Zookeeper经典应用场景实战(一)

news2024/10/6 4:12:10

文章目录

  • 1、Zookeeper Java客户端实战
    • 1.1、 Zookeeper 原生Java客户端使用
    • 1.2、 Curator开源客户端使用
  • 2、 Zookeeper在分布式命名服务中的实战
    • 2.1、 分布式API目录
    • 2.2、 分布式节点的命名
    • 2.3、 分布式的ID生成器
  • 3、Zookeeper实现分布式队列
    • 3.1、 设计思路
    • 3.2、 使用Apache Curator实现分布式队列
    • 3.3、 注意事项

1、Zookeeper Java客户端实战

ZooKeeper应用的开发主要通过Java客户端API去连接和操作ZooKeeper集群。可供选择的Java客户端API有:

  • ZooKeeper官方的Java客户端API。
  • 第三方的Java客户端API,比如Curator。

ZooKeeper官方的客户端API提供了基本的操作。例如,创建会话、创建节点、读取节点、更新数据、删除节点和检查节点是否存在等。不过,对于实际开发来说,ZooKeeper官方API有一些不足之处,具体如下:

  • ZooKeeper的Watcher监测是一次性的,每次触发之后都需要重新进行注册。
  • 会话超时之后没有实现重连机制。
  • 异常处理烦琐,ZooKeeper提供了很多异常,对于开发人员来说可能根本不知道应该如何处理这些抛出的异常。
  • 仅提供了简单的byte[]数组类型的接口,没有提供Java POJO级别的序列化数据处理接口。
  • 创建节点时如果抛出异常,需要自行检查节点是否存在。
  • 无法实现级联删除。

总之,ZooKeeper官方API功能比较简单,在实际开发过程中比较笨重,一般不推荐使用。

1.1、 Zookeeper 原生Java客户端使用

引入zookeeper client依赖

<!-- zookeeper client -->
<dependency>
    <groupId>org.apache.zookeeper</groupId>
    <artifactId>zookeeper</artifactId>
    <version>3.8.0</version>
</dependency>

注意:保持与服务端版本一致,不然会有很多兼容性的问题

ZooKeeper原生客户端主要使用org.apache.zookeeper.ZooKeeper这个类来使用ZooKeeper服务。
ZooKeeper常用构造器
ZooKeeper (connectString, sessionTimeout, watcher)

  • connectString:使用逗号分隔的列表,每个ZooKeeper节点是一个host.port对,host 是机器名或者IP地址,port是ZooKeeper节点对客户端提供服务的端口号。客户端会任意选取connectString 中的一个节点建立连接。
  • sessionTimeout : session timeout时间。
  • watcher:用于接收到来自ZooKeeper集群的事件。

使用 zookeeper 原生 API,连接zookeeper集群

public class ZkClientDemo {

    private static final  String  CONNECT_STR="localhost:2181";
    private final static  String CLUSTER_CONNECT_STR="192.168.65.156:2181,192.168.65.190:2181,192.168.65.200:2181";

    public static void main(String[] args) throws Exception {

        final CountDownLatch countDownLatch=new CountDownLatch(1);
        ZooKeeper zooKeeper = new ZooKeeper(CLUSTER_CONNECT_STR,
                4000, new Watcher() {
            @Override
            public void process(WatchedEvent event) {
                if(Event.KeeperState.SyncConnected==event.getState() 
                        && event.getType()== Event.EventType.None){
                    //如果收到了服务端的响应事件,连接成功
                    countDownLatch.countDown();
                    System.out.println("连接建立");
                }
            }
        });
        System.out.printf("连接中");
        countDownLatch.await();
        //CONNECTED
        System.out.println(zooKeeper.getState());

        //创建持久节点
        zooKeeper.create("/user","fox".getBytes(),
                ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);

    }

}

Zookeeper主要方法

  • create(path, data, acl,createMode): 创建一个给定路径的 znode,并在 znode 保存 data[]的 数据,createMode指定 znode 的类型。
  • delete(path, version):如果给定 path 上的 znode 的版本和给定的 version 匹配, 删除 znode。
  • exists(path, watch):判断给定 path 上的 znode 是否存在,并在 znode 设置一个 watch。
  • getData(path, watch):返回给定 path 上的 znode 数据,并在 znode 设置一个 watch。
  • setData(path, data, version):如果给定 path 上的 znode 的版本和给定的 version 匹配,设置 znode 数据。
  • getChildren(path, watch):返回给定 path 上的 znode 的孩子 znode 名字,并在 znode 设置一个 watch。
  • sync(path):把客户端 session 连接节点和 leader 节点进行同步。
    方法特点:
  • 所有获取 znode 数据的 API 都可以设置一个 watch 用来监控 znode 的变化。
  • 所有更新 znode 数据的 API 都有两个版本: 无条件更新版本和条件更新版本。如果 version 为 -1,更新为无条件更新。否则只有给定的 version 和 znode 当前的 version 一样,才会进行更新,这样的更新是条件更新。
  • 所有的方法都有同步和异步两个版本。同步版本的方法发送请求给 ZooKeeper 并等待服务器的响 应。异步版本把请求放入客户端的请求队列,然后马上返回。异步版本通过 callback 来接受来 自服务端的响应。

