八大排序算法汇总(C语言实现)

news2024/11/15 1:52:10

本专栏内容为:八大排序汇总 通过本专栏的深入学习,你可以了解并掌握八大排序以及相关的排序算法。

💓博主csdn个人主页:小小unicorn
⏩专栏分类:八大排序汇总
🚚代码仓库:小小unicorn的代码仓库🚚
🌹🌹🌹关注我带你学习编程知识

目录

  • 直接插入排序
  • 希尔排序
  • 选择排序
  • 堆排序
  • 冒泡排序
  • 快速排序
    • 递归实现
      • Hoare版本
      • 挖坑法
      • 前后指针法
    • 非递归实现
    • 快速排序的两个优化版本
      • 三数取中
      • 小区间优化
  • 归并排序
    • 递归实现
    • 非递归实现
  • 计数排序
  • 排序算法复杂度及稳定性分析

直接插入排序

动图演示:
在这里插入图片描述
插入排序,又叫直接插入排序。实际中,我们玩扑克牌的时候,就用了插入排序的思想。

基本思想:
 在待排序的元素中,假设前n-1个元素已有序,现将第n个元素插入到前面已经排好的序列中,使得前n个元素有序。按照此法对所有元素进行插入,直到整个序列有序。

注意:
我们并不能确定待排元素中究竟哪一部分是有序的,所以我们一开始只能认为第一个元素是有序的,依次将其后面的元素插入到这个有序序列中来,直到整个序列有序为止。

在这里插入图片描述
代码实现:

//插入排序
void InsertSort(int* a, int n)
{
   
	int i = 0;
	//整体:
	for (i = 0; i < n - 1; i++)
	{
	    //单趟:
	    //[0,end]有序,把end+1的位置的插入到前序序列
    //控制[0,end+1]有序
		int end = i;
		int tmp = a[end + 1];//待插入的元素
		while (end >= 0)
		{
			if (tmp < a[end])//还需继续比较
			{
				a[end + 1] = a[end];
				
			}
			else//找到应插入的位置
			{
				break;
			}
			--end;
		}
		a[end + 1] = tmp;
		//代码执行到此位置有两种情况:
		//1.待插入元素找到应插入位置(break跳出循环到此)。
		//2.待插入元素比当前有序序列中的所有元素都小(while循环结束后到此)。
	}
}

1.时间复杂度:O (N2)
2.空间复杂度:O (1)
3.稳定性:稳定

希尔排序

动图演示:
在这里插入图片描述.希尔排序是按其设计者希尔的名字命名的,该算法由希尔1959年公布。希尔对普通插入排序的时间复杂度进行分析,得出了以下结论:
 1.普通插入排序的时间复杂度最坏情况下为O(N2),此时待排序列为逆序,或者说接近逆序。
 2.普通插入排序的时间复杂度最好情况下为O(N),此时待排序列为升序,或者说接近升序。
在这里插入图片描述

于是希尔就思考:若是能先将待排序列进行一次预排序,使待排序列接近有序(接近我们想要的顺序),然后再对该序列进行一次直接插入排序。因为此时直接插入排序的时间复杂度为O(N),那么只要控制预排序阶段的时间复杂度不超过O(N2),那么整体的时间复杂度就比直接插入排序的时间复杂度低了。

希尔排序,又称缩小增量法。其基本思想是:

 1.先选定一个小于N的整数gap作为第一增量,然后将所有距离为gap的元素分在同一组,并对每一组的元素进行直接插入排序。然后再取一个比第一增量小的整数作为第二增量,重复上述操作…
 2.当增量的大小减到1时,就相当于整个序列被分到一组,进行一次直接插入排序,排序完成。

思考一下:为什么要让gap由大到小呢?
回答:gap越大,数据挪动得越快;gap越小,数据挪动得越慢。

前期让gap较大,可以让数据更快得移动到自己对应的位置附近,减少挪动次数。

注意:一般情况下,我们取序列的一半作为增量,然后依次减半,直到增量为1(也可自己设置)。

举个例子分析一下:
 现在我们用希尔排序对该序列进行排序。
在这里插入图片描述
 我们用序列长度的一半作为第一次排序时gap的值,此时相隔距离为5的元素被分为一组(共分了5组,每组有2个元素),然后分别对每一组进行直接插入排序。
在这里插入图片描述
 gap的值折半,此时相隔距离为2的元素被分为一组(共分了2组,每组有5个元素),然后再分别对每一组进行直接插入排序。
在这里插入图片描述
 gap的值再次折半,此时gap减为1,即整个序列被分为一组,进行一次直接插入排序。
在这里插入图片描述
 该例子中,前两趟就是希尔排序的预排序,而最后一趟实现的是希尔排序的直接插入排序。

