深入了解“注意力”和“变形金刚” -第1部分

news2024/12/23 5:43:23

一、说明

        这是一篇很长的文章,几乎讨论了人们需要了解的有关注意力机制的所有信息,包括自我注意、查询、键、值、多头注意力、屏蔽多头注意力和转换器,包括有关 BERT 和 GPT 的一些细节。因此,我将本文分为两部分。在本文中,我将介绍所有注意力块,在下一个故事中,我将深入探讨变压器网络架构。

二  RNN 的挑战以及转换器模型如何帮助克服这些挑战

        注意力机制于2014年首次用于计算机视觉,试图理解神经网络在进行预测时正在查看的内容。这是尝试理解卷积神经网络(CNN)输出的第一步。2015年,注意力首先用于对齐机器翻译中的自然语言处理(NLP)。最后,在2017年,注意力机制被用于Transformer网络中的语言建模。此后,变压器已经超越了递归神经网络(RNN)的预测精度,成为NLP任务的最新技术。

2.1 RNN 问题 1 — 遇到长期依赖问题。

         RNN 不适用于长文本文档。

        变压器解决方案 — 变压器网络几乎只使用注意力块。注意力有助于在序列的任何部分之间建立连接,因此长期依赖不再是问题。对于变压器,长期依赖性与任何其他短程依赖性具有相同的可能性。

2.2. RNN 问题 2 — 遭受梯度消失和梯度爆炸。

        变压器解决方案 — 几乎没有梯度消失或爆炸问题。在变压器网络中,整个序列是同时训练的,并且在此基础上仅添加几层。因此,梯度消失或爆炸很少成为问题。

2.3. RNN 问题 3 — RNN 需要更大的训练步骤才能达到局部/全局最小值。

        RNN可以可视化为一个非常深的展开网络。网络的大小取决于序列的长度。这产生了许多参数,并且这些参数中的大多数是相互关联的。因此,优化需要更长的训练时间和很多步骤。

        变压器解决方案 — 比 RNN 需要更少的训练步骤。

2.4. RNN 问题 4 — RNN 不允许并行计算。

        GPU 有助于实现并行计算。但是RNN作为序列模型工作,也就是说,网络中的所有计算都是按顺序进行的,不能并行化。

变压器解决方案 — 变压器网络中没有重复出现,允许并行计算。因此,每一步都可以并行进行计算。

三、注意力机制

3.1 自我注意

图2.解释自我注意的示例(来源:作者创建的图片)

        考虑一下这句话——“吠叫很可爱,他是一只狗”。这句话有9个单词或标记。如果我们只考虑句子中的“他”这个词,我们会发现“和”是“是两个非常接近它的词。但这些词并没有给“他”这个词任何上下文。相反,“吠叫”和“狗”这两个词与句子中的“他”更相关。由此,我们了解到接近并不总是相关的,但上下文在句子中更相关。

        当这个句子被馈送到计算机时,它将每个单词视为一个标记t,并且每个标记都有一个单词嵌入V。但是这些词嵌入没有上下文。因此,我们的想法是应用某种权重或相似性来获得最终的单词嵌入Y,它比初始嵌入V具有更多的上下文。

        在嵌入空间中,相似的单词看起来更靠近或具有相似的嵌入。比如“国王”这个词会更与“女王”和“皇室”这个词相关,而不是与“斑马”这个词相关。同样,“斑马”与“马”和“条纹”的关系比与“情感”一词的关系更大。要了解有关嵌入空间的更多信息,请访问Andrew Ng(NLP和单词嵌入)的视频。

        因此,直觉上,如果“国王”一词出现在句子的开头,而“女王”一词出现在句子的末尾,它们应该相互提供更好的上下文。我们使用这个想法来找到权重向量 W,通过将单词嵌入相乘(点积)以获得更多的上下文。所以,在句子中,Bark非常可爱,他是一只狗,而不是按原样使用单词嵌入,我们将每个单词的嵌入相乘。图 3 应该能更好地说明这一点。

图3.查找权重并获得最终嵌入(来源:作者创建的图像)

