OpenGLES:绘制一个混色旋转的3D立方体

news2024/11/18 15:22:37

效果展示

混色旋转的3D立方体

一.概述

之前关于OpenGLES实战开发的博文,不论是实现相机滤镜还是绘制图形,都是在2D纬度

这篇博文开始,将会使用OpenGLES进入3D世界

本篇博文会实现一个颜色渐变、旋转的3D立方体

动态3D图形的绘制,需要具备一些基础的线性代数(向量、矩阵)空间坐标系转换相关知识,这里就不再做理论科普,需要自己先行学习,具体可以参考OpenGL官网的如下三章,讲解得十分详细:

  1. 《变换》
  2. 《坐标系统》
  3. 《摄像机》

二.Render:变量定义

2.1 常规变量定义

//shader程序/渲染器
private int shaderProgram;

private int vPosition;
private int aColor;
private int mvpMatrix;

//suface宽高比
private float ratio;

2.2 定义顶点、颜色、索引数组和缓冲

本次立方体的绘制,先定义顶点、颜色和索引数组,然后通过直接绘制索引缓冲来绘制立方体

三个数组及缓冲定义如下:

    private FloatBuffer vertexBuffer;
    private FloatBuffer colorBuffer;
    private ShortBuffer indexBuffer;

    private float vertexData[] = {
            -1.0f, 1.0f, 1.0f,    //正面左上0
            -1.0f, -1.0f, 1.0f,   //正面左下1
            1.0f, -1.0f, 1.0f,    //正面右下2
            1.0f, 1.0f, 1.0f,     //正面右上3
            -1.0f, 1.0f, -1.0f,   //反面左上4
            -1.0f, -1.0f, -1.0f,  //反面左下5
            1.0f, -1.0f, -1.0f,   //反面右下6
            1.0f, 1.0f, -1.0f,    //反面右上7
    };

    //八个顶点的颜色,与顶点坐标一一对应
    private float colorData[] = {
            1.0f, 1.0f, 0.0f,  // v0 Yellow
            1.0f, 0.0f, 1.0f,  // v1 Magenta 粉红
            1.0f, 0.0f, 0.0f,  // v2 Red
            1.0f, 1.0f, 1.0f,  // v3 White
            0.0f, 0.0f, 1.0f,  // v4 Blue
            0.0f, 1.0f, 1.0f,  // v5 Cyan 蓝绿
            0.0f, 1.0f, 0.0f,  // v6 Green
            0.0f, 0.0f, 0.0f,   // v7 Black
    };

    private short indexData[] = {
            6, 7, 4, 6, 4, 5,    //后面
            6, 3, 7, 6, 2, 3,    //右面
            6, 5, 1, 6, 1, 2,    //下面
            0, 3, 2, 0, 2, 1,    //正面
            0, 1, 5, 0, 5, 4,    //左面
            0, 7, 3, 0, 4, 7,    //上面
    };

2.3 定义MVP矩阵

    //MVP矩阵
    private float[] mMVPMatrix = new float[16];

三.Render:着色器、内存分配等

3.1 着色器创建、链接、使用

3.2 着色器属性获取、赋值

3.3 三个缓冲内存分配

这几个部分的代码实现与上一篇2D圆绘制基本一致

可以参考上一篇博文:《OpenGLES:绘制一个颜色渐变的圆》

不再重复展示代码

四.Render:绘制

绘制流程与之前2D的基本一致,有两点不太一样要注意

4.1 MVP矩阵赋值

//填充MVP矩阵
mMVPMatrix = TransformUtils.getCubeMVPMatrix(ratio);
//设置MVP变换矩阵到着色器程序/渲染器
glUniformMatrix4fv(mvpMatrix, 1, false, mMVPMatrix, 0);
//计算MVP变换矩阵
public static float[] getCubeMVPMatrix(float ratio) {
	//初始化modelMatrix, viewMatrix, projectionMatrix
	float[] modelMatrix = getIdentityMatrix(16, 0); //模型变换矩阵
	float[] viewMatrix = getIdentityMatrix(16, 0); //观测变换矩阵/相机矩阵
	float[] projectionMatrix = getIdentityMatrix(16, 0); //投影变换矩阵

	//获取modelMatrix, viewMatrix, projectionMatrix
	mCubeRotateAgree = (mCubeRotateAgree + 1) % 360;
	Matrix.rotateM(modelMatrix, 0, mCubeRotateAgree, -1, -1, 1); //获取模型旋转变换矩阵
	Matrix.setLookAtM(viewMatrix, 0, 0, 5, 10, 0, 0, 0, 0, 1, 0); //获取观测变换矩阵,设置相机位置
	Matrix.frustumM(projectionMatrix, 0, -ratio, ratio, -1, 1, 3, 20); //获取透视投影变换矩阵,正交投影:Matrix.orthoM(...)