代码实现:

void ShellSort(int* a, int n)
{
	int gap = n;
	while (gap > 1)
	{
		//gap = gap / 2;
		gap = gap / 3 + 1;

		for (int i = 0; i < n - gap; ++i)
		{
			int end = i;
			int tmp = a[end + gap];
			while (end >= 0)
			{
				if (tmp < a[end])
				{
					a[end + gap] = a[end];
					end -= gap;
				}
				else
				{
					break;
				}
			}
			a[end + gap] = tmp;
		}
	}
}

希尔排序的时间复杂度不好计算,因为gap的取值方法很多,导致很难去计算,因此在好些书籍中给出的希尔排序的时间复杂度都不固定。

在这里插入图片描述
在这里插入图片描述
因为咱们的gap是按照Knuth提出的方式取值的,而且Knuth进行了大量的试验统计,我们暂时就按照:O(N1.25)或者O(1.6*N1.25)来进行计算
稳定性:不稳定

选择排序

动图演示:
在这里插入图片描述
选择排序,即每次从待排序列中选出一个最小值,然后放在序列的起始位置,直到全部待排数据排完即可。

//选择排序(一次选一个数)
void SelectSort(int* a, int n)
{
	int i = 0;
	for (i = 0; i < n; i++)//i代表参与该趟选择排序的第一个元素的下标
	{
		int start = i;
		int min = start;//记录最小元素的下标
		while (start < n)
		{
			if (a[start] < a[min])
				min = start;//最小值的下标更新
			start++;
		}
		Swap(&a[i], &a[min]);//最小值与参与该趟选择排序的第一个元素交换位置
	}
}

我们可以一趟选出两个值,一个最大值一个最小值,然后将其放在序列开头和末尾,这样可以使选择排序的效率快一倍。

代码实现:

//选择排序(一次选两个数)
void SelectSort(int* a, int n)
{
	int left = 0;//记录参与该趟选择排序的第一个元素的下标
	int right = n - 1;//记录参与该趟选择排序的最后一个元素的下标
	while (left < right)
	{
		int minIndex = left;//记录最小元素的下标
		int maxIndex = left;//记录最大元素的下标
		int i = 0;
		//找出最大值及最小值的下标
		for (i = left; i <= right; i++)
		{
			if (a[i] < a[minIndex])
				minIndex = i;
			if (a[i] > a[maxIndex])
				maxIndex = i;
		}
		//将最大值和最小值放在序列开头和末尾
		Swap(&a[minIndex], &a[left]);
		if (left == maxIndex)
		{
			maxIndex = minIndex;//防止最大值位于序列开头,被最小值交换
		}
		Swap(&a[maxIndex], &a[right]);
		left++;
		right--;
	}
}
  1. 时间复杂度:O(N^2)
  2. 空间复杂度:O(1)
  3. 稳定性:不稳定

堆排序

动图演示:
在这里插入图片描述
在之前的文章:堆的介绍中,我们知道堆的介绍,如何建堆,以及堆的向上,向下调整法的实现,而堆排序就是依靠建堆,通过堆的方式的进行排序。至于堆的建立与实现,本文章就不过多叙述了,详情请点击堆的介绍与实现查看。

堆建好后,如何进行堆排序,步骤如下:
 1、将堆顶数据与堆的最后一个数据交换,然后对根位置进行一次堆的向下调整,但是调整时被交换到最后的那个最大的数不参与向下调整。
 2、完成步骤1后,这棵树除最后一个数之外,其余数又成一个大堆,然后又将堆顶数据与堆的最后一个数据交换,这样一来,第二大的数就被放到了倒数第二个位置上,然后该数又不参与堆的向下调整…反复执行下去,直到堆中只有一个数据时便结束。此时该序列就是一个升序。

代码实现:

//向下调整法:
void AdjustDown(int* a, int n, int parent)
{
	int child = parent * 2 + 1;
	while (child < n)
	{
		// 找出小的那个孩子
		if (child + 1 < n && a[child + 1] > a[child])
		{
			++child;
		}

		if (a[child] > a[parent])
		{
			Swap(&a[child], &a[parent]);
			// 继续往下调整
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}

/堆排序
void HeapSort(int* a, int n)
{
	// 向下调整建堆
	// O(N)
	for (int i = (n - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(a, n, i);
	}

	// O(N*logN)
	int end = n - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		--end;
	}
}