        如图 3 所示,我们首先通过将第一个单词的初始嵌入乘以(点积)与句子中所有其他单词的嵌入来找到权重。这些权重(W11 到 W19)也归一化为总和为 1。接下来,将这些权重乘以句子中所有单词的初始嵌入。

                W11 V1 + W12 V2 + ....W19 V9 = Y1

        W11 到 W19 都是具有第一个单词 V1 上下文的权重。因此,当我们将这些权重乘以每个单词时,我们实际上是在将所有其他单词重新加权到第一个单词。因此,从某种意义上说,“吠叫”这个词现在更倾向于“”和“可爱”这两个词,而不是紧随其后的词。这在某种程度上提供了一些背景。

        对所有单词重复此操作,以便每个单词从句子中的其他单词中获得一些上下文。

图4.上述步骤的图形表示(来源:作者创建的图像)

        图4使用图形图更好地理解了获得Y1的上述步骤。

        有趣的是,没有训练权重,单词的顺序或接近度彼此没有影响。此外,该过程不依赖于句子的长度,也就是说,句子中更多或更少的单词无关紧要。这种为句子中的单词添加一些上下文的方法称为自我注意

3.2 查询、键和值

        自我注意的问题在于没有任何东西被训练。但也许如果我们添加一些可训练的参数,网络就可以学习一些模式,从而提供更好的上下文。此可训练参数可以是训练其值的矩阵。因此,引入了查询、键和值的概念。

        让我们再考虑一下前面的一句话——“吠叫很可爱,他是一只狗”。在自我注意的图 4 中,我们看到初始词嵌入 (V) 使用了 3 次。1st作为句子中第一个单词嵌入和所有其他单词(包括其自身,2nd)之间的点积以获得权重,然后再次将它们(第3次)乘以权重,以获得带有上下文的最终嵌入。这 3 个出现的 V 可以替换为三个术语查询、

        假设我们想使所有单词与第一个单词 V1 相似。然后,我们将 V1 作为查询词发送。然后,这个查询词将对句子中的所有单词(V1 到 V9)做一个点积——这些就是键。因此,查询和键的组合为我们提供了权重。然后将这些权重再次与充当值的所有单词(V1 到 V9)相乘。我们有它,查询,键和值。如果您仍然有一些疑问,图 5 应该能够清除它们。

图5.表示查询、键和值(来源:作者创建的图像)

        但是等等,我们还没有添加任何可以训练的矩阵。这很简单。我们知道,如果将 1 x k 形向量乘以 k x k 形矩阵,我们得到一个 1 x k 形向量作为输出。记住这一点,让我们将每个键从 V1 乘以 V10 到 V1(每个形状为 6 x k),并乘以形状为 k x k 的矩阵 Mk(键矩阵)。类似地,查询向量乘以矩阵 Mq(查询矩阵),值向量乘以值矩阵 Mv。这些矩阵 Mk、Mq 和 Mv 中的所有值现在都可以由神经网络训练,并且比仅仅使用自我注意提供更好的上下文。同样,为了更好地理解,图 <> 显示了我刚才解释的内容的图形表示。

图6.键矩阵、查询矩阵和值矩阵(来源:作者创建的图像)

        现在我们知道了键、查询和值的直觉,让我们看看数据库分析以及注意力背后的官方步骤和公式。

        让我们通过查看数据库的示例来尝试理解注意力机制。因此,在数据库中,如果我们想根据查询 q 和键 k i 检索某个值 vi,可以执行一些操作其中我们可以使用查询来识别对应于某个。注意力可以被认为是与此数据库技术类似的过程,但以更概率的方式。下图对此进行了演示。

        图 7 显示了在数据库中检索数据的步骤。假设我们将一个查询发送到数据库中,一些操作会找出数据库中哪个键与查询最相似。找到密钥后,它将发送与该密钥对应的值作为输出。在图中,该操作发现查询与键 5 最相似,因此为我们提供了值 5 作为输出。

图7.数据库中的值检索过程(来源:作者创建的图像)

        注意力机制是一种模仿这种检索过程的神经架构。

  1. 注意力机制测量查询 q 和每个键值 k i 之间的相似性
  2. 此相似性为每个键值返回一个权重。
  3. 最后,它生成一个输出,该输出是我们数据库中所有值的加权组合。