	//计算MVP变换矩阵: mvpMatrix = projectionMatrix * viewMatrix * modelMatrix
	float[] tempMatrix = new float[16];
	float[] mvpMatrix = new float[16];
	Matrix.multiplyMM(tempMatrix, 0, viewMatrix, 0, modelMatrix, 0);
	Matrix.multiplyMM(mvpMatrix, 0, projectionMatrix, 0, tempMatrix, 0);

	return mvpMatrix;
}

4.2 绘制索引缓冲

//索引法绘制正方体
glDrawElements(GL_TRIANGLES, indexData.length, GL_UNSIGNED_SHORT, indexBuffer);

五.着色器代码

着色器代码与上一篇2D圆绘制其实也是相同的

再展示一遍以示关键点

如下:

(1).cube_vertex_shader.glsl

#version 300 es

layout (location = 0) in vec4 vPosition;
layout (location = 1) in vec4 aColor;

uniform mat4 mvpMatrix;

out vec4 vColor;

void main() {
    gl_Position = mvpMatrix * vPosition;
    vColor = aColor;
}

(2).cube_fragtment_shader.glsl

#version 300 es
#extension GL_OES_EGL_image_external_essl3 : require
precision mediump float;

in vec4 vColor;

out vec4 outColor;

void main(){
    outColor = vColor;
}

六.结束

混色旋转3D立方体的实现过程到此就讲解完了

最终实现效果如博文开始的效果展示

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1059783.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

RabbitMQ-java使用消息队列

1 java操作消息队列 1.1 java实现生产者 新建一个springboot项目&#xff0c;导入依赖 <dependency><groupId>com.rabbitmq</groupId><artifactId>amqp-client</artifactId><version>5.14.2</version> </dependency>导入依…

ctfshow web入门 php特性 web113-web125

1.web113 和上题一样,/proc/self/root代表根目录&#xff0c;进行目录溢出&#xff0c;超过is_file能处理的最大长度就不认为是个文件了 payload: compress.zlib://flag.php /proc/self/root/proc/self/root/proc/self/root/proc/self/root/proc/self/root/p roc/self/root/p…

操作系统内存管理相关

1. 虚拟内存 1.1 什么是虚拟内存 虚拟内存是计算机系统内存管理的一种技术&#xff0c;我们可以手动设置自己电脑的虚拟内存。不要单纯认为虚拟内存只是“使用硬盘空间来扩展内存“的技术。虚拟内存的重要意义是它定义了一个连续的虚拟地址空间&#xff0c;并且 把内存扩展到硬…

SLAM从入门到精通(用python实现机器人运动控制)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 在ROS下面&#xff0c;开发的方法很多&#xff0c;可以是c&#xff0c;可以是python。大部分接口操作类的应用&#xff0c;其实都可以用python来开…

(五)激光线扫描-位移台标定

线激光属于主动测量方式,但是由于线激光的特性,我们只能通过提取激光中心线获取这一条线上的高度信息,那么要进行三维重建的话,就需要通过平移或者是旋转的方式,来让线激光扫描被测物体的完整轮廓,也就是整个表面。激光线的密度越高还原出来的物体越细腻,但由于数据量大…

计算机中丢失vcomp140.dll解决方案,可以使用这几个最新方法来修复

今天早上&#xff0c;当我打开电脑时&#xff0c;突然看到一个提示窗口&#xff0c;显示找不到 vcomp140.dll 文件。我一下子懵了&#xff0c;不知道这是怎么回事&#xff0c;也不知道如何解决这个问题。于是&#xff0c;我开始了寻找答案的旅程。 首先&#xff0c;我了解到 v…

<C++> 异常

C语言传统的处理错误的方式 传统的错误处理机制&#xff1a; 终止程序&#xff0c;如assert&#xff0c;缺陷&#xff1a;用户难以接受。如发生内存错误&#xff0c;除0错误时就会终止程序。返回错误码&#xff0c;缺陷&#xff1a;需要程序员自己去查找对应的错误。如系统的…

Autosar诊断实战系列21-UDS连续帧(CF)数据接收代码级分析

本文框架 前言1. 长帧数据的连续帧接收2. 连续帧的处理前言 在本系列笔者将结合工作中对诊断实战部分的应用经验进一步介绍常用UDS服务的进一步探讨及开发中注意事项, Dem/Dcm/CanTp/Fim模块配置开发及注意事项,诊断与BswM/NvM关联模块的应用开发及诊断capl测试脚本开发等诊…

计算机类毕业设计选题60套!太全了!快收藏!