  1. 时间复杂度:O(N*logN)
  2. 空间复杂度:O(1)
  3. 稳定性:不稳定

冒泡排序

动图演示:
在这里插入图片描述
冒泡排序(Bubble Sort):是一种交换排序,它的基本思想是:两两比较相邻记录的关键字,如果反序则交换,直到没有反序的记录为止。

void BubbleSort(int* a, int n)
{
	for (size_t j = 0; j < n; j++)
	{
		int exchange = 0;
		for (size_t i = 1; i < n - j; i++)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}

		if (exchange == 0)
		{
			break;
		}
	}
}
  1. 时间复杂度:O(N^2)
  2. 空间复杂度:O(1)
  3. 稳定性:稳定

快速排序

递归实现

Hoare版本

动图演示:
在这里插入图片描述
Hoare版本的单趟排序的基本步骤如下:
 1、选出一个key,一般是最左边或是最右边的。
 2、定义一个L和一个R,L从左向右走,R从右向左走。(需要注意的是:若选择最左边的数据作为key,则需要R先走;若选择最右边的数据作为key,则需要L先走)。
 3、在走的过程中,若R遇到小于key的数,则停下,L开始走,直到L遇到一个大于key的数时,将L和R的内容交换,R再次开始走,如此进行下去,直到L和R最终相遇,此时将相遇点的内容与key交换即可。(选取最左边的值作为key)

经过一次单趟排序,最终使得key左边的数据全部都小于key,key右边的数据全部都大于key。

然后我们在将key的左序列和右序列再次进行这种单趟排序,如此反复操作下去,直到左右序列只有一个数据,或是左右序列不存在时,便停止操作,因为这种序列可以认为是有序的。

单趟排序代码实现:

// Hoare版本
int PartSort1(int* a, int left, int right)
{
	//三数取中
	/*int midi = GetMidi(a, left, right);
	Swap(&a[left], &a[midi]);*/

	int keyi = left;
	while (left < right)
	{
		// 找小
		while (left < right && a[right] >= a[keyi])
		{
			--right;
		}

		// 找大
		while (left < right && a[left] <= a[keyi])
		{
			++left;
		}

		Swap(&a[left], &a[right]);
	}

	Swap(&a[keyi], &a[left]);
	return left;
}

整体递归实现:

void QuickSort(int* a, int begin, int end)
{
	if (begin >= end)
		return;

	int keyi = PartSort1(a, begin, end);
	// [begin, keyi-1] keyi [keyi+1, end]
	QuickSort(a, begin, keyi - 1);
	QuickSort(a, keyi + 1, end);
}

挖坑法

动图演示:
在这里插入图片描述
挖坑法的单趟排序的基本步骤如下:
 1、选出一个数据(一般是最左边或是最右边的)存放在key变量中,在该数据位置形成一个坑。
 2、还是定义一个L和一个R,L从左向右走,R从右向左走。(若在最左边挖坑,则需要R先走;若在最右边挖坑,则需要L先走)。
 3、在走的过程中,若R遇到小于key的数,则将该数抛入坑位,并在此处形成一个坑位,这时L再向后走,若遇到大于key的数,则将其抛入坑位,又形成一个坑位,如此循环下去,直到最终L和R相遇,这时将key抛入坑位即可。(选取最左边的作为坑位)

经过一次单趟排序,最终也使得key左边的数据全部都小于key,key右边的数据全部都大于key。

然后也是将key的左序列和右序列再次进行这种单趟排序,如此反复操作下去,直到左右序列只有一个数据,或是左右序列不存在时,便停止操作。

单趟排序代码实现:

// 挖坑法
int PartSort2(int* a, int left, int right)
{
	//三数取中优化
	/*int midi = GetMidi(a, left, right);
	Swap(&a[left], &a[midi]);*/

	int key = a[left];
	// 保存key值以后,左边形成第一个坑
	int hole = left;

	while (left < right)
	{
		// 右边先走,找小,填到左边的坑,右边形成新的坑位
		while (left < right && a[right] >= key)
		{
			--right;
		}
		a[hole] = a[right];
		hole = right;

		// 左边再走,找大,填到右边的坑,左边形成新的坑位
		while (left < right && a[left] <= key)
		{
			++left;
		}
		a[hole] = a[left];
		hole = left;
	}

	a[hole] = key;
	return hole;
}

整体递归实现:

void QuickSort(int* a, int begin, int end)
{
	if (begin >= end)
		return;

	int keyi = PartSort2(a, begin, end);
	// [begin, keyi-1] keyi [keyi+1, end]
	QuickSort(a, begin, keyi - 1);
	QuickSort(a, keyi + 1, end);
}