        从某种意义上说,数据库检索和注意力之间的唯一区别是,在数据库检索中,我们只得到一个值作为输入,但在这里我们得到一个值的加权组合。在注意力机制中,如果查询与键 1 和键 4 最相似,那么这两个键将获得最多的权重,输出将是值 1 和值 4 的组合。

Figure 8 显示了从查询、键和值获取最终注意力值所需的步骤。下面将详细解释每个步骤。

(键值 k 是向量,相似性值 S 是标量,权重值 (softmax) 值 a 是标量,值 V 是向量)

图 8. 获得注意力值的步骤(来源:作者创建的图片)

3.3 第 1 步。

        步骤 1 包含键和查询以及相应的相似性度量。查询 q 会影响相似性。我们拥有的是查询和键,并计算相似性。相似性是查询 q 和键 k 的某些函数。查询和键都是一些嵌入向量。相似性 S 可以使用各种方法计算,如图 9 所示。

图9.计算相似性的方法(Souce:作者创建的图像)

        相似性可以是查询和键的简单点积。它可以是缩放点积,其中qk的点积除以每个键的维数d的平方根。 这是查找相似性最常用的两种技术。

        通常,使用权重矩阵 W 将查询投影到新空间中,然后使用键 k 创建点积。内核方法也可以用作相似性。

3.4 第 2 步。

        第 2 步是查找权重 a。这是使用“SoftMax”完成的。公式如下所示。(exp 是指数级的)

        相似性像完全连接的层一样与权重相连。

3.5 第 3 步。

        步骤 3 是 softmax (a) 的结果与相应值 (V) 的加权组合。a 的第一个值乘以 V 的第一个值,然后与 a 的第 1 个值与值 V 的第 2 个值的乘积相加,依此类推。我们获得的最终输出是所需的结果注意力值。

        三个步骤的摘要:

        W在查询 q 和键 k 的帮助下,我们获得注意值,它是值 V 的加权和/线性组合权重来自查询和键之间的某种相似性。

3.6 注意力的神经网络表示

图 10.注意力块的神经网络表示(来源:作者创建的图像)

        图 10 显示了注意力块的神经网络表示。词嵌入首先传递到一些线性层中。这些线性层没有“偏差”项,因此只不过是矩阵乘法。其中一个层表示为“键”,另一个表示为“查询”,最后一个层表示为“值”。如果在键和查询之间执行矩阵乘法,然后进行规范化,我们将得到权重。然后将这些权重乘以值并相加,得到最终的注意力向量。这个块现在可以在神经网络中使用,被称为注意力块。可以添加多个这样的注意力块以提供更多上下文。最好的部分是,我们可以获得梯度反向传播来更新注意力块(键、查询、值的权重)。

3.7 多头注意力

        为了克服使用单头注意力的一些陷阱,使用了多头注意力。让我们回到那句话——“吠叫很可爱,他是一只狗”。在这里,如果我们使用“狗”这个词,从语法上我们理解“吠叫”、“可爱”和“他”应该与“狗”这个词有某种意义或相关性。这些话说,狗的名字叫树皮,是公狗,是一只可爱的狗。仅凭一种注意力机制未必能正确识别出这三个词与“狗”相关,我们可以说,这里用“狗”这个词来表示这三个词更好。这减少了一个注意力查找所有重要单词的负担,也增加了轻松找到更多相关单词的机会。

        因此,让我们添加更多的线性层作为键、查询和值。这些线性层是并行训练的,并且彼此具有独立的权重。所以现在,每个值、键和查询都为我们提供了三个输出,而不是一个。这 3 个键和查询现在提供三种不同的权重。然后用矩阵乘以这三个值,得到三个倍数输出。这三个注意力块最终连接起来,给出一个最终的注意力输出。此表示如图 11 所示。

图 11.具有3个线性层的多头注意力(来源:作者创建的图像)

        但 3 只是我们选择的随机数。在实际场景中,这些可以是任意数量的线性层,这些层称为头部(h)。也就是说,可以有 h 个线性层,给出 h 个注意力输出,然后将其连接在一起。这正是它被称为多头注意力(多头)的原因。图 11 的简化版本,但头部数量为 h 如图 12 所示。