同步创建节点:

@Test
public void createTest() throws KeeperException, InterruptedException {
    String path = zooKeeper.create(ZK_NODE, "data".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);
    log.info("created path: {}",path);
}

异步创建节点:

@Test
public void createAsycTest() throws InterruptedException {
     zooKeeper.create(ZK_NODE, "data".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE,
             CreateMode.PERSISTENT,
             (rc, path, ctx, name) -> log.info("rc  {},path {},ctx {},name {}",rc,path,ctx,name),"context");
    TimeUnit.SECONDS.sleep(Integer.MAX_VALUE);
}

修改节点数据

@Test
public void setTest() throws KeeperException, InterruptedException {

    Stat stat = new Stat();
    byte[] data = zooKeeper.getData(ZK_NODE, false, stat);
    log.info("修改前: {}",new String(data));
    zooKeeper.setData(ZK_NODE, "changed!".getBytes(), stat.getVersion());
     byte[] dataAfter = zooKeeper.getData(ZK_NODE, false, stat);
    log.info("修改后: {}",new String(dataAfter));
}

1.2、 Curator开源客户端使用

Curator是Netflix公司开源的一套ZooKeeper客户端框架,和ZkClient一样它解决了非常底层的细节开发工作,包括连接、重连、反复注册Watcher的问题以及NodeExistsException异常等。
Curator是Apache基金会的顶级项目之一,Curator具有更加完善的文档,另外还提供了一套易用性和可读性更强的Fluent风格的客户端API框架。
Curator还为ZooKeeper客户端框架提供了一些比较普遍的、开箱即用的、分布式开发用的解决方案,例如Recipe、共享锁服务、Master选举机制和分布式计算器等,帮助开发者避免了“重复造轮子”的无效开发工作。

Guava is to Java that Curator to ZooKeeper

在实际的开发场景中,使用Curator客户端就足以应付日常的ZooKeeper集群操作的需求。
官网:https://curator.apache.org/

引入依赖
Curator 包含了几个包:

  • curator-framework是对ZooKeeper的底层API的一些封装。
  • curator-client提供了一些客户端的操作,例如重试策略等。
  • curator-recipes封装了一些高级特性,如:Cache事件监听、选举、分布式锁、分布式计数器、分布式Barrier等。
<!-- zookeeper client -->
<dependency>
    <groupId>org.apache.zookeeper</groupId>
    <artifactId>zookeeper</artifactId>
    <version>3.8.0</version>
</dependency>

<!--curator-->
<dependency>
    <groupId>org.apache.curator</groupId>
    <artifactId>curator-recipes</artifactId>
    <version>5.1.0</version>
    <exclusions>
        <exclusion>
            <groupId>org.apache.zookeeper</groupId>
            <artifactId>zookeeper</artifactId>
        </exclusion>
    </exclusions>
</dependency>

创建一个客户端实例
在使用curator-framework包操作ZooKeeper前,首先要创建一个客户端实例。这是一个CuratorFramework类型的对象,有两种方法:

  • 使用工厂类CuratorFrameworkFactory的静态newClient()方法。
// 重试策略 
RetryPolicy retryPolicy = new ExponentialBackoffRetry(1000, 3)
//创建客户端实例
CuratorFramework client = CuratorFrameworkFactory.newClient(zookeeperConnectionString, retryPolicy);
//启动客户端
client.start();
  • 使用工厂类CuratorFrameworkFactory的静态builder构造者方法。
//随着重试次数增加重试时间间隔变大,指数倍增长baseSleepTimeMs * Math.max(1, random.nextInt(1 << (retryCount + 1)))
RetryPolicy retryPolicy = new ExponentialBackoffRetry(1000, 3);

CuratorFramework client = CuratorFrameworkFactory.builder()
                .connectString("192.168.128.129:2181")
                .sessionTimeoutMs(5000)  // 会话超时时间
                .connectionTimeoutMs(5000) // 连接超时时间
                .retryPolicy(retryPolicy)
                .namespace("base") // 包含隔离名称
                .build();
client.start();
  • connectionString:服务器地址列表,在指定服务器地址列表的时候可以是一个地址,也可以是多个地址。如果是多个地址,那么每个服务器地址列表用逗号分隔, 如 host1:port1,host2:port2,host3;port3 。

  • retryPolicy:重试策略,当客户端异常退出或者与服务端失去连接的时候,可以通过设置客户端重新连接 ZooKeeper 服务端。而 Curator 提供了 一次重试、多次重试等不同种类的实现方式。在 Curator 内部,可以通过判断服务器返回的 keeperException 的状态代码来判断是否进行重试处理,如果返回的是 OK 表示一切操作都没有问题,而 SYSTEMERROR 表示系统或服务端错误。

策略名称描述ExponentialBackoffRetry重试一组次数,重试之间的睡眠时间增加RetryNTimes重试最大次数RetryOneTime只重试一次RetryUntilElapsed在给定的时间结束之前重试

