4.7、多态
4.7.1、多态的基本概念
多态是C++面向对象三大特征之一
多态分为两类
静态多态
:函数重载和运算符重载属于静态多态,复用函数名动态多态
:派生类和虚函数实现运行时多态
静态多态和动态多态区别:
- 静态多态的函数地址早绑定 - 编译阶段确定函数地址
- 动态多态的函数地址晚绑定 - 运行阶段确定函数地址
- 动态多态满足条件
- 有继承关系
- 子类重写父类的虚函数
- 动态多态使用
- 父类的指针或引用 指向子类对象
重写:函数返回值类型 函数名 参数列表 完全一致称为重写
class Animal {
public:
//虚函数
virtual void spreak() {
cout << "动物在说话" << endl;
}
};
class Cat :public Animal {
public:
void spreak() {
cout << "猫在说话" << endl;
}
};
class Dog : public Animal {
public:
void spreak() {
cout << "狗在说话" << endl;
}
};
//执行说话的函数
//地址早绑定 在编译阶段确定函数地址
//如果想让猫说话,就不能提前绑定,云瑶在运行阶段绑定,及地址晚绑定
void doSpreak(Animal &animal) {
animal.spreak();
}
void test01() {
Cat cat;
doSpreak(cat);
Dog dog;
doSpreak(dog);
}
4.7.2、多态案例-计算器类
- 多态的优点:
- 代码组织结构清晰
- 可读性强
- 利于前期和后期扩展以及维护
//实现计算机的抽象类
class AbstractCalculator {
public:
virtual int getResult() {
return 0;
}
int m_Num1,m_Num2;
};
//减法计算机类
class SubCalculator :public AbstractCalculator {
public:
int getResult() {
return m_Num1 - m_Num2;
}
};
//加法计算机类
class AddCalculator :public AbstractCalculator {
public:
int getResult() {
return m_Num1 + m_Num2;
}
};
void test01() {
AbstractCalculator *a1 = new AddCalculator;
a1->m_Num1 = 100;
a1->m_Num2 = 200;
cout << a1->m_Num1 << " + " << a1->m_Num2 << " = " << a1->getResult() << endl;
//回收a1
delete a1;
a1 = new SubCalculator();
a1->m_Num1 = 200;
a1->m_Num2 = 100;
cout << a1->m_Num1 << " - " << a1->m_Num2 << " = " << a1->getResult() << endl;
//回收a1
delete a1;
}
4.7.3、纯虚函数和抽象类
在多态中,通常父类中虚函数的实现是毫无意义的,主要都是效用子类重写的内容
因此可以将虚函数改为纯虚函数
纯虚函数语法:virtual 返回值类型 函数名 (参数列表) = 0;
当类中有了纯虚函数,这个类也称为抽象类
抽象类特点:
- 无法实例化对象
- 子类必须重写抽象类中的纯虚函数,否则也属于抽象类
//纯虚函数和抽象类
class Base {
public:
virtual void func() = 0;
};
//1、纯虚函数无法实例对象
//void test01() {
// Base b;
// new Base;
//}
//2、子类必须重写抽象类中的纯虚函数,否则也属于抽象类
//class Son : public Base {
//public:
//
//};
//
//void test02() {
// Son s;
//}
//3、正确写法
class Son : public Base {
public:
virtual void func() {
cout << "func函数被调用" << endl;
};
};
void test03() {
Base* base = new Son;
base->func();
}
4.7.4、多态案例二 - 制作饮品
案例描述:
制作饮品时大致的流程为: 煮水 - 冲泡 - 导入杯中 - 加入辅料
利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡喝茶叶
//饮品抽象类
class MakeDreak {
public:
virtual void Boil() = 0;
virtual void Rush() = 0;
virtual void Fall() = 0;
virtual void Add() = 0;
void markDrink() {
Boil();
Rush();
Fall();
Add();
};
};
class Coffee : public MakeDreak {
virtual void Boil() {
cout << "煮水" << endl;
}
virtual void Rush() {
cout << "冲泡咖啡" << endl;
}
virtual void Fall() {
cout << "倒入杯中" << endl;
}
virtual void Add() {
cout << "加糖和牛奶" << endl;
}
};
class Tea : public MakeDreak {
virtual void Boil() {
cout << "煮水" << endl;
}
virtual void Rush() {
cout << "冲泡茶叶" << endl;
}
virtual void Fall() {
cout << "倒入杯中" << endl;
}
virtual void Add() {
cout << "柠檬" << endl;
}
};
//制作函数
void doWork(MakeDreak* abs) {
abs->markDrink();
}
void test01() {
doWork(new Coffee);
cout << "-----------------" << endl;
doWork(new Tea);
}
4.7.5、虚析构和纯虚析构
