深度学习基础之参数量(3)

news2024/12/30 3:04:49

一般的CNN网络的参数量估计代码

class ResidualBlock(nn.Module):
    def __init__(self, in_planes, planes, norm_fn='group', stride=1):
        super(ResidualBlock, self).__init__()
        print(in_planes, planes, norm_fn, stride)

        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, padding=1, stride=stride)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1)
        self.relu = nn.ReLU(inplace=True)

        num_groups = planes // 8

        if norm_fn == 'group':
            self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
            self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
            if not stride == 1:
                self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)

        elif norm_fn == 'batch':
            self.norm1 = nn.BatchNorm2d(planes)
            self.norm2 = nn.BatchNorm2d(planes)
            if not stride == 1:
                self.norm3 = nn.BatchNorm2d(planes)

        elif norm_fn == 'instance':
            self.norm1 = nn.InstanceNorm2d(planes)
            self.norm2 = nn.InstanceNorm2d(planes)
            if not stride == 1:
                self.norm3 = nn.InstanceNorm2d(planes)

        elif norm_fn == 'none':
            self.norm1 = nn.Sequential()
            self.norm2 = nn.Sequential()
            if not stride == 1:
                self.norm3 = nn.Sequential()

        if stride == 1:
            self.downsample = None

        else:
            self.downsample = nn.Sequential(
                nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm3)

    def forward(self, x):
        print(x.shape)
        #exit()
        y = x
        y = self.relu(self.norm1(self.conv1(y)))
        y = self.relu(self.norm2(self.conv2(y)))

        if self.downsample is not None:
            x = self.downsample(x)

        return self.relu(x + y)


R=ResidualBlock(384, 384, norm_fn='instance', stride=1)
summary(R.to("cuda" if torch.cuda.is_available() else "cpu"), (384, 32, 32))

transformer结构的参数量的估计结果

import torch
import torch.nn as nn
from thop import profile
from torchsummary import summary

# 定义一个简单的Transformer模型
class Transformer(nn.Module):
    def __init__(self, input_dim, hidden_dim, num_heads, num_layers):
        super(Transformer, self).__init__()
        self.embedding = nn.Embedding(input_dim, hidden_dim)
        self.transformer_layers = nn.Transformer(
            d_model=hidden_dim,
            nhead=num_heads,
            num_encoder_layers=num_layers,
            num_decoder_layers=num_layers
        )
        self.fc = nn.Linear(hidden_dim, input_dim)

    def forward(self, src, tgt):
        src = self.embedding(src)
        tgt = self.embedding(tgt)
        output = self.transformer_layers(src, tgt)
        output = self.fc(output)
        return output

# 创建Transformer模型实例
model2 = Transformer(input_dim=512, hidden_dim=512, num_heads=8, num_layers=6)

# 使用thop进行FLOPS估算
flops, params = profile(model2, inputs=(torch.randint(0, 512, (128,)), torch.randint(0, 512, (64,))))
print(f"FLOPS: {flops / 1e9} G FLOPS")  # 打印FLOPS,以十亿FLOPS(GFLOPS)为单位

# 计算参数量并打印
num_params = sum(p.numel() for p in model2.parameters() if p.requires_grad)
print(f"Total number of trainable parameters: {num_params}")

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1062781.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

人机关系不是物理关系也不是数理关系

人机关系是一种复杂的社会技术系统,涉及到人类和机器、环境之间的相互作用和影响。它不仅限于物理接触和数理规律,同时还包括了思维、情感、意愿等方面的交流和互动。在人机关系中,人类作为使用者和机器作为工具(将来可能会上升到…

rust入门一:安装 Hello World

环境: window 11 专业版rust 1.72.1 一、下载安装 直接去官网: https://www.rust-lang.org/tools/install 下载完成后如下: 双击运行一步步安装就行。 如果是更新或卸载,在命令行中运行: rustup update&#xff1a…

ChatGPT基础使用总结

文章目录 一、ChatGPT基础概念大型语言模型LLMs---一种能够以类似人类语言的方式“说话”的软件ChatGPT定义---OpenAI 研发的一款聊天机器人程序(2022年GPT-3.5,属于大型语言模型)ChatGPT4.0---OpenAI推出了GPT系列的最新模型ChatGPT典型使用…

[GXYCTF2019]禁止套娃 无回显 RCE 过滤__FILE__ dirname等

扫除git 通过githack 获取index.php <?php include "flag.php"; echo "flag在哪里呢&#xff1f;<br>"; if(isset($_GET[exp])){if (!preg_match(/data:\/\/|filter:\/\/|php:\/\/|phar:\/\//i, $_GET[exp])) {if(; preg_replace(/[a-z,_]\(…

DevicData-D-XXXXXXXX勒索病毒数据恢复|金蝶、用友、管家婆、OA、速达、ERP等软件数据库恢复

引言&#xff1a; 在数字时代&#xff0c;数据安全成为一项至关重要的挑战。DevicData-D-XXXXXXXX勒索病毒&#xff08;以下简称DevicData病毒&#xff09;是这场战斗中的新敌人&#xff0c;它能够以毁灭性的方式加密您的数据&#xff0c;迫使您在数据和时间之间做出艰难的选择…

nodejs+vue游戏测评交流系统elementui

可以实现首页、发布招募、公司资讯、我的等&#xff0c;另一方面来说也可以提高在游戏测评交流方面的效率给相关管理人员的工作带来一定的便利。在我的页面可以对游戏攻略、我的收藏管理、实际上如今信息化成为一个未来的趋势或者可以说在当前现代化的城市典范中,发布招募等功能…