  • 超时时间:Curator 客户端创建过程中,有两个超时时间的设置。一个是 sessionTimeoutMs 会话超时时间,用来设置该条会话在 ZooKeeper 服务端的失效时间。另一个是 connectionTimeoutMs 客户端创建会话的超时时间,用来限制客户端发起一个会话连接到接收 ZooKeeper 服务端应答的时间。sessionTimeoutMs 作用在服务端,而 connectionTimeoutMs 作用在客户端。

创建节点

创建节点的方式如下面的代码所示,回顾我们之前课程中讲到的内容,描述一个节点要包括节点的类型,即临时节点还是持久节点、节点的数据信息、节点是否是有序节点等属性和性质。

@Test
public void testCreate() throws Exception {
   String path = curatorFramework.create().forPath("/curator-node");
   curatorFramework.create().withMode(CreateMode.PERSISTENT).forPath("/curator-node","some-data".getBytes())
   log.info("curator create node :{}  successfully.",path);
}

在 Curator 中,可以使用 create 函数创建数据节点,并通过 withMode 函数指定节点类型(持久化节点,临时节点,顺序节点,临时顺序节点,持久化顺序节点等),默认是持久化节点,之后调用 forPath 函数来指定节点的路径和数据信息。

一次性创建带层级结构的节点

@Test
public void testCreateWithParent() throws Exception {
    String pathWithParent="/node-parent/sub-node-1";
    String path = curatorFramework.create().creatingParentsIfNeeded().forPath(pathWithParent);
    log.info("curator create node :{}  successfully.",path);
}

获取数据

@Test
public void testGetData() throws Exception {
    byte[] bytes = curatorFramework.getData().forPath("/curator-node");
    log.info("get data from  node :{}  successfully.",new String(bytes));
}

更新节点

我们通过客户端实例的 setData() 方法更新 ZooKeeper 服务上的数据节点,在setData 方法的后边,通过 forPath 函数来指定更新的数据节点路径以及要更新的数据。

@Test
public void testSetData() throws Exception {
    curatorFramework.setData().forPath("/curator-node","changed!".getBytes());
    byte[] bytes = curatorFramework.setData().forPath("/curator-node");
    log.info("get data from  node /curator-node :{}  successfully.",new String(bytes));
}

删除节点

@Test
public void testDelete() throws Exception {
    String pathWithParent="/node-parent";
    curatorFramework.delete().guaranteed().deletingChildrenIfNeeded().forPath(pathWithParent);
}

guaranteed:该函数的功能如字面意思一样,主要起到一个保障删除成功的作用,其底层工作方式是:只要该客户端的会话有效,就会在后台持续发起删除请求,直到该数据节点在 ZooKeeper 服务端被删除。

deletingChildrenIfNeeded:指定了该函数后,系统在删除该数据节点的时候会以递归的方式直接删除其子节点,以及子节点的子节点。

异步接口
Curator 引入了BackgroundCallback 接口,用来处理服务器端返回来的信息,这个处理过程是在异步线程中调用,默认在 EventThread 中调用,也可以自定义线程池。

public interface BackgroundCallback
{
    /**
     * Called when the async background operation completes
     *
     * @param client the client
     * @param event operation result details
     * @throws Exception errors
     */
    public void processResult(CuratorFramework client, CuratorEvent event) throws Exception;
}

如上接口,主要参数为 client 客户端, 和 服务端事件 event。
inBackground 异步处理默认在EventThread中执行

@Test
public void test() throws Exception {
    curatorFramework.getData().inBackground((item1, item2) -> {
        log.info(" background: {}", item2);
    }).forPath(ZK_NODE);

    TimeUnit.SECONDS.sleep(Integer.MAX_VALUE);
}

指定线程池

@Test
public void test() throws Exception {
   ExecutorService executorService = Executors.newSingleThreadExecutor();
   
   curatorFramework.getData().inBackground((item1, item2) -> {
       log.info(" background: {}", item2);
   },executorService).forPath(ZK_NODE);

   TimeUnit.SECONDS.sleep(Integer.MAX_VALUE);
}

Curator 监听器

/**
 * Receives notifications about errors and background events
 */
public interface CuratorListener
{
    /**
     * Called when a background task has completed or a watch has triggered
     *
     * @param client client
     * @param event the event
     * @throws Exception any errors
     */
    public void         eventReceived(CuratorFramework client, CuratorEvent event) throws Exception;
}

针对 background 通知和错误通知。使用此监听器之后,调用inBackground 方法会异步获得监听

Curator Caches:
Curator 引入了 Cache 来实现对 Zookeeper 服务端事件监听,Cache 事件监听可以理解为一个本地缓存视图与远程 Zookeeper 视图的对比过程。Cache 提供了反复注册的功能。Cache 分为两类注册类型:节点监听和子节点监听。

node cache:
NodeCache 对某一个节点进行监听

public NodeCache(CuratorFramework client,
                         String path)
Parameters:
client - the client
path - path to cache

可以通过注册监听器来实现,对当前节点数据变化的处理

public void addListener(NodeCacheListener listener)
     Add a change listener
Parameters:
listener - the listener
@Slf4j
public class NodeCacheTest extends AbstractCuratorTest{

    public static final String NODE_CACHE="/node-cache";

