近三年3D点云顶会论文及源码合集,含2023最新

news2025/2/25 17:22:18

目前2D图像识别技术早已成熟,但2D的图像信息只有XY两个维度,而3D点云能够提供三维世界的信息,因此在自动驾驶、机器人和增强现实等各种领域都得到了广泛的应用。

近年来随着深度学习的发展,作为计算机视觉新兴研究热点的3D点云技术也在不断更新迭代,目前在数据获取、处理、分析和应用等方面仍然存在许多挑战。

我这次整理了近三年各大顶会中3D点云方向的论文,共61篇,有想法发paper的同学速看:

CVPR 2023

Attention-based Point Cloud Edge Sampling

一句话概括:本文提出一种非生成式基于注意力的点云边缘采样方法APES,通过提取点云轮廓上的显著点,在多个基准任务上表现出较好的性能。

IterativePFN: True Iterative Point Cloud Filtering

一句话概括:本文提出了迭代点云过滤网络IterativePFN,它由多个IterationModule组成,在单个网络内部模拟真实的迭代过滤过程。作者使用新颖的损失函数训练该网络,该损失函数在每次迭代中使用自适应的真值目标,以捕捉训练期间中间过滤结果之间的关系。

ULIP: Learning a Unified Representation of Language, Images, and Point Clouds for 3D Understanding

一句话概括:本文提出了ULIP,通过使用来自图像、文本和3D点云三种模态的对象组对进行预训练,学习统一的多模态表示。为克服训练三元组不足的问题,ULIP利用预训练的图像文本模型来获得共享的视觉语义空间,然后使用少量自动合成的三元组学习与之对齐的3D表示空间。

SCPNet: Semantic Scene Completion on Point Cloud

一句话概括:论文提出了三个方法来提高语义场景完成任务的性能:1)重新设计完成子网络,使用多路径模块聚合多尺度特征;2)设计师生知识蒸馏,将多帧模型的稠密语义知识迁移到单帧模型;3)使用泛光分割标签校正完成标签,去除动态物体。

ACL-SPC: Adaptive Closed-Loop system for Self-Supervised Point Cloud Completion

一句话概括:该论文提出了一种自监督的点云补全框架ACL-SPC,可以在同域的数据上进行训练和测试,克服了现有监督方法需要合成数据以及域间差异的限制,使用自适应闭环系统强制网络输出对输入变化稳定,从而实现无需先验信息的点云自监督补全。

Learning Human-to-Robot Handovers from Point Clouds

一句话概括:论文提出了一个端到端的框架,用于学习基于视觉的人机交接控制策略,通过两阶段的教师-学生训练模式,使用运动规划、强化学习和自监督学习方法,实现了从模拟到真实的有效迁移。

PartManip: Learning Cross-Category Generalizable Part Manipulation Policy from Point Cloud Observations

一句话概括:本文构建了第一个大规模基于部件的跨类别物体操作基准PartManip,包含11个类别494个物体1432个任务,相比现有工作更加复杂逼真,提出了基于部件规范化和部件感知奖励的专家示教方法以及基于对抗学习的学生学习方法,实现了基于稀疏点云的通用跨类别物体操作策略学习,在模拟和真实环境中都取得了 SOTA的性能。

PiMAE: Point Cloud and Image Interactive Masked Autoencoders for 3D Object Detection

一句话概括:本文提出了PiMAE,这是一个跨模态的自监督预训练框架,通过三个方面提升了点云和图像这两种常见模态之间的交互:遮挡策略交互、共享解码器和跨模态重建模块,相比现有工作取得更好的点云和图像表示学习。

Complete-to-Partial 4D Distillation for Self-Supervised Point Cloud Sequence Representation Learning

一句话概括:本文提出了一种新的4D自监督预训练方法Complete-to-Partial 4D Distillation,关键思想是将4D自监督表示学习表述为一个teacher-student知识蒸馏框架,让student在teacher的指导下学习有用的4D表示,从而克服了现有方法仅考虑静态快照的局限,以及视频表示学习方法局限于图像空间流而不具3D几何意识的问题。