图 12.具有“h”层的多头注意力(来源:作者创建的图片)

        N由于我们了解了注意力、查询、键、值和多头注意力背后的机制和思想,我们已经涵盖了变压器网络的所有重要构建块。在下一个故事中,我将讨论所有这些块如何堆叠在一起形成变压器网络,并讨论一些基于变压器的网络,例如BERT和GPT。

四、引用 

        阿希什·瓦斯瓦尼、诺姆·沙泽尔、尼基·帕尔马、雅各布·乌什科雷特、莱昂·琼斯、艾丹·戈麦斯、武卡什·凯撒和伊利亚·波洛苏欣。2017. 注意力就是你所需要的一切。第31届神经信息处理系统国际会议论文集(NIPS'17)。Curran Associates Inc.,Red Hook,NY,USA,6000–6010。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1063293.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【JavaEE】JUC(Java.util.concurrent)常见类

文章目录 前言ReentrantLock原子类线程池信号量CountDownLatch相关面试题 前言 经过前面文章的学习我们大致了解了如何实现多线程编程和解决多线程编程中遇到的线程不安全问题&#xff0c;java.util.concurrent 是我们多线程编程的一个常用包&#xff0c;那么今天我将为大家分…

消息驱动 —— SpringCloud Stream

Stream 简介 Spring Cloud Stream 是用于构建消息驱动的微服务应用程序的框架&#xff0c;提供了多种中间件的合理配置 Spring Cloud Stream 包含以下核心概念&#xff1a; Destination Binders&#xff1a;目标绑定器&#xff0c;目标指的是 Kafka 或者 RabbitMQ&#xff0…

一款支持功能安全车规级 线性PMIC稳压器 NCV4274CDS50R4G 解决方案:高效率、更智能、强功能安全

关于车规级芯片&#xff1a; 关于车规级芯片&#xff08;Automotive Grade Chip&#xff09;&#xff0c;车规级芯片是专门用于汽车行业的芯片&#xff0c;具有高可靠性、高稳定性和低功耗等特点&#xff0c;以满足汽车电子系统的严格要求。这些芯片通常用于车载电子控制单元&…

c++使用ifstream和ofstream报错:不允许使用不完整的类型

学习《C Primer》关于IO库的部分&#xff0c;输入284页的的代码&#xff0c;出现了报错&#xff1a; 不允许使用不完整的类型 原来的代码&#xff1a; #include <iostream> #include <vector> using namespace std;int main(int argc, char **argv) {ifstream in…

如何搭建一个 websocket

环境: NodeJssocket.io 4.7.2 安装依赖 yarn add socket.io创建服务器 引入文件 特别注意: 涉及到 colors 的代码&#xff0c;请采取 console.log() 打印 // 基础老三样 import http from "http"; import fs from "fs"; import { Server } from &quo…

分享几个优秀开源免费管理后台模版,建议收藏!

大家好&#xff0c;我是 jonssonyan 今天和大家分享一些免费开源的后台管理页面&#xff0c;帮助大家快速搭建前端页面。为什么要用模板&#xff1f;道理很简单&#xff0c;原因是方便我们快速开发。我们不应该花太多的时间在页面调整上&#xff0c;而应该把精力放在核心逻辑和…

关于滑块验证码的问题

这里写自定义目录标题 一、超级鹰二、图片验证模拟登录1、页面分析1.1、模拟用户正常登录流程1.2、识别图片里面的文字 2、代码实现 三、滑块模拟登录1、页面分析2、代码实现&#xff08;通过对比像素获取缺口位置&#xff09; 四、openCV1、简介2、代码3、案例 五、selenium 反…

Vue中如何进行数据库操作与数据持久化

在Vue中进行数据库操作与数据持久化 Vue.js作为一个流行的JavaScript框架&#xff0c;通常用于构建前端应用程序&#xff0c;但它本身并不提供数据库操作或数据持久化的功能。数据库操作通常由后端服务器处理&#xff0c;而Vue负责呈现和交互。然而&#xff0c;您可以使用Vue与…