&#x1f495;&#x1f495;作者&#xff1a;计算机源码社 &#x1f495;&#x1f495;个人简介&#xff1a;本人七年开发经验&#xff0c;擅长Java、Python、PHP、.NET、微信小程序、爬虫、大数据等&#xff0c;大家有这一块的问题可以一起交流&#xff01; &#x1f495;&…

基于MDK-Keil环境如何把STM32程序直接下载到SRAM运行

1. 前言 对于 Cortex-M 内核的微控制器&#xff0c;它们都可以支持在 RAM 中执行程序&#xff0c;有些非 ARM 的微控制器是不支持的。 在内部 SRAM 执行程序&#xff0c;有基于以下几方面的原因&#xff1a; 1、所使用的设备可能具有OTP&#xff08;One-time Programmable&a…

《CPU设计实战》第四章lab3记录找bug

修bug之路 1. debug_wb_pc 一个信号一个信号找下去&#xff0c;发现ID_stage.v中load_op未赋值 assign load_op inst_lw; 代码解释 module decoder_5_32(input [ 4:0] in,output [31:0] out ); //这个循环被命名为 gen_for_dec_5_32。 genvar i; generate for (i0; i<…

c++中的动态内存管理

目录 1.内存分布 2.c语言动态内存管理 3.c动态内存管理 4.operator new 与operator delete 函数 5.定位new 6.malloc/free 与 new/delete 的区别 1.内存分布 首先我们需要了解一下数据在内存中的分布&#xff0c;请看以下代码&#xff1a; int globalVar 1; static in…

Day 04 python学习笔记

Python数据容器 元组 元组的声明 变量名称&#xff08;元素1&#xff0c;元素2&#xff0c;元素3&#xff0c;元素4…….&#xff09; &#xff08;元素类型可以不同&#xff09; eg: tuple_01 ("hello", 1, 2,-20,[11,22,33]) print(type(tuple_01))结果&#x…

基于Java的4S店汽车商城系统设计与实现(源码+lw+部署文档+讲解等)

文章目录 前言具体实现截图论文参考详细视频演示为什么选择我自己的网站自己的小程序&#xff08;小蔡coding&#xff09;有保障的售后福利 代码参考源码获取 前言 &#x1f497;博主介绍&#xff1a;✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计划导师、全栈领域优质创作…

C++17中头文件filesystem的使用

C17引入了std::filesystem库(文件系统库, filesystem library)&#xff0c;相关类及函数的声明在头文件filesystem中&#xff0c;命名空间为std::filesystem。 1.path类&#xff1a;文件路径相关操作&#xff0c;如指定的路径是否存在等&#xff0c;其介绍参见&#xff1a;http…

STM32复习笔记(四):看门狗

目录 &#xff08;一&#xff09;简介 &#xff08;二&#xff09;IWDG IWDG的CUBEMX工程配置 IWDG相关函数&#xff08;非常少&#xff0c;所以直接贴上来&#xff09;&#xff1a; &#xff08;三&#xff09;WWDG &#xff08;一&#xff09;简介 看门狗分为独立看门…

【Java】微服务——Nacos注册中心

目录 1.Nacos快速入门1.1.服务注册到nacos1&#xff09;引入依赖2&#xff09;配置nacos地址3&#xff09;重启 2.服务分级存储模型2.1.给user-service配置集群2.2.同集群优先的负载均衡 3.权重配置4.环境隔离4.1.创建namespace4.2.给微服务配置namespace 5.Nacos与Eureka的区别…

[C++随想录] 优先级队列的模拟实现

优先级队列的模拟实现 底层结构初始化向下调整 && 向上调整push && poptop && empty && size源码 底层结构 namespace muyu {template <class T, class Continer std::vector<T>, class Compare less<T> >class priority_…

C#停车场管理系统

目录 一、绪论1.1内容简介及意义1.2开发工具及技术介绍 二、总体设计2.1系统总体架构2.2登录模块总体设计2.3主界面模块总体设计2.4停车证管理模块总体设计2.5停车位管理模块总体设计2.6员工管理模块总体设计2.7其他模块总体设计 三、详细设计3.1登录模块设计3.2主界面模块设计…

力扣:119. 杨辉三角 II(Python3)

题目&#xff1a; 给定一个非负索引 rowIndex&#xff0c;返回「杨辉三角」的第 rowIndex 行。 在「杨辉三角」中&#xff0c;每个数是它左上方和右上方的数的和。 来源&#xff1a;力扣&#xff08;LeetCode&#xff09; 链接&#xff1a;力扣&#xff08;LeetCode&#xff09…