多态使用时,如果子类中有属性开辟到堆区,那么父类指针在释放时无法调用到子类的析构代码
解决方法
:将父类中的析构函数改为虚析构或者纯虚析构
虚析构和纯虚析构共性:
- 可以解决父类指针释放子类对象
- 都需要有具体的函数实现
虚析构和纯虚析构区别:
- 如果是纯虚析构,该类属于抽象类,无法实例化对象
虚析构语法:
virtual ~类名(){}
纯虚析构语法:
virtual ~类名() = 0
类名::~类名(){}
class Animal {
public:
Animal() {
cout << "Animal构造函数被调用" << endl;
}
//利用虚析构可以解决 父类指针释放子类对象
virtual ~Animal()
{
cout << "Animal析构函数被调用" << endl;
}
//纯虚函数
virtual void spreak() = 0;
};
class Cat : public Animal {
public:
Cat(string name) {
cout << "Cat构造函数调用" << endl;
m_Name = new string(name);
}
virtual void spreak() {
cout << *m_Name<<"猫正在说话" << endl;
}
~Cat()
{
if (m_Name !=NULL)
{
cout << "Cat析构函数调用" << endl;
delete m_Name;
m_Name = NULL;
}
}
string *m_Name;
};
void test01() {
Animal* animal = new Cat("Tom");
animal->spreak();
//父类指针在析构时候,不会调用子类中析构函数,
//导致子类如果有堆区属性,出现内存泄露
delete animal;
}
4.7.6、多态案例三 - 电脑组装
案例描述:
电脑主要组成部件为CPU (用于计算),显卡(用于显示),内存条(用于存储)将每个零件封装出抽象基类,并且提供不同的厂商生产不同的零件,例如Inter厂商和Lenovo厂商创建电脑类提供让电脑工作的函数,并且调用每个零件工作的接口
测试时组装三台不同的电脑进行工作
//cpu类
class CPU {
public:
//抽象的计算机函数
virtual void caculate() = 0;
};
//显卡类
class Graphics {
public:
//抽象的显卡
virtual void show() = 0;
};
//内存类
class RAM {
public:
virtual void save() = 0;
};
class Computer {
public:
Computer(CPU* cpu, Graphics* gpu, RAM* ram) {
m_cpu = cpu;
m_gpu = gpu;
m_ram = ram;
}
void work() {
m_cpu->caculate();
m_gpu->show();
m_ram->save();
}
//提供析构函数 释放3个电脑零件
~Computer()
{
//释放cpu
if (m_cpu!=NULL)
{
delete m_cpu;
m_cpu = NULL;
}
//释放显卡
if (m_gpu !=NULL)
{
delete m_gpu;
m_gpu = NULL;
}
//释放内存条
if (m_ram !=NULL)
{
delete m_ram;
m_ram = NULL;
}
}
private:
CPU* m_cpu; //CPU的零件指针
Graphics* m_gpu;
RAM* m_ram;
};
//Intel厂商
class IntelCPU : public CPU {
public:
virtual void caculate() {
cout << "Intel的CPU开始计算了" << endl;
}
};
class IntelGPU : public Graphics {
public:
virtual void show() {
cout << "Intel的GPU开始显示了" << endl;
}
};
class IntelRAM : public RAM {
public:
virtual void save() {
cout << "Intel的RAM开始存储了" << endl;
}
};
//Lenovo厂商
class LenovoCPU : public CPU {
public:
virtual void caculate() {
cout << "AMD的CPU开始计算了" << endl;
}
};
class LenovoGPU : public Graphics {
public:
virtual void show() {
cout << "AMD的GPU开始显示了" << endl;
}
};
class LenovoRAM : public RAM {
public:
virtual void save() {
cout << "AMD的RAM开始存储了" << endl;
}
};
void test01() {
//第一台电脑零件
CPU * intelCpu = new IntelCPU;
Graphics * IntelGpu = new IntelGPU;
RAM * IntelRam = new IntelRAM;
//创建第一台电脑
cout << "第一台电脑开始工作" << endl;
Computer * computer1 = new Computer(intelCpu, IntelGpu, IntelRam);
computer1->work();
delete computer1;
//第二台电脑
cout << "---------------------" << endl;
cout << "第二台电脑开始工作" << endl;
Computer* computer2 = new Computer(new LenovoCPU, new LenovoGPU, new LenovoRAM);
computer2->work();
delete computer2;
//第三台电脑
cout << "---------------------" << endl;
cout << "第三台电脑开始工作" << endl;
Computer* computer3 = new Computer(new LenovoCPU, new IntelGPU, new LenovoRAM);
computer3->work();
delete computer3;
}