    @Test
    public void testNodeCacheTest() throws Exception {

        createIfNeed(NODE_CACHE);
        NodeCache nodeCache = new NodeCache(curatorFramework, NODE_CACHE);
        nodeCache.getListenable().addListener(new NodeCacheListener() {
            @Override
            public void nodeChanged() throws Exception {
                log.info("{} path nodeChanged: ",NODE_CACHE);
                printNodeData();
            }
        });

        nodeCache.start();
    }


    public void printNodeData() throws Exception {
        byte[] bytes = curatorFramework.getData().forPath(NODE_CACHE);
        log.info("data: {}",new String(bytes));
    }
}

path cache:
PathChildrenCache 会对子节点进行监听,但是不会对二级子节点进行监听,

public PathChildrenCache(CuratorFramework client,
                         String path,
                         boolean cacheData)
Parameters:
client - the client
path - path to watch
cacheData - if true, node contents are cached in addition to the stat

可以通过注册监听器来实现,对当前节点的子节点数据变化的处理

public void addListener(PathChildrenCacheListener listener)
     Add a change listener
Parameters:
listener - the listener
@Slf4j
public class PathCacheTest extends AbstractCuratorTest{

    public static final String PATH="/path-cache";

    @Test
    public void testPathCache() throws Exception {

        createIfNeed(PATH);
        PathChildrenCache pathChildrenCache = new PathChildrenCache(curatorFramework, PATH, true);
        pathChildrenCache.getListenable().addListener(new PathChildrenCacheListener() {
            @Override
            public void childEvent(CuratorFramework client, PathChildrenCacheEvent event) throws Exception {
                log.info("event:  {}",event);
            }
        });

        // 如果设置为true则在首次启动时就会缓存节点内容到Cache中
        pathChildrenCache.start(true);
    }
}

tree cache:
TreeCache 使用一个内部类TreeNode来维护这个一个树结构。并将这个树结构与ZK节点进行了映射。所以TreeCache 可以监听当前节点下所有节点的事件。

public TreeCache(CuratorFramework client,
                         String path,
                         boolean cacheData)
Parameters:
client - the client
path - path to watch
cacheData - if true, node contents are cached in addition to the stat

可以通过注册监听器来实现,对当前节点的子节点,及递归子节点数据变化的处理

public void addListener(TreeCacheListener listener)
     Add a change listener
Parameters:
listener - the listener
@Slf4j
public class TreeCacheTest extends AbstractCuratorTest{

    public static final String TREE_CACHE="/tree-path";

    @Test
    public void testTreeCache() throws Exception {
        createIfNeed(TREE_CACHE);
        TreeCache treeCache = new TreeCache(curatorFramework, TREE_CACHE);
        treeCache.getListenable().addListener(new TreeCacheListener() {
            @Override
            public void childEvent(CuratorFramework client, TreeCacheEvent event) throws Exception {
                log.info(" tree cache: {}",event);
            }
        });
        treeCache.start();
    }
}

2、 Zookeeper在分布式命名服务中的实战

命名服务是为系统中的资源提供标识能力。ZooKeeper的命名服务主要是利用ZooKeeper节点的树形分层结构和子节点的顺序维护能力,来为分布式系统中的资源命名。
哪些应用场景需要用到分布式命名服务呢?典型的有:

  • 分布式API目录
  • 分布式节点命名
  • 分布式ID生成器

2.1、 分布式API目录

为分布式系统中各种API接口服务的名称、链接地址,提供类似JNDI(Java命名和目录接口)中的文件系统的功能。借助于ZooKeeper的树形分层结构就能提供分布式的API调用功能。
著名的Dubbo分布式框架就是应用了ZooKeeper的分布式的JNDI功能。在Dubbo中,使用ZooKeeper维护的全局服务接口API的地址列表。大致的思路为:

  • 服务提供者(Service Provider)在启动的时候,向ZooKeeper上的指定节点/dubbo/${serviceName}/providers写入自己的API地址,这个操作就相当于服务的公开。
  • 服务消费者(Consumer)启动的时候,订阅节点/dubbo/{serviceName}/providers下的服务提供者的URL地址,获得所有服务提供者的API。

在这里插入图片描述

2.2、 分布式节点的命名

一个分布式系统通常会由很多的节点组成,节点的数量不是固定的,而是不断动态变化的。比如说,当业务不断膨胀和流量洪峰到来时,大量的节点可能会动态加入到集群中。而一旦流量洪峰过去了,就需要下线大量的节点。再比如说,由于机器或者网络的原因,一些节点会主动离开集群。
如何为大量的动态节点命名呢?一种简单的办法是可以通过配置文件,手动为每一个节点命名。但是,如果节点数据量太大,或者说变动频繁,手动命名则是不现实的,这就需要用到分布式节点的命名服务。
可用于生成集群节点的编号的方案:
(1)使用数据库的自增ID特性,用数据表存储机器的MAC地址或者IP来维护。
(2)使用ZooKeeper持久顺序节点的顺序特性来维护节点的NodeId编号。
在第2种方案中,集群节点命名服务的基本流程是:

  • 启动节点服务,连接ZooKeeper,检查命名服务根节点是否存在,如果不存在,就创建系统的根节点。
  • 在根节点下创建一个临时顺序ZNode节点,取回ZNode的编号把它作为分布式系统中节点的NODEID。
  • 如果临时节点太多,可以根据需要删除临时顺序ZNode节点。