ICCV 2023

Robo3D: Towards Robust and Reliable 3D Perception against Corruptions

一句话概括:本文提出了第一个面向3D检测和分割模型鲁棒性的基准测试集Robo3D,包含来自恶劣天气、外部干扰和传感器故障的自然损坏,以探究这些模型在非理想场景下的可靠性。

CVPR 2022

  1. Point-BERT: Pre-training 3D Point Cloud Transformers with Masked Point Modeling

  2. A Unified Query-based Paradigm for Point Cloud Understanding

  3. CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding

  4. PointCLIP: Point Cloud Understanding by CLIP

  5. Fast Point Transformer

  6. RCP: Recurrent Closest Point for Scene Flow Estimation on 3D Point Clouds

  7. The Devil is in the Pose: Ambiguity-free 3D Rotation-invariant Learning via Pose-aware Convolution

ECCV 2022

  1. Open-world Semantic Segmentation for LIDAR Point Clouds

  2. 2DPASS: 2D Priors Assisted Semantic Segmentation on LiDAR Point Clouds

  3. CPO: Change Robust Panorama to Point Cloud Localization

  4. diffConv: Analyzing Irregular Point Clouds with an Irregular View

  5. CATRE: Iterative Point Clouds Alignment for Category-level Object Pose Refinement

  6. Dual Adaptive Transformations for Weakly Supervised Point Cloud Segmentation

  7. SeedFormer: Patch Seeds based Point Cloud Completion with Upsample Transformer

  8. Dynamic 3D Scene Analysis by Point Cloud Accumulation

  9. 3D Siamese Transformer Network for Single Object Tracking on Point Clouds

  10. Salient Object Detection for Point Clouds

  11. MonteBoxFinder: Detecting and Filtering Primitives to Fit a Noisy Point Cloud

  12. Improving RGB-D Point Cloud Registration by Learning Multi-scale Local Linear Transformation

  13. Learning to Generate Realistic LiDAR Point Clouds

CVPR 2021

  1. Equivariant Point Network for 3D Point Cloud Analysis

  2. PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds

ICCV 2021

  1. A Robust Loss for Point Cloud Registration

  2. A Technical Survey and Evaluation of Traditional Point Cloud Clustering Methods for LiDAR Panoptic Segmentation

  3. A Spoonful of Refinements Helps the Registration Error Go Down (Oral)

  4. ABD-Net: Attention Based Decomposition Network for 3D Point Cloud Decomposition

  5. AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds

  6. Box-Aware Feature Enhancement for Single Object Tracking on Point Clouds

  7. CPFN: Cascaded Primitive Fitting Networks for High-Resolution Point Clouds

  8. Deep Models with Fusion Strategies for MVP Point Cloud Registration

  9. DRINet: A Dual-Representation Iterative Learning Network for Point Cloud Segmentation

  10. Guided Point Contrastive Learning for Semi-supervised Point Cloud Semantic Segmentation

  11. Learning Inner-Group Relations on Point Clouds

  12. InstanceRefer: Cooperative Holistic Understanding for Visual Grounding on Point Clouds through Instance Multi-level Contextual Referring

  13. ME-PCN: Point Completion Conditioned on Mask Emptiness

  14. MVP Benchmark: Multi-View Partial Point Clouds for Completion and Registration

  15. Out-of-Core Surface Reconstruction via Global TGV Minimization

  16. PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds

  17. PICCOLO: Point Cloud-Centric Omnidirectional Localization

  18. Point Cloud Augmentation with Weighted Local Transformations

  19. PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers (Oral)

  20. ReDAL: Region-based and Diversity-aware Active Learning for Point Cloud Semantic Segmentation

  21. Sampling Network Guided Cross-Entropy Method for Unsupervised Point Cloud Registration

  22. SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer

  23. Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds

  24. Towards Efficient Point Cloud Graph Neural Networks Through Architectural Simplification

  25. Unsupervised Learning of Fine Structure Generation for 3D Point Clouds by 2D Projection Matching

  26. Unsupervised Point Cloud Pre-Training via View-Point Occlusion, Completion

  27. Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Learned Virtual View Visibility

  28. Voxel-based Network for Shape Completion by Leveraging Edge Generation

  29. Walk in the Cloud: Learning Curves for Point Clouds Shape Analysis

关注下方《学姐带你玩AI》🚀🚀🚀

回复“3D点云”获取论文+代码合集

码字不易,欢迎大家点赞评论收藏!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1058130.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

python利用matplotlib绘图,对于中文和负号不显示,显示方框“口口”完美解决办法!!