前后指针法

动图演示:
在这里插入图片描述
前后指针法的单趟排序的基本步骤如下:
 1、选出一个key,一般是最左边或是最右边的。
 2、起始时,prev指针指向序列开头,cur指针指向prev+1。
 3、若cur指向的内容小于key,则prev先向后移动一位,然后交换prev和cur指针指向的内容,然后cur指针++;若cur指向的内容大于key,则cur指针直接++。如此进行下去,直到cur指针越界,此时将key和prev指针指向的内容交换即可。

经过一次单趟排序,最终也能使得key左边的数据全部都小于key,key右边的数据全部都大于key。
然后也还是将key的左序列和右序列再次进行这种单趟排序,如此反复操作下去,直到左右序列只有一个数据,或是左右序列不存在时,便停止操作。

单趟排序代码实现:

// 前后指针
int PartSort3(int* a, int left, int right)
{
	//三数取中
	/*int midi = GetMidi(a, left, right);
	Swap(&a[left], &a[midi]);*/

	int prev = left;
	int cur = prev + 1;

	int keyi = left;
	while (cur <= right)
	{
		if (a[cur] < a[keyi] && ++prev != cur)
		{
			Swap(&a[prev], &a[cur]);
		}

		++cur;
	}

	Swap(&a[prev], &a[keyi]);
	return prev;
}

整体递归实现:

void QuickSort(int* a, int begin, int end)
{
	if (begin >= end)
		return;

	int keyi = PartSort3(a, begin, end);
	// [begin, keyi-1] keyi [keyi+1, end]
	QuickSort(a, begin, keyi - 1);
	QuickSort(a, keyi + 1, end);
}
  1. 时间复杂度:O(N*logN)
  2. 空间复杂度:O(logN)
  3. 稳定性:不稳定

非递归实现

快速排序的非递归算法基本思路:
 1、先将待排序列的第一个元素的下标和最后一个元素的下标入栈。
 2、当栈不为空时,读取栈中的信息(一次读取两个:一个是L,另一个是R),然后调用某一版本的单趟排序,排完后获得了key的下标,然后判断key的左序列和右序列是否还需要排序,若还需要排序,就将相应序列的L和R入栈;若不需排序了(序列只有一个元素或是不存在),就不需要将该序列的信息入栈。
 3、反复执行步骤2,直到栈为空为止。

在实现快排的非递归时,需要用到栈,所以,我们首先要进行栈的实现,代码如下:

#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<stdbool.h>


//#define N 10
//struct Stack
//{
//	int a[N];
//	int top;
//};

typedef int STDataType;
typedef struct Stack
{
	STDataType* a;
	int top;
	int capacity;
}ST;

void STInit(ST* ps)
{
	assert(ps);
	ps->a = NULL;
	ps->capacity = 0;
	ps->top = 0;
}

void STDestroy(ST* ps)
{
	assert(ps);

	free(ps->a);
	ps->a = NULL;
	ps->top = ps->capacity = 0;
}

void STPush(ST* ps, STDataType x)
{
	assert(ps);
	// 11:40
	if (ps->top == ps->capacity)
	{
		int newCapacity = ps->capacity == 0 ? 4 : ps->capacity * 2;
		STDataType* tmp = (STDataType*)realloc(ps->a, sizeof(STDataType) * newCapacity);
		if (tmp == NULL)
		{
			perror("realloc fail");
			exit(-1);
		}

		ps->a = tmp;
		ps->capacity = newCapacity;
	}

	ps->a[ps->top] = x;
	ps->top++;
}

void STPop(ST* ps)
{
	assert(ps);

	// 
	assert(ps->top > 0);

	--ps->top;
}

STDataType STTop(ST* ps)
{
	assert(ps);

	// 
	assert(ps->top > 0);

	return ps->a[ps->top - 1];
}

int STSize(ST* ps)
{
	assert(ps);

	return ps->top;
}

bool STEmpty(ST* ps)
{
	assert(ps);

	return ps->top == 0;
}

要是对栈的基本操作实现还有问题的,可以查看小编的文章:栈的介绍与实现

非递归快排完整代码如下:

//快排非递归实现:
void QuickSortNonR(int* a, int begin, int end)
{
	ST st;
	STInit(&st);
	STPush(&st, end);
	STPush(&st, begin);
	while (!STEmpty(&st))
	{
		int left = STTop(&st);
		STPop(&st);

		int right = STTop(&st);
		STPop(&st);

		int keyi = PartSort1(a, left, right);
		// [lefy,keyi-1] keyi [keyi+1, right]
		if (keyi + 1 < right)
		{
			STPush(&st, right);
			STPush(&st, keyi + 1);
		}

		if (left < keyi - 1)
		{
			STPush(&st, keyi - 1);
			STPush(&st, left);
		}
	}

	STDestroy(&st);
}

快速排序的两个优化版本

三数取中

快速排序的时间复杂度是O(NlogN),是我们在理想情况下计算的结果。在理想情况下,我们每次进行完单趟排序后,key的左序列与右序列的长度都相同:
在这里插入图片描述
若每趟排序所选的key都正好是该序列的中间值,即单趟排序结束后key位于序列正中间,那么快速排序的时间复杂度就是O(N
logN)。