2.3、 分布式的ID生成器

在分布式系统中,分布式ID生成器的使用场景非常之多:

  • 大量的数据记录,需要分布式ID。
  • 大量的系统消息,需要分布式ID。
  • 大量的请求日志,如restful的操作记录,需要唯一标识,以便进行后续的用户行为分析和调用链路分析。
  • 分布式节点的命名服务,往往也需要分布式ID。

传统的数据库自增主键已经不能满足需求。在分布式系统环境中,迫切需要一种全新的唯一ID系统,这种系统需要满足以下需求:
(1)全局唯一:不能出现重复ID。
(2)高可用:ID生成系统是基础系统,被许多关键系统调用,一旦宕机,就会造成严重影响。

有哪些分布式的ID生成器方案呢?大致如下:
1.Java的UUID。
2.分布式缓存Redis生成ID:利用Redis的原子操作INCR和INCRBY,生成全局唯一的ID。
3.Twitter的SnowFlake算法。
4.ZooKeeper生成ID:利用ZooKeeper的顺序节点,生成全局唯一的ID。
5.MongoDb的ObjectId:MongoDB是一个分布式的非结构化NoSQL数据库,每插入一条记录会自动生成全局唯一的一个“_id”字段值,它是一个12字节的字符串,可以作为分布式系统中全局唯一的ID。
基于Zookeeper实现分布式ID生成器
在ZooKeeper节点的四种类型中,其中有以下两种类型具备自动编号的能力

  • PERSISTENT_SEQUENTIAL持久化顺序节点。
  • EPHEMERAL_SEQUENTIAL临时顺序节点。

ZooKeeper的每一个节点都会为它的第一级子节点维护一份顺序编号,会记录每个子节点创建的先后顺序,这个顺序编号是分布式同步的,也是全局唯一的。
可以通过创建ZooKeeper的临时顺序节点的方法,生成全局唯一的ID

@Slf4j
public class IDMaker extends CuratorBaseOperations {

    private String createSeqNode(String pathPefix) throws Exception {
        CuratorFramework curatorFramework = getCuratorFramework();
        //创建一个临时顺序节点
        String destPath = curatorFramework.create()
                .creatingParentsIfNeeded()
                .withMode(CreateMode.EPHEMERAL_SEQUENTIAL)
                .forPath(pathPefix);
        return destPath;
    }

    public String  makeId(String path) throws Exception {
        String str = createSeqNode(path);
        if(null != str){
            //获取末尾的序号
            int index = str.lastIndexOf(path);
            if(index>=0){
                index+=path.length();
                return index<=str.length() ? str.substring(index):"";
            }
        }
        return str;
    }
}

测试

@Test
public void testMarkId() throws Exception {
    IDMaker idMaker = new IDMaker();
    idMaker.init();
    String pathPrefix = "/idmarker/id-";

    for(int i=0;i<5;i++){
        new Thread(()->{
            for (int j=0;j<10;j++){
                String id = null;
                try {
                    id = idMaker.makeId(pathPrefix);
                    log.info("{}线程第{}个创建的id为{}",Thread.currentThread().getName(),
                            j,id);
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
        },"thread"+i).start();
    }

    Thread.sleep(Integer.MAX_VALUE);

}

基于Zookeeper实现SnowFlakeID算法
Twitter(推特)的SnowFlake算法是一种著名的分布式服务器用户ID生成算法。SnowFlake算法所生成的ID是一个64bit的长整型数字,如图10-2所示。这个64bit被划分成四个部分,其中后面三个部分分别表示时间戳、工作机器ID、序列号。
在这里插入图片描述
SnowFlakeID的四个部分,具体介绍如下:
(1)第一位 占用1 bit,其值始终是0,没有实际作用。
(2)时间戳 占用41 bit,精确到毫秒,总共可以容纳约69年的时间。
(3)工作机器id占用10 bit,最多可以容纳1024个节点。
(4)序列号 占用12 bit。这个值在同一毫秒同一节点上从0开始不断累加,最多可以累加到4095。
在工作节点达到1024顶配的场景下,SnowFlake算法在同一毫秒最多可以生成的ID数量为: 1024 * 4096 =4194304,在绝大多数并发场景下都是够用的。

SnowFlake算法的优点:

  • 生成ID时不依赖于数据库,完全在内存生成,高性能和高可用性。
  • 容量大,每秒可生成几百万个ID。
  • ID呈趋势递增,后续插入数据库的索引树时,性能较高。
    SnowFlake算法的缺点:
  • 依赖于系统时钟的一致性,如果某台机器的系统时钟回拨了,有可能造成ID冲突,或者ID乱序。
  • 在启动之前,如果这台机器的系统时间回拨过,那么有可能出现ID重复的危险。
    基于zookeeper实现雪花算法:
public class SnowflakeIdGenerator {

    /**
     * 单例
     */
    public static SnowflakeIdGenerator instance =
            new SnowflakeIdGenerator();