文章目录 一、问题展示二、问题分析三、解决办法四、结果展示 一、问题展示 二、问题分析 可以发现对中文,以及负号不显示。 三、解决办法 import matplotlib.pyplot as pltplt.rcParams[font.sans-serif] [usimHei] # 显示中文 plt.rcParams[axes.unicode_mi…

Task1:

""" 重置root管理员密码 """ step1: 在shell界面输入重启命令; step2: 重启过程中出现此界面,快速按键盘‘e’, 进入系统内核程序; step3: 在系统系统内核程序内,移动光标至Linux 参数这…

10.0 探索API调试事件原理

本章笔者将通过Windows平台下自带的调试API接口实现对特定进程的动态转存功能,首先简单介绍一下关于调试事件的相关信息,调试事件的建立需要依赖于DEBUG_EVENT这个特有的数据结构,该结构用于向调试器报告调试事件。当一个程序发生异常事件或者…

栈的应用场景(二)

有效的括号匹配 1.题目2.图分析3.代码实现 1.题目 2.图分析 3.代码实现 class Solution {public boolean isValid(String s) {//创建一个栈,来放左括号.Stack<Character> stack new Stack<>();//遍历字符串,左括号放进栈for(int i 0 ; i < s.length(); i){ch…

趋势列表上又多了两个漏洞!

CVE-2023-24955 和 CVE-2023-29360 来自微软产品 5 月和 6 月的安全补丁报告。它们之所以特别危险&#xff0c;是因为出现了公开漏洞利用。 以下是详细信息。 第一个漏洞 CVE-2023-24955存在于 Microsoft SharePoint Server 中。它可导致远程代码执行。 它与覆盖随后由服务器执…

postgresql-备份与恢复

postgresql-备份与恢复 基本概念备份类型物理备份与逻辑备份在线备份与离线备份全量备份与增量备份 备份恢复工具备份与恢复逻辑备份与还原备份单个数据库psqlpg_dumppg_store 备份整个集群 基本概念 服务器系统错误、硬件故障或者人为失误都可能导致数据的丢失或损坏。因此&am…

Ai项目十四:基于 LeNet5 的手写数字识别及训练

若该文为原创文章&#xff0c;转载请注明原文出处。 一、介绍 pytorch复现lenet5模型&#xff0c;并检测自己手写的数字图片。 利用torch框架搭建模型相对比较简单&#xff0c;但是也会遇到很多问题&#xff0c;网上资料很多&#xff0c;搭建模型的方法大同小异&#xff0c;…

匿名上位机V7波形显示教程-简单能用

匿名上位机V7波形显示教程-简单能用 匿名上位机V7下位机数据格式根据匿名上位机V7的手册说明文档&#xff0c;编写对应的指令在主函数中初始化ANDmessage驱动连接匿名上位机V7 匿名上位机V7下位机数据格式 DATA区域内容&#xff1a; 举例说明DATA区域格式&#xff0c;例如上文&…

Altium Designer 批量添加元器件后缀

Altium Designer 批量添加元器件后缀 方法一方法二可能出现的问题要注意 方法一 您可以使用 Altium Designer 中的“批量修改元器件名称”功能来批量添加元器件后缀。具体步骤如下&#xff1a; 1.为了方便显示 操作流程&#xff0c;我这里复制了几个原理图的文件&#xff0c;粘…

【漏洞复现】用友GPR-U8 slbmbygr SQL注入漏洞

文章目录 一、漏洞描述二、网络空间搜索引擎搜索三、漏洞利用 一、漏洞描述 用友GRP-U8是面向政府及行政事业单位的财政管理应用。北京用友政务软件有限公司GRP-U8 SQL注入漏洞。 ![在这里插入图片描述](https://img-blog.csdnimg.cn/fe260ff4d6d14abeb0e576e4bbf3c385.png 二…