可是谁也不能保证每次选取的key都是正中间的那个数,当待排序列本就是一个有序的序列时,我们若是依然每次都选取最左边或是最右边的数作为key,那么快速排序的效率将达到最低:
在这里插入图片描述
可以看到,这种情况下,快速排序的时间复杂度退化为O(N2)。其实,对快速排序效率影响最大的就是选取的key,若选取的key越接近中间位置,则则效率越高。

为了避免这种极端情况的发生,于是出现了三数取中

三数取中,当中的三数指的是:最左边的数、最右边的数以及中间位置的数。三数取中就是取这三个数当中,值的大小居中的那个数作为该趟排序的key。这就确保了我们所选取的数不会是序列中的最大或是最小值了。

// 三数取中
int GetMidi(int* a, int left, int right)
{
	int mid = (left + right) / 2;
	// left mid right
	if (a[left] < a[mid])
	{
		if (a[mid] < a[right])
		{
			return mid;
		}
		else if (a[left] > a[right])  // mid是最大值
		{
			return left;
		}
		else
		{
			return right;
		}
	}
	else // a[left] > a[mid]
	{
		if (a[mid] > a[right])
		{
			return mid;
		}
		else if (a[left] < a[right]) // mid是最小
		{
			return left;
		}
		else
		{
			return right;
		}
	}
}

注意:当大小居中的数不在序列的最左或是最右端时,我们不是就以居中数的位置作为key的位置,而是将key的值与最左端的值进行交换,这样key就还是位于最左端了,所写代码就无需改变,而只需在单趟排序代码开头加上以下两句代码即可:

	int midIndex = GetMidIndex(a, begin, end);//获取大小居中的数的下标
	Swap(&a[begin], &a[midIndex]);//将该数与序列最左端的数据交换
	//以下代码保持不变...

小区间优化

我们可以看到,就算是上面理想状态下的快速排序,也不能避免随着递归的深入,每一层的递归次数会以2倍的形式快速增长。
 为了减少递归树的最后几层递归,我们可以设置一个判断语句,当序列的长度小于某个数的时候就不再进行快速排序,转而使用其他种类的排序。小区间优化若是使用得当的话,会在一定程度上加快快速排序的效率,而且待排序列的长度越长,该效果越明显。

代码实现:

//小区间优化
void QuickSort1(int* a, int begin, int end)
{
	if (begin >= end)
		return;

	// 小区间优化,小区间不再递归分割排序,降低递归次数
	if ((end - begin + 1) > 10)//可以自行微调
	{
		//可调用快速排序的单趟排序三种中的任意一种
		//int keyi = PartSort1(a, begin, end);
		//int keyi = PartSort2(a, begin, end);
		int keyi = PartSort3(a, begin, end);

		// [begin, keyi-1] keyi [keyi+1, end]
		QuickSort1(a, begin, keyi - 1);
		QuickSort1(a, keyi + 1, end);
	}
	else
	{
		InsertSort(a + begin, end - begin + 1);
	}
}

归并排序

动图演示:
在这里插入图片描述
归并排序是采用分治法的一个非常典型的应用。其基本思想是:将已有序的子序合并,从而得到完全有序的序列,即先使每个子序有序,再使子序列段间有序。

那么如何得到有序的子序列呢?当序列分解到只有一个元素或是没有元素时,就可以认为是有序了,这时分解就结束了,开始合并:
在这里插入图片描述

递归实现

//归并排序(子函数)
void _MergeSort(int* a, int left, int right, int* tmp)
{
	if (left >= right)//归并结束条件:当只有一个数据或是序列不存在时,不需要再分解
	{
		return;
	}
	int mid = left + (right - left) / 2;//中间下标
	_MergeSort(a, left, mid, tmp);//对左序列进行归并
	_MergeSort(a, mid + 1, right, tmp);//对右序列进行归并
	int begin1 = left, end1 = mid;
	int begin2 = mid + 1, end2 = right;
	//将两段子区间进行归并,归并结果放在tmp中
	int i = left;
	while (begin1 <= end1&&begin2 <= end2)
	{
		//将较小的数据优先放入tmp
		if (a[begin1] < a[begin2])
			tmp[i++] = a[begin1++];
		else
			tmp[i++] = a[begin2++];
	}
	//当遍历完其中一个区间,将另一个区间剩余的数据直接放到tmp的后面
	while (begin1 <= end1)
		tmp[i++] = a[begin1++];
	while (begin2 <= end2)
		tmp[i++] = a[begin2++];
	//归并完后,拷贝回原数组
	int j = 0;
	for (j = left; j <= right; j++)
		a[j] = tmp[j];
}
//归并排序(主体函数)
void MergeSort(int* a, int n)
{
	int* tmp = (int*)malloc(sizeof(int)*n);//申请一个与原数组大小相同的空间
	if (tmp == NULL)
	{
		printf("malloc fail\n");
		exit(-1);
	}
	_MergeSort(a, 0, n - 1, tmp);//归并排序
	free(tmp);//释放空间
}