    /**
     * 初始化单例
     *
     * @param workerId 节点Id,最大8091
     * @return the 单例
     */
    public synchronized void init(long workerId) {
        if (workerId > MAX_WORKER_ID) {
            // zk分配的workerId过大
            throw new IllegalArgumentException("woker Id wrong: " + workerId);
        }
        instance.workerId = workerId;
    }

    private SnowflakeIdGenerator() {

    }


    /**
     * 开始使用该算法的时间为: 2017-01-01 00:00:00
     */
    private static final long START_TIME = 1483200000000L;

    /**
     * worker id 的bit数,最多支持8192个节点
     */
    private static final int WORKER_ID_BITS = 13;

    /**
     * 序列号,支持单节点最高每毫秒的最大ID数1024
     */
    private final static int SEQUENCE_BITS = 10;

    /**
     * 最大的 worker id ,8091
     * -1 的补码(二进制全1)右移13位, 然后取反
     */
    private final static long MAX_WORKER_ID = ~(-1L << WORKER_ID_BITS);

    /**
     * 最大的序列号,1023
     * -1 的补码(二进制全1)右移10位, 然后取反
     */
    private final static long MAX_SEQUENCE = ~(-1L << SEQUENCE_BITS);

    /**
     * worker 节点编号的移位
     */
    private final static long WORKER_ID_SHIFT = SEQUENCE_BITS;

    /**
     * 时间戳的移位
     */
    private final static long TIMESTAMP_LEFT_SHIFT = WORKER_ID_BITS + SEQUENCE_BITS;

    /**
     * 该项目的worker 节点 id
     */
    private long workerId;

    /**
     * 上次生成ID的时间戳
     */
    private long lastTimestamp = -1L;

    /**
     * 当前毫秒生成的序列
     */
    private long sequence = 0L;

    /**
     * Next id long.
     *
     * @return the nextId
     */
    public Long nextId() {
        return generateId();
    }

    /**
     * 生成唯一id的具体实现
     */
    private synchronized long generateId() {
        long current = System.currentTimeMillis();

        if (current < lastTimestamp) {
            // 如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过,出现问题返回-1
            return -1;
        }

        if (current == lastTimestamp) {
            // 如果当前生成id的时间还是上次的时间,那么对sequence序列号进行+1
            sequence = (sequence + 1) & MAX_SEQUENCE;

            if (sequence == MAX_SEQUENCE) {
                // 当前毫秒生成的序列数已经大于最大值,那么阻塞到下一个毫秒再获取新的时间戳
                current = this.nextMs(lastTimestamp);
            }
        } else {
            // 当前的时间戳已经是下一个毫秒
            sequence = 0L;
        }

        // 更新上次生成id的时间戳
        lastTimestamp = current;

        // 进行移位操作生成int64的唯一ID

        //时间戳右移动23位
        long time = (current - START_TIME) << TIMESTAMP_LEFT_SHIFT;

        //workerId 右移动10位
        long workerId = this.workerId << WORKER_ID_SHIFT;

        return time | workerId | sequence;
    }

    /**
     * 阻塞到下一个毫秒
     */
    private long nextMs(long timeStamp) {
        long current = System.currentTimeMillis();
        while (current <= timeStamp) {
            current = System.currentTimeMillis();
        }
        return current;
    }
}

3、Zookeeper实现分布式队列

常见的消息队列有:RabbitMQ,RocketMQ,Kafka等。Zookeeper作为一个分布式的小文件管理系统,同样能实现简单的队列功能。Zookeeper不适合大数据量存储,官方并不推荐作为队列使用,但由于实现简单,集群搭建较为便利,因此在一些吞吐量不高的小型系统中还是比较好用的。

3.1、 设计思路

在这里插入图片描述
undefined.创建队列根节点:在Zookeeper中创建一个持久节点,用作队列的根节点。所有队列元素的节点将放在这个根节点下。
2.实现入队操作:当需要将一个元素添加到队列时,可以在队列的根节点下创建一个临时有序节点。节点的数据可以包含队列元素的信息。
3.实现出队操作:当需要从队列中取出一个元素时,可以执行以下操作:

  • 获取根节点下的所有子节点。
  • 找到具有最小序号的子节点。
  • 获取该节点的数据。
  • 删除该节点。
  • 返回节点的数据。
/**
 * 入队
 * @param data
 * @throws Exception
 */
public void enqueue(String data) throws Exception {
    // 创建临时有序子节点
    zk.create(QUEUE_ROOT + "/queue-", data.getBytes(StandardCharsets.UTF_8),
            ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL);
}

/**
 * 出队
 * @return
 * @throws Exception
 */
public String dequeue() throws Exception {
    while (true) {
        List<String> children = zk.getChildren(QUEUE_ROOT, false);
        if (children.isEmpty()) {
            return null;
        }

        Collections.sort(children);

        for (String child : children) {
            String childPath = QUEUE_ROOT + "/" + child;
            try {
                byte[] data = zk.getData(childPath, false, null);
                zk.delete(childPath, -1);
                return new String(data, StandardCharsets.UTF_8);
            } catch (KeeperException.NoNodeException e) {
                // 节点已被其他消费者删除,尝试下一个节点
            }
        }
    }
}