P1-Python编辑器的选择和安装

1、Python编辑器的选择、安装及配置&#xff08;PyCharm、Jupyter&#xff09; PyCharm的安装&#xff1a; https://www.jetbrains.com/pycharm/PyCharm的配置&#xff1a; 1、创建新的项目 2、导入本地已有的Pytorch anaconda环境 配置环境中问题&#xff1a; https://bl…

Kitchen Racks

厨房置物架 完美&#xff01;&#xff01;&#xff01;

【车载开发系列】S19/HEX/BIN文件解析

【车载开发系列】S19/HEX/BIN文件解析 【车载开发系列】S19/HEX/BIN文件解析 【车载开发系列】S19/HEX/BIN文件解析一. 文件烧录原理二. 为什么要文件解析三. BIN格式文件1&#xff09;bin格式优点2&#xff09;bin格式缺点 四. S-record概述五. S19&#xff0c;MOT&#xff0c…

ExoPlayer架构详解与源码分析(3)——Timeline

系列文章目录 ExoPlayer架构详解与源码分析&#xff08;1&#xff09;——前言 ExoPlayer架构详解与源码分析&#xff08;2&#xff09;——Player 文章目录 系列文章目录前言Timeline单文件或者点播流媒体文件播放列表或者点播流列表有限可播的直播流无限可播的直播流有多个P…

机器学习---RBM、KL散度、DBN

1. RBM 1.1 BM BM是由Hinton和Sejnowski提出的一种随机递归神经网络&#xff0c;可以看做是一种随机生成的 Hopfield网络&#xff0c;是能够通过学习数据的固有内在表示解决困难学习问题的最早的人工神经网络之 一&#xff0c;因样本分布遵循玻尔兹曼分布而命名为BM。BM由二…

平台项目列表页实现(二)

这里写目录标题 一、顶部盒子设计1. 顶部盒子包含项目列表和添加项目、退出登录2个按钮 二、项目列表盒子设计三、添加项目盒子设计四、退出登录功能实现五、路由导航守卫实现六、展示项目信息七、bug修复1、当项目名称太长或者项目负责人太长&#xff0c;需要一行展示&#xf…

一文详解动态链表和静态链表的区别

1、引言 本文主要是对动态链表和静态链表的区别进行原理上的讲解分析&#xff0c;先通过对顺序表和动态链表概念和特点的原理性介绍&#xff0c;进而引申出静态链表的作用&#xff0c;以及其概念。通过这些原理性的概述&#xff0c;最后总结归纳出动态链表和静态链表的区别。本…

vector的介绍以及使用方式

目录 前言 1.vector的介绍 2.构造函数 3.迭代器 4.vector空间增长问题 5.vector的增删改查 6.vector迭代器失效问题 总结 前言 即我们的string之后&#xff0c;今天小编给大家要介绍一个我们stl中另外一个常用的容器vector&#xff0c;和我们的string一样我们的vector…

Vue中如何进行分布式任务调度与定时任务管理

在Vue中进行分布式任务调度与定时任务管理 分布式任务调度和定时任务管理是许多应用程序中的关键功能之一。它们用于执行周期性的、异步的、重复的任务&#xff0c;例如数据备份、邮件发送、定时报告生成等。在Vue.js应用中&#xff0c;我们可以结合后端服务实现分布式任务调度…

浏览器技巧:谷歌浏览器六个实用设置小技巧,值得收藏

目录 1、确保你的浏览器启用标准保护选项 2、使用安全DNS&#xff08;DNS over HTTPS&#xff09; 3、网站通知修改为"静态指示方式" 4、启用页面预加载提升网页加载速度 5、阻止Chrome浏览器在后台运行 6. 更改 Chrome 启动后打开方式为"上次打开的网页&…

javaWeb超市订单管理系统

一、引言 超市管理系统(smbms)作为每个计算机专业的大学生都是一个很好的练手项目&#xff0c;逻辑层次分明&#xff0c;基础功能包括用户的登录和注销&#xff0c;用户和供应商以及订单信息的增删查改的基础功能。可以帮助我们更好的加深理解三层架构的理念&#xff0c;本项目…

复习 --- QT服务器客户端

服务器&#xff1a; 头文件&#xff1a; #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include<QTcpServer> #include<QTcpSocket> #include<QMessageBox> #include<QDebug> #include<QList> #include<QListWidget> #in…