高级聚合函数
多进一出(多行输入,一个输出)
普通聚合函数:count、sum ...
1)collect_list():收集并形成 list 集合,结果不去重
select sex,collect_list(job)
from employee
group by sex;
--女 ["行政","研发","行政","前台"]
--男 ["销售","研发","销售","前台"]
2)collect_set():收集并形成 set 集合,结果去重
select sex,collect_set(job)
from employee
group by sex;
--女 ["行政","研发","前台"]
--男 ["销售","研发","前台"]
案例
1)每个月的入职人数以及姓名
select month(replace(hire_date,'/','-')) as month,
count(*) cnt,
collect_list(name) as name_list
from employee
group by month(replace(hire_date,'/','-'));
运行结果:
month cnt name_list
4 2 ["宋青书","周芷若"]
6 1 ["黄蓉"]
7 1 ["郭靖"]
8 2 ["张无忌","杨过"]
9 2 ["赵敏","小龙女"]
炸裂函数(UDTF)
接受一行数据,输出一行或多行数据。
TF(Table-Genrating Functions),表生成函数,也就是说这个函数的结果是一张表。
1、常用 UDTF - explode(array<T> a)
explode(array<T> a)接受一个数组类型的参数,它会把这一个数组炸裂成一个列(多行)。
语法
select explode(array("a","b","c"))as item;
-- item
-- a
-- b
-- c
2、 常用 UDTF - explode(Map<K,V> m)
返回多行2列(key,value)。
语法
注意:不加别名时,它默认的字段也是 key 和 value,我们自定义多个字段名时需要加括号。
select explode(map('hadoop','1','spark',2)) as (key,value);
-- key value
-- hadoop 1
-- spark 2
3、常用 UDTF - posexplode(array<T> a)
接受一个数组 array ,pos 的意思是 position ,也就是数组的下标。它返回多行两列,一列为 pos(索引) ,一列是 val(值)。
select posexplode(array('a','b','c'));
-- pos val
-- 0 a
-- 1 b
-- 2 c
4、常用 UDTF - inline(array<struct<f1:T1,...,fn:Tn>> a)
它接受一个 结构体数组 ,返回多行多列,列数=结构体的属性数量。
注意:每个结构体的属性数量必须一致。
select inline(array(
named_struct("id",1,"name","zs","age",15),
named_struct("id",2,"name","ls","age",17),
named_struct("id",3,"name","ww","age",23)
)) as (id,name,age);
运行结果:
Lateral View(常用)
Lateral View 通常与UDTF 配合使用。它可以将UDTF应用到源表的每行数据,UDTF会将每行数据转换为一行或多行,Lateral View会将源表中每行的输出结果与该行连接起来,形成一个虚拟表。
数据准备
create table movie_info(
movie string, --电影名称
category string --电影分类
)
row format delimited fields terminated by "\t";
insert overwrite table movie_info
values ("《疑犯追踪》", "悬疑,动作,科幻,剧情"),
("《Lie to me》", "悬疑,警匪,动作,心理,剧情"),
("《战狼2》", "战争,动作,灾难");
函数演示
select
movie,
category_name
from
movie_info
lateral view
explode(split(category,",")) movie_info_tmp as category_name;
运行结果:
select cate,count(*)
from (
select movie,cate
from (
select movie,
split(category,',') cates
from movie_info
)t1 lateral view explode(cates) tmp as cate
)t2
group by cate;
运行结果:
窗口函数
明天写