3.2、 使用Apache Curator实现分布式队列

Apache Curator是一个ZooKeeper客户端的封装库,提供了许多高级功能,包括分布式队列。

public class CuratorDistributedQueueDemo {
    private static final String QUEUE_ROOT = "/curator_distributed_queue";

    public static void main(String[] args) throws Exception {
        CuratorFramework client = CuratorFrameworkFactory.newClient("localhost:2181",
                new ExponentialBackoffRetry(1000, 3));
        client.start();

        // 定义队列序列化和反序列化
        QueueSerializer<String> serializer = new QueueSerializer<String>() {
            @Override
            public byte[] serialize(String item) {
                return item.getBytes();
            }

            @Override
            public String deserialize(byte[] bytes) {
                return new String(bytes);
            }
        };

        // 定义队列消费者
        QueueConsumer<String> consumer = new QueueConsumer<String>() {
            @Override
            public void consumeMessage(String message) throws Exception {
                System.out.println("消费消息: " + message);
            }

            @Override
            public void stateChanged(CuratorFramework curatorFramework, ConnectionState connectionState) {

            }
        };

        // 创建分布式队列
        DistributedQueue<String> queue = QueueBuilder.builder(client, consumer, serializer, QUEUE_ROOT)
                .buildQueue();
        queue.start();

        // 生产消息
        for (int i = 0; i < 5; i++) {
            String message = "Task-" + i;
            System.out.println("生产消息: " + message);
            queue.put(message);
            Thread.sleep(1000);
        }

        Thread.sleep(10000);
        queue.close();
        client.close();
    }
}

3.3、 注意事项

使用Curator的DistributedQueue时,默认情况下不使用锁。当调用QueueBuilder的lockPath()方法并指定一个锁节点路径时,才会启用锁。如果不指定锁节点路径,那么队列操作可能会受到并发问题的影响。
在创建分布式队列时,指定一个锁节点路径可以帮助确保队列操作的原子性和顺序性。分布式环境中,多个消费者可能同时尝试消费队列中的消息。如果不使用锁来同步这些操作,可能会导致消息被多次处理或者处理顺序出现混乱。当然,并非所有场景都需要指定锁节点路径。如果您的应用场景允许消息被多次处理,或者处理顺序不是关键问题,那么可以不使用锁。这样可以提高队列操作的性能,因为不再需要等待获取锁。

// 创建分布式队列
QueueBuilder<String> builder = QueueBuilder.builder(client, consumer, serializer, "/order");
//指定了一个锁节点路径/orderlock,用于实现分布式锁,以保证队列操作的原子性和顺序性。
queue = builder.lockPath("/orderlock").buildQueue();
//启动队列,这时队列开始监听ZooKeeper中/order节点下的消息。
queue.start();

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1063258.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

电脑桌面黑屏,但程序还可以正常运行

问题&#xff1a;桌面黑屏&#xff0c;程序可以正常运行操作 解决方法: 1.Ctrl Alt Del 2.点击 【任务管理器】-->【文件F】-->【运行新任务N】 3.输入 explorer.exe 回车

Docker 镜像的缓存特性

Author&#xff1a;rab 目录 前言一、构建缓存二、Pull 缓存总结 前言 首先我们要清楚&#xff0c;Docker 的镜像结构是分层的&#xff0c;镜像本身是只读的&#xff08;不管任何一层&#xff09;&#xff0c;当我们基于某镜像运行一个容器时&#xff0c;会有一个新的可写层被…

Spring的AOP开发-注解方式开发AOP

基于注解配置的AOP 注解方式AOP的基本使用 Spring的AOP也提供了注解方式配置&#xff0c;使用相应的注解替代之前的xml配置&#xff0c;xml配置AOP时&#xff0c;我们主要配置了三部分&#xff1a;目标类被Spring容器管理&#xff08;注解使用Service&#xff09;、通知类被S…

图像和视频上传平台Share Me

本文完成于 6 月&#xff0c;所以反代中&#xff0c;域名演示还是使用的 laosu.ml&#xff0c;不过版本并没有什么变化&#xff1b; 什么是 Share Me &#xff1f; Share Me 是使用 Next.js 和 PocketBase 的自托管图像和视频上传平台&#xff0c;具有丰富的嵌入支持和 API&…

基于Java的高校宿舍管理系统设计与实现(源码+lw+部署文档+讲解等)

文章目录 前言具体实现截图论文参考详细视频演示为什么选择我自己的网站自己的小程序&#xff08;小蔡coding&#xff09;有保障的售后福利 代码参考源码获取 前言 &#x1f497;博主介绍&#xff1a;✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计划导师、全栈领域优质创作…

【C++】unordered_map和unordered_set

哈希表 1. unordered_map1.1 概念1.2 常见接口 2. unordered_set2.1 概念2.1 常见接口 3. 底层实现3.1 哈希3.2 哈希函数3.3 闭散列和开散列3.3.1 闭散列3.3.2 开散列 3.4 模拟实现3.4.1 改造哈希桶3.4.2 模拟实现unordered_set3.4.3 模拟实现unordered_map 在C11中&#xff0c…