[图论]哈尔滨工业大学(哈工大 HIT)学习笔记23-31

视频来源&#xff1a;4.1.1 背景_哔哩哔哩_bilibili 目录 1. 哈密顿图 1.1. 背景 1.2. 哈氏图 2. 邻接矩阵/邻接表 3. 关联矩阵 3.1. 定义 4. 带权图 1. 哈密顿图 1.1. 背景 &#xff08;1&#xff09;以地球为建模&#xff0c;从一个大城市开始遍历其他大城市并且返回…

逆变器下垂控制单机

仿真控制参数 主电路 坐标变换 功率计算 下垂控制 电压电流双闭环控制 结果变量监控 断路器闭合&#xff0c;负载突增 负载突增&#xff0c;有功和无功突增 有功增加&#xff0c;频率减小 无功增加&#xff0c;参考电压减小

【JavaScript】相等运算符(== 和 ===)

如果x和y的类型相同&#xff0c;JavaScript会用equals 方法比较这两个值或对象。 没有出现在表格中的情况都会返回 false。&#xff08;表格中的方法都是内部规定的&#xff09; 对于 toNumber 方法&#xff1a; 对于 toPrimitive 方法&#xff1a; // 举个例子&#xff1a; c…

基于JavaWeb技术的在线考试系统设计与实现

目录 前言 一、技术栈 二、系统功能介绍 用户信息管理 考试统计管理 专业列表管理 忘记密码人员登记管理 修改密码 试卷信息 考试信息管理 三、核心代码 1、登录模块 2、文件上传模块 3、代码封装 前言 随着信息技术在管理上越来越深入而广泛的应用&#xff0c;管理…

GPX可视化工具 GPX航迹预览工具

背景 当我们收到别人分享的航迹文档&#xff0c;即gpx文档时&#xff0c;如何快速的进行浏览呢&#xff1f;我们可以使用GIS软件来打开gpx文档并显示gpx中所记录的航迹&#xff0c;例如常用的GIS软件有googleEarth&#xff0c; Basecamp&#xff0c; GPXsee&#xff0c; GPX E…

SSM-XML整合

SSM-XML整合 核心配置文件 maven坐标 <dependencies><!--数据库驱动--><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>8.0.27</version></dependency><!--数据…

2023计算机保研——双非上岸酒吧舞

我大概是从22年10月份开始写博客的&#xff0c;当时因为本校专业的培养方案的原因&#xff0c;课程很多&#xff0c;有些知识纸质记录很不方便&#xff0c;于是选择了打破了自己的成见使用博客来记录学习生活。对于我个人而言&#xff0c;保研生活在前一大半过程中都比较艰难&a…

React框架核心原理

一、整体架构 三大核心库与对应的组件 history -> react-router -> react-router-dom react-router 可视为react-router-dom 的核心&#xff0c;里面封装了<Router>&#xff0c;<Route>&#xff0c;<Switch>等核心组件,实现了从路由的改变到组件的更新…

线性代数之 伪逆矩阵

目录 一、伪逆矩阵 ◼ A的伪逆矩阵与SVD ◼ 用Python代码计算A的伪逆矩阵 ◼ 笔算A的伪逆矩阵 一、伪逆矩阵 ◼ A的伪逆矩阵与SVD 逆矩阵并不总是存在&#xff0c;即使是方阵。然而&#xff0c;对于非正方形矩阵&#xff0c;存在一个伪逆矩阵&#xff0c;也叫摩尔-彭罗斯…

vuejs中封装axios请求集中管理

vuejs中封装axios请求集中管理 前言 在vuejs中&#xff0c;使用axios请求数据&#xff0c;一般会封装一个请求方法&#xff0c;然后在每个页面中调用&#xff0c;这样就造成代码冗余&#xff0c;导致代码可读性差&#xff0c;维护困难。 在项目当中,单独使用axios或者在main.js…

IDEA中如何查看自己的SpringBoot的版本

直接输入代码执行&#xff1a; public class App {public static void main(String[] args) {String springVersion SpringVersion.getVersion();String springBootVersion SpringBootVersion.getVersion();System.out.println("Spring版本:"springVersion"\…

城市智慧公厕:提升城市卫生品质与智能化管理的新基建焦点

在现代化城市建设中&#xff0c;城市环卫是一个不可忽视的重要环节。而在城市环卫中&#xff0c;公厕作为保障市民生活质量的一项基础设施&#xff0c;也越来越受到各级政府的关注。然而&#xff0c;传统的公厕管理模式往往存在着诸多问题&#xff0c;如卫生状况难以保证、管理…

【AI视野·今日CV 计算机视觉论文速览 第260期】Wed, 4 Oct 2023

AI视野今日CS.CV 计算机视觉论文速览 Wed, 4 Oct 2023 Totally 79 papers &#x1f449;上期速览✈更多精彩请移步主页 Interesting: &#x1f4da;DREAM, 基于功能核磁共振信号重建人类看见的视觉图像。(from UCL London) &#x1f4da;RSRD,公路路面数据集(from 清华 ) w…

数据结构与算法(一):概述与复杂度分析

参考引用 Hello 算法 Github 仓库&#xff1a;hello-algo 1. 初识算法 1.1 算法无处不在 1.1.1 二分查找&#xff1a;查阅字典 在字典里&#xff0c;每个汉字都对应一个拼音&#xff0c;而字典是按照拼音字母顺序排列的。假设我们需要查找一个拼音首字母为 r 的字&#xff0…