非递归实现

非递归算法并不需要借助栈来完成,我们只需要控制每次参与合并的元素个数即可,最终便能使序列变为有序:
在这里插入图片描述
当然,以上例子是一个待排序列长度比较特殊的例子,我们若是想写出一个广泛适用的程序,必定需要考虑到某些极端情况:
情况一:
 当最后一个小组进行合并时,第二个小区间存在,但是该区间元素个数不够gap个,这时我们需要在合并序列时,对第二个小区间的边界进行控制。

在这里插入图片描述
情况二:
 当最后一个小组进行合并时,第二个小区间不存在,此时便不需要对该小组进行合并。
在这里插入图片描述
情况三:
 当最后一个小组进行合并时,第二个小区间不存在,并且第一个小区间的元素个数不够gap个,此时也不需要对该小组进行合并。(可与情况二归为一类)
在这里插入图片描述

//归并排序(子函数)
void _MergeSortNonR(int* a, int* tmp, int begin1, int end1, int begin2, int end2)
{
	int j = begin1;
	//将两段子区间进行归并,归并结果放在tmp中
	int i = begin1;
	while (begin1 <= end1&&begin2 <= end2)
	{
		//将较小的数据优先放入tmp
		if (a[begin1] < a[begin2])
			tmp[i++] = a[begin1++];
		else
			tmp[i++] = a[begin2++];
	}
	//当遍历完其中一个区间,将另一个区间剩余的数据直接放到tmp的后面
	while (begin1 <= end1)
		tmp[i++] = a[begin1++];
	while (begin2 <= end2)
		tmp[i++] = a[begin2++];
	//归并完后,拷贝回原数组
	for (; j <= end2; j++)
		a[j] = tmp[j];
}
//归并排序(主体函数)
void MergeSortNonR(int* a, int n)
{
	int* tmp = (int*)malloc(sizeof(int)*n);//申请一个与待排序列大小相同的空间,用于辅助合并序列
	if (tmp == NULL)
	{
		printf("malloc fail\n");
		exit(-1);
	}
	int gap = 1;//需合并的子序列中元素的个数
	while (gap < n)
	{
		int i = 0;
		for (i = 0; i < n; i += 2 * gap)
		{
			int begin1 = i, end1 = i + gap - 1;
			int begin2 = i + gap, end2 = i + 2 * gap - 1;
			if (begin2 >= n)//最后一组的第二个小区间不存在或是第一个小区间不够gap个,此时不需要对该小组进行合并
				break;
			if (end2 >= n)//最后一组的第二个小区间不够gap个,则第二个小区间的后界变为数组的后界
				end2 = n - 1;
			_MergeSortNonR(a, tmp, begin1, end1, begin2, end2);//合并两个有序序列
		}
		gap = 2 * gap;//下一趟需合并的子序列中元素的个数翻倍
	}
	free(tmp);//释放空间
}

  1. 时间复杂度:O(N*logN)
  2. 空间复杂度:O(N)
  3. 稳定性:稳定

计数排序

计数排序,又叫非比较排序。顾名思义,该算法不是通过比较数据的大小来进行排序的,而是通过统计数组中相同元素出现的次数,然后通过统计的结果将序列回收到原来的序列中。

在这里插入图片描述
上列中的映射方法称为绝对映射,即arr数组中的元素是几就在count数组中下标为几的位置++,但这样会造成空间浪费。例如,我们要将数组:1020,1021,1018,进行排序,难道我们要开辟1022个整型空间吗?
 若是使用计数排序,我们应该使用相对映射,简单来说,数组中的最小值就相对于count数组中的0下标,数组中的最大值就相对于count数组中的最后一个下标。这样,对于数组:1020,1021,1018,我们就只需要开辟用于储存4个整型的空间大小了,此时count数组中下标为i的位置记录的实际上是1018+i这个数出现的次数。

总结:
 绝对映射:count数组中下标为i的位置记录的是arr数组中数字i出现的次数。
 相对映射:count数组中下标为i的位置记录的是arr数组中数字min+i出现的次数。

