渡效果,动画,2D3D转换效果)

文章目录CSS 3的新特性1 CSS 3的现状2 属性选择器3 结构伪类选择器3.1 选择第n个孩子3.2 nth-child(n)3.3 nth-of-type()3.4 nth-child和nth-of-type的区别3.5 结构伪类选择器小结4 伪元素选择器4.1 案例:经过盒子显示遮罩层4.2 伪元素清除浮动5 CSS 3盒子模型6 CSS…

比较叶绿体基因组提供海草适应性进化新见解

一、摘要 海草是生活在热带和亚热带地区的海洋开花植物,所有海草物种都是从陆地单子叶植物进化而来的,是研究植物对海洋环境适应的重要材料。本研究对三个鳗草属海草的叶绿体基因组(cpGenomes)进行测序,分析、比较三者…

Python图形用户界面(GUI)编程之wxPython入门

图形用户界面主要是方便用户操作,Python开源的GUI类库还是蛮多的,这里介绍一款在Python语言中的一套优秀的GUI图形库,而且是跨平台的,现今支持的平台有:32/64位微软Windows操作系统、大多数Unix或类Unix系统、苹果Mac …

如何解密PDF文件?这些解密方法快来收藏

有时候我们为了确保PDF文档不被他人随意查看,会对文档进行加密操作。但如果需要给某位同事查看的话,就需要每次输入密码才能查看文档,那你们知道PDF文档解密怎么弄吗?今天给大家分享几种实用的PDF解密技巧,有需要的小伙…

同为(TOWE)远程智能防雷预警监测——交直流遥信防雷配电柜

当前,社会各领域中各类先进的电子仪器广泛分布于每一个角落,由于高精尖电子设备的高度集成化,其耐压水平普遍较低,导致雷电流、浪涌侵入设备的风险越来越高,故需要在重要设备前端加装浪涌保护器(SPD&#x…

vue3项目打包部署到Tomcat(亲测有效)

首先,要确保电脑上已经安装了jdk,还有Tomcat,而且都安装正确。 jdk下载与安装教程(win10) Tomcat 9.0 安装及配置教程(win10系统) Vue项目在VScode里面可以通过npm run serve可以正常运行。 下面是打包部署到tomca…

单体优先的微服务架构

作者:Martin Fowler 译者:林宁 当听说有团队在使用微服务架构时候,我注意到了一些规律: 几乎所有成功应用微服务的系统,都来自于一个过大单体项目拆分而来。几乎所有我听到过一开始就选择使用微服务架构的系统&#x…

【软件测试】测试开发?开发一个自动化测试系统如何做?

目录:导读前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜)前言 当我们开始分析一个…

ADI Blackfin DSP处理器-BF533的开发详解67:PCM的播放(含源码)

硬件准备 ADSP-EDU-BF533:BF533开发板 AD-HP530ICE:ADI DSP仿真器 软件准备 Visual DSP软件 硬件链接 代码实现功能 代码实现了打开代码工程目录下的“test.snd”文件,并读取 6MB 的数据到内存中,然后将内存中的数据进行循环…

C语言重点解剖第17课笔记

1.预处理阶段,先去注释,再宏替换。所以宏替换不能用于去注释。 #define bsc //就变成了一个空的宏。(//在这里面本来就是注释,只是注释后面的内容为空) 2.宏定义并不是简单的无脑替换。 printf(" ")中,双引号里面的东…

uniCloud云开发----3、uniApp中文件上传(通过插件(uniFilePicker)或者 uniCloud.uploadFile实现方案)

uniApp中文件上传前言效果图1、使用unifilePicker插件(1)安装unifilePicker插件(2)简单案例2、通过原生的 uniCloud.uploadFile来实现共同成长共同进步前言 uniapp图片上传插件unifilePicker 在开发uniapp的时候上传文件是必不可…

从月入5千到现在的月入1W+,会计转程序员,“谁说女的不适合学编程?”

前言 我毕业五年了,但与技术和 Python 相关的工作经验也就两年。今天我想跟大家分享自己转行的故事,希望能够鼓励那些跟我一样的朋友共同前行。 我们将会聊到我个人的经历和入行故事,讨论快速学习的方法,最后推荐一些学习资源。…

“互联网+”获奖项目专访 | 阿尔兹海默症患者辅助诊断研究分享

在本届“互联网”创新创业大赛中 昇思MindSpore群英荟萃团队荣获全国总决赛铜奖 本期有幸邀请到 团队负责人李鹏和指导老师胡悦进行采访 一起来看看夺奖背后的故事吧 PART ONE 团队介绍 群英荟萃团队 1. 项目成员 李鹏、周晨、邹静、纪雨萍、李晓迪、张英豪 2. 指导老…

Insight Enterprises EDI 850 采购订单报文详解

Insight Enterprises 是一家世界 500 强解决方案集成商,在全球拥有 11,500 多名员工,帮助企业加速数字化转型。Insight为管理其庞大的供应链建立了EDI(Electronic Data Interchange,中文名称是电子数据交换)系统&#…