计算机组成原理期末复习

第一章 上机前的准备&#xff1a;建立数学模型、确定计算方法和编制解题程序n位操作码有 2 n 2^n 2n种不同操作主储存器&#xff08;主存/内存&#xff09;包括存储体M、各种逻辑部件及控制电路。储存体有多个储存单元&#xff0c;储存单元有多个储存元件&#xff0c;每个存储…

SDL2绘制ffmpeg解析的mp4文件

文章目录 1.FFMPEG利用命令行将mp4转yuv4202.ffmpeg将mp4解析为yuv数据2.1 核心api: 3.SDL2进行yuv绘制到屏幕3.1 核心api 4.完整代码5.效果展示 本项目采用生产者消费者模型&#xff0c;生产者线程&#xff1a;使用ffmpeg将mp4格式数据解析为yuv的帧&#xff0c;消费者线程&am…

latex表格内容换行

问题描述&#xff1a; 在用latex表格中编写公式时&#xff0c;可能出现公式太长&#xff0c;表格中后面的内容不能在文档中呈现&#xff0c;如下图1&#xff0c;故要进行行内内容的换行&#xff0c;使内容呈现完全而传统的\换行后,换行内容会顶格&#xff0c;如图2。 解决方…

PE文件之导入表

1. 导入表 2. 显示导入表信息的例子 ; 作用: 将RVA地址转成FOA即文件偏移 ; 参数: _pFileHdr 指向读到内存中文件的基址指针 ; _dwRVA 目标RVA地址 ; 返回: 目标RVA转成文件偏移的值 RVA2FOA PROC USES esi edi edx, _pFileHdr:PTR BYTE, _dwRVA:DWORDmov esi, _pFil…

饲料微生物检验 采样.

声明 本文是学习GB-T 42959-2023 饲料微生物检验 采样. 而整理的学习笔记,分享出来希望更多人受益,如果存在侵权请及时联系我们 1 范围 本文件规定了以微生物检验为目的的采样原则、采样人员、设备和材料、采样方案、采样步骤和采样 报告。 本文件适用于以微生物检验为目的…

Can‘t pickle <class ‘__main__.Test‘>: it‘s not the same object as __main__.Test

目录 原因1 类名重复了 案例1 变量名和类名重复 原因1 类名重复了 检查项目代码&#xff0c;是不是其他地方有同名类。 案例1 变量名和类名重复 转自&#xff1a;python3报错Cant pickle <class __main__.Test>: its not the same object as __main__.Test解决 - 知乎…

接口日志,统一记录(AOP+自定义注解)

需求 指定接口&#xff0c;记录请求的日志。 接口日志的核心内容包括&#xff1a;请求方法&#xff0c;接口路径&#xff0c;请求参数等。 方案 采用的方案是&#xff1a;AOP 自定义注解 说明&#xff1a; 在需要记录日志的接口上&#xff0c;加上自定义注解ApiLog&…

样品运输与贮存

声明 本文是学习GB-T 42959-2023 饲料微生物检验 采样. 而整理的学习笔记,分享出来希望更多人受益,如果存在侵权请及时联系我们 1 范围 本文件规定了以微生物检验为目的的采样原则、采样人员、设备和材料、采样方案、采样步骤和采样 报告。 本文件适用于以微生物检验为目的…

如何限制文件只能通过USB打印机打印,限制打印次数和时限并且无法在打印前查看或编辑内容

在今天这个高度信息化的时代&#xff0c;文档打印已经成为日常工作中不可或缺的一部分。然而&#xff0c;这也带来了诸多安全风险&#xff0c;如文档被篡改、知识产权被侵犯以及信息泄露等。为了解决这些问题&#xff0c;只印应运而生。作为一款独特的软件工具&#xff0c;只印…

《视觉 SLAM 十四讲》V2 第 4 讲 李群与李代数 【什么样的相机位姿 最符合 当前观测数据】

P71 文章目录 4.1 李群与李代数基础4.1.3 李代数的定义4.1.4 李代数 so(3)4.1.5 李代数 se(3) 4.2 指数与对数映射4.2.1 SO(3)上的指数映射罗德里格斯公式推导 4.2.2 SE(3) 上的指数映射SO(3),SE(3),so(3),se(3)的对应关系 4.3 李代数求导与扰动模型4.3.2 SO(3)上的李代数求导…