注意:计数排序只适用于数据范围较集中的序列的排序,若待排序列的数据较分散,则会造成空间浪费,并且计数排序只适用于整型排序,不适用与浮点型排序。

代码如下:

//计数排序
void CountSort(int* a, int n)
{
	int min = a[0];//记录数组中的最小值
	int max = a[0];//记录数组中的最大值
	for (int i = 0; i < n; i++)
	{
		if (a[i] < min)
			min = a[i];
		if (a[i] > max)
			max = a[i];
	}
	int range = max - min + 1;//min和max之间的自然数个数(包括min和max本身)
	int* count = (int*)calloc(range, sizeof(int));//开辟可储存range个整型的内存空间,并将内存空间置0
	if (count == NULL)
	{
		printf("malloc fail\n");
		exit(-1);
	}
	//统计相同元素出现次数(相对映射)
	for (int i = 0; i < n; i++)
	{
		count[a[i] - min]++;
	}
	int i = 0;
	//根据统计结果将序列回收到原来的序列中
	for (int j = 0; j < range; j++)
	{
		while (count[j]--)
		{
			a[i++] = j + min;
		}
	}
	free(count);//释放空间
}

  1. 时间复杂度:O(MAX(N,range))
  2. 空间复杂度:O(range)

排序算法复杂度及稳定性分析

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1061051.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【1++的刷题系列】之双指针

&#x1f44d;作者主页&#xff1a;进击的1 &#x1f929; 专栏链接&#xff1a;【1的刷题系列】 文章目录 一&#xff0c;什么是双指针二&#xff0c;相关例题例一例二例三例四例五 一&#xff0c;什么是双指针 常见的双指针有两种形式&#xff1a;一种是对撞指针&#xff08…

tinymce富文本编辑器【tip】

项目场景&#xff1a; tinymce富文本编辑器在iview的modal框中显示的问题 问题描述 最近在使用tinymceiviewvue写项目&#xff0c;在富文本编辑器配合弹框一起使用时&#xff0c;总是存在问题&#xff1a;弹框弹出的时候&#xff0c;富文本编辑器不能点击&#xff0c;鼠标的光…

【软考】PV 操作

#国庆发生的那些事儿# 临界资源: 诸进程间需要互斥方式对其进行共享的资源&#xff0c;如打印机、磁带机等临界区: 每个进程中访问临界资源的那段代码称为临界区信号量: 是一种特殊的变量。 信号量的值与相应资源的使用情况有关: ①: 当信号量的值大于0时&#xff0c;表示当…

Lucene学习总结之Lucene的索引文件格式

四、具体格式 上面曾经交代过&#xff0c;Lucene保存了从Index到Segment到Document到Field一直到Term的正向信息&#xff0c;也包括了从Term到Document映射的反向信息&#xff0c;还有其他一些Lucene特有的信息。下面对这三种信息一一介绍。 4.1. 正向信息 Index –> Seg…

Spring 体系架构模块和三大核心组件介绍

Spring架构图 模块介绍 1. Spring Core&#xff08;核心容器&#xff09;&#xff1a;提供了IOC,DI,Bean配置装载创建的核心实现。 spring-core &#xff1a;IOC和DI的基本实现 spring-beans&#xff1a;BeanFactory和Bean的装配管理(BeanFactory) spring-context&#xff1…

LLMs 用强化学习进行微调 RLHF: Fine-tuning with reinforcement learning

让我们把一切都整合在一起&#xff0c;看看您将如何在强化学习过程中使用奖励模型来更新LLM的权重&#xff0c;并生成与人对齐的模型。请记住&#xff0c;您希望从已经在您感兴趣的任务上表现良好的模型开始。您将努力使指导发现您的LLM对齐。首先&#xff0c;您将从提示数据集…

<C++> 模板-上

目录 前言 一、函数模板 1. 概念 2. 格式 3. 原理 4. 函数模板的实例化 4.1 隐式实例化 4.2 显示实例化 5. 模板参数的匹配原则 5.1 5.2 5.3 二、类模板 1. 类模板定义格式 2. 类模板的实例化 总结 前言 如何实现一个通用的函数&#xff0c;函数可以实现两个类型的交换&…