Promise, async, await 学习

异步编程简介&#xff1a; 介绍&#xff1a;异步编程是一种编程范式&#xff0c;旨在提高程序的性能和响应能力。该模型允许程序在执行某些任务时&#xff0c;不必等待这些任务完成就可以进行下一步操作&#xff0c;从而提高了程序的效率。 作用&#xff1a;异步编程通常用于…

IPT2602协议-USB 快速充电端口控制器

产品描述&#xff1a; IPT2602是一款USB端口快速充电协议控制芯片。IPT2602智能识别多种快速充电协议&#xff0c;对手机等受电设备进行快速充电。IPT2602根据受电设备发送的电压请求能够精确的调整VBUS输出电压&#xff0c;从而实现快速充电。 IPT2602在调整5V输出电压前会自动…

10.5 认识XEDParse汇编引擎

XEDParse 是一款开源的x86指令编码库&#xff0c;该库用于将MASM语法的汇编指令级转换为对等的机器码&#xff0c;并以XED格式输出&#xff0c;目前该库支持x86、x64平台下的汇编编码&#xff0c;XEDParse的特点是高效、准确、易于使用&#xff0c;它可以良好地处理各种类型的指…

[硬件基础]-快速了解RS232串行通信

快速了解RS232串行通信 文章目录 快速了解RS232串行通信1、概述2、什么是串行数据通信&#xff1f;3、什么是RS232&#xff1f;4、RS232应用5、RS232如何工作&#xff1f;6、RS232协议基础6.1 电压与逻辑表示6.2 数据编码6.3 起始位和停止位6.4 奇偶校验位6.5 波特率6.5 RS232电…

掌握 SwiftUI 中的 ScrollView

文章目录 前言scrollTransition 修饰符ScrollTransitionPhase弹性动画总结 前言 SwiftUI 框架的第五个版本引入了许多与 ScrollView 相关的新 API&#xff0c;使其比以前更强大。本周将开始介绍 ScrollView 在 SwiftUI 中的新功能系列文章&#xff0c;首先我们将讨论滚动过渡。…

【LeetCode: 918. 环形子数组的最大和 | 动态规划】

&#x1f680; 算法题 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;…

关联规则挖掘(上):数据分析 | 数据挖掘 | 十大算法之一

⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ &#x1f434;作者&#xff1a;秋无之地 &#x1f434;简介&#xff1a;CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作&#xff0c;主要擅长领域有&#xff1a;爬虫、后端、大数据…

【全方位带你配置yolo开发环境】快速上手yolov5

本文用于记录yolo开发环境的配置&#xff0c;以及我在配置中出现的各种问题&#xff0c;以供大伙参考。&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; 本人持续分享更多关于电子通信专业内容以及嵌入式和单片机的知识…

阿里云服务器ECS详细介绍_云主机_服务器托管_弹性计算

阿里云服务器ECS英文全程Elastic Compute Service&#xff0c;云服务器ECS是一种安全可靠、弹性可伸缩的云计算服务&#xff0c;阿里云提供多种云服务器ECS实例规格&#xff0c;如经济型e实例、通用算力型u1、ECS计算型c7、通用型g7、GPU实例等&#xff0c;阿里云服务器网分享阿…

使用css制作3D盒子,目的是把盒子并列制作成3D货架

1. 首先看效果&#xff08;第一个五颜六色的是透明多个面&#xff0c;第2-3都是只有3个面是我实际需要的&#xff0c;右边的有3个并列的正方体与3个并列的长方体&#xff09;&#xff1a; 长方体与正方体&#xff0c;所有代码&#xff1a; <!DOCTYPE html> <html lan…

汽车网络安全--安全芯片应用场景解析

​在聊汽车网络安全时,最先想到的就是使用芯片内置HSM,比如说英飞凌TC2xx系列的HSM、瑞萨RH850的ICU、NXP的HSE等等;实际上除了内置HSM,还有外置HSM(通过UART、SPI等通信)、安全存储芯片等等。而这些芯片统称为安全芯片。 安全芯片的主要作用是为整个系统建立起一个可信的…

【Java】类和接口的区别

1. 类和类的继承关系&#xff08;一个类只能单继承一个父类&#xff0c;不能继承n多个不同的父类&#xff09; 继承关系&#xff0c;只能单继承&#xff0c;但可以多层继承 2. 类和接口的实现关系&#xff08;一个类可以实现n多个不同的接口&#xff09; 实现关系&#xff0c;可…

【QT开发笔记-基础篇】| 第四章 事件QEvent | 4.4 鼠标按下、移动、释放事件

本章要实现的整体效果如下&#xff1a; QEvent::MouseButtonPress ​ 鼠标按下时&#xff0c;触发该事件&#xff0c;它对应的子类是 QMouseEvent QEvent::MouseMove ​ 鼠标移动时&#xff0c;触发该事件&#xff0c;它对应的子类是 QMouseEvent QEvent::MouseButtonRel…

golang gin框架1——简单案例以及api版本控制

gin框架 gin是golang的一个后台WEB框架 简单案例 package mainimport ("github.com/gin-gonic/gin""net/http" )func main() {r : gin.Default()r.GET("/ping", func(c *gin.Context) {//以json形式输出&#xff0c;还可以xml protobufc.JSON…