C++_pen_友元

友元&#xff08;破坏封装&#xff09; 我故意让别人能使用我的私有成员 友元类 friend class B;友元函数 friend void func();友元成员函数 friend void A::func();例 #include <stdio.h>class A;class C{ public:void CprintA(A &c); };class B{ public:void Bpri…

jira 浏览器插件在问题列表页快速编辑问题标题

jira-issueTable-quicker 这是一个可以帮助我们在问题表格页快速编辑问题的浏览器插件 github 地址 功能介绍 jira 不可否认是一个可以帮助有效提高工作效率的工具&#xff0c;但是我们在使用 jira 时使用问题表格可以让我们看到跟多的内容而不用关注细节&#xff0c;但是目…

c与c++中的字符串

在c中&#xff0c;string本质上是一个类&#xff1b; string与char *有些区别&#xff1a; char*是一个指针&#xff1b;string是一个类&#xff0c;类内封装了char*&#xff0c;管理这一个字符串&#xff0c;是一个char*的容器 在使用string类型时&#xff0c;要加上其头文…

用向量数据库Milvus Cloud 搭建AI聊天机器人

加入大语言模型(LLM) 接着,需要在聊天机器人中加入 LLM。这样,用户就可以和聊天机器人开展对话了。本示例中,我们将使用 OpenAI ChatGPT 背后的模型服务:GPT-3.5。 聊天记录 为了使 LLM 回答更准确,我们需要存储用户和机器人的聊天记录,并在查询时调用这些记录,可以用…

新版校园跑腿独立版小程序源码 多校版本,多模块,适合跑腿,外卖,表白,二手,快递等校园服务

最新校园跑腿小程序源码 多校版本&#xff0c;多模块&#xff0c;适合跑腿&#xff0c;外卖&#xff0c;表白&#xff0c;二手&#xff0c;快递等校园服务 此版本为独立版本&#xff0c;不需要** 直接放入就可以 需要自己准备好后台的服务器&#xff0c;已认证的小程序&#xf…

mysql面试题17:MySQL引擎InnoDB与MyISAM的区别

该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:MySQL引擎InnoDB与MyISAM的区别 InnoDB和MyISAM是MySQL中两种常见的存储引擎,它们在功能和性能方面有一些区别。下面将详细介绍它们之间的差异。…

【微信小程序开发】一文学会使用CSS控制样式布局与美化

引言 在微信小程序开发中&#xff0c;CSS样式布局和美化是非常重要的一部分&#xff0c;它能够为小程序增添美感&#xff0c;提升用户体验。本文将介绍如何学习使用CSS进行样式布局和美化&#xff0c;同时给出代码示例&#xff0c;帮助开发者更好地掌握这一技巧。 一、CSS样式布…

基于HSV空间的彩色图像分割技术

1. 引言 每当我们看到图像时&#xff0c;它通常都是由各种元素和目标组成的。在某些情况下&#xff0c;我们可能会想要从图像中提取某个特定的对象&#xff0c;大家会怎么做&#xff1f;首先我们会想到的是进行crop相关的操作&#xff0c;这在某种程度上是可行的&#xff0c;但…

《数字图像处理-OpenCV/Python》连载(10)图像属性与数据类型

《数字图像处理-OpenCV/Python》连载&#xff08;10&#xff09;图像属性与数据类型 本书京东优惠购书链接&#xff1a;https://item.jd.com/14098452.html 本书CSDN独家连载专栏&#xff1a;https://blog.csdn.net/youcans/category_12418787.html 第2章 图像的数据格式 在P…

AcCode项目测试报告

文章目录 项目介绍编写测试用例根据测试用例编写自动化测试0.搭建测试环境1. 创建功能类2. 编写注册功能自动化3.编写登录功能自动化 性能测试1.使用VUG编写性能测试脚本2. 创建测试场景3.开始执行4. 简单分析性能测试报告事务报告运行的虚拟用户图表点击率表吞吐量图表系统资源…

C#,数值计算——Sobol拟随机序列的计算方法与源程序

1 文本格式 using System; using System.Collections.Generic; namespace Legalsoft.Truffer { /// <summary> /// Sobol quasi-random sequence /// </summary> public class Sobol { public Sobol() { } public static void sobseq(int n,…

堆排序——向下调整

之前我们要想实现堆排序&#xff0c;是运用建堆代码来实现的&#xff1a; 向上调整建堆——向下调整排序 那么去我们可不可以只适用一种调整方法&#xff08;向下调整&#xff09;就能实现这样的功能呢&#xff1f; 向要只使用向下调整就实现堆排序 首先就是把数组里的值使用…

互联网Java工程师面试题·Dubbo 篇·第二弹

目录 18、Dubbo 用到哪些设计模式&#xff1f; 19、Dubbo 配置文件是如何加载到 Spring 中的&#xff1f; 20、Dubbo SPI 和 Java SPI 区别&#xff1f; 21、Dubbo 支持分布式事务吗&#xff1f; 22、Dubbo 可以对结果进行缓存吗&#xff1f; 23、服务上线怎么兼容旧版本&…