C进阶--数据的存储

news2025/1/19 2:37:07

⚙ 1. 数据类型介绍

1.1基本内置类型

⭕ 整形:
char(char又叫短整型)unsigned char
signed char
shortunsigned short[int]
signed short [int]
intunsigned int
signed int
longunsigned long [int]
signed long [int]
⭕ 浮点数:
float(单精度浮点数)
double(双精度浮点数)

 区别

1. 存储空间:float类型占用4个字节(32位),而double类型占用8个字节(64位)。因此,double类型可以表示更大范围的数值,并且具有更高的精度。

2. 表示范围:float类型可以表示的有效位数大约是6-7位,而double类型可以表示的有效位数大约是15-16位。因此,double类型可以表示更大范围的数值,并且可以提供更高的精度。

然而,由于double类型占用的存储空间更大,它相对于float类型的运算速度可能会稍慢。因此,在选择使用float还是double时,需要根据具体需求来决定。

⭕ 构造类型:
⚪ 数组类型
⚪ 结构体类型 (struct)
⚪ 枚举类型 (enum)
⚪ 联合类型 (union)
⭕ 指针类型:
⚪ int *     ⚪ char*      ⚪ long *
⚪ float*   ⚪double*   ⚪ voibaxin
注意事项:
* 偏向谁这个有的书上是有规范的,但是一直没有很严格的要求,但是我们在连续赋值时要注意以下的两种情况:
int * p1,p2;//①p1是指针, p2不是指针
int *p1,*p2;//②p1, p2都是一级指针
int * p1;int *p2;//③p1, p2都是一级指针

避免出现这种有误会性质的代码,方便别人也方便自己,我们使用方式3最好

⭕ 空类型:
void表示空类型(无类型),通常用于函数的返回类型,

⚙ 2. 整形在内存中的存储

变量的创建时要在内存中开辟空间的。而空间的大小时根据不同类型来决定的。

2.1 原码,反码,补码

数据在内存中通过二进制来存储的,这是一个基本常识了(0 1 ->计算机)
原码:
直接将整数的二进制按照正负数形式翻译即可。
反码:
原码的符号位保持不变,将其他位按位取反即可。
补码:
反码+1 即可。
对于整形来说,数据存放内存实际用的是补码
❓❓❓        为什么呢
🙋‍🙋‍🙋‍   
在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统
一处理; 同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程 是相同的,不需要额外的硬件电路。
tips: 查看内存的方法:
观察代码:
我们可以看到对于 a b 分别存储的是补码。但是我们发现顺序有点 不对劲
这是又为什么❓

2.2 大小端

🌼大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址中;
🌼小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位, ,保存在内存的高地址中。
为什么有大端和小端:
🙋‍  这是因为在计算机系统中,我们是以字节为单位的,每个地址单元
都对应着一个字节,一个字节为8 bit。但是在C语言中除了8 bit的char之外,还有16 bit的short型,32 bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就 导致了大端存储模式和小端存储模式。
例如:一个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么 0x11 为
高字节, 0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而 KEIL C51 则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式
 
我们可以通过下面这个小实验来测试判断自己的电脑的字节序
这个问题在2015年出现在百度的笔试题中
#include<stdio.h>


int check_sys()
{
	int i = 1;
	return (*(char*)&i);

}
int main()
{
	int ret = check_sys();
	if (ret == 1)
		printf("小端\n");
	else
		printf("大端 \n");

	return 0;
}

运行结果:

check_sys函数也可以这样写

int check_sys()
{
	union {
		int i;
		char c;
	}u;
	u.i = 1;
	return u.c;
}

⚙3. 浮点型在内存中的存储

常见的浮点数 : 3.1415 1E10

  3.1浮点数存储的例子:

实验代码:

#include <stdio.h>
int main()
{
	int n = 9;
	float* pFloat = (float*)&n;
	printf("n的值为:%d\n", n);
	printf("*pFloat的值为:%f\n", *pFloat);
	*pFloat = 9.0;
	printf("num的值为:%d\n", n);
	printf("*pFloat的值为:%f\n", *pFloat);
	return 0;
}

实验结果:

好奇怪是不是?我们直观的感受是9.0==9 ,那他们打印出来的值应该是相等的才对啊。
当然,直观的感受往往需要经过实践推敲才能确定。让我们来认真 细细分析以下

3.2浮点数存储规则

根据国际标准 IEEE (电气和电子工程协会) 754 ,任意一个二进制浮点数 V 可以表示成下面的形式:
(-1)^S * M * 2^E
(-1)^s 表示符号位,当 s=0 V 为正数;当 s=1 V 为负数。
M 表示有效数字,大于等于 1 ,小于 2
2^E 表示指数位
十进制的 5.0 ,写成二进制是 101.0 ,相当于 1.01×2^2
那么,按照上面 V 的格式,可以得出 s=0 M=1.01 E=2
十进制的 -5.0 ,写成二进制是 - 101.0 ,相当于 - 1.01×2^2 。那么, s=1 M=1.01 E=2
IEEE 754 规定:
对于 32 位的浮点数,最高的 1 位是符号位 s ,接着的 8 位是指数 E ,剩下的 23 位为有效数字 M
对于 64 位的浮点数,最高的 1 位是符号位S,接着的 11 位是指数 E ,剩下的 52 位为有效数字 M
前面说过, 1≤M<2 ,也就是说, M 可以写成 1.xxxxxx 的形式,其中 xxxxxx 表示小数部分。
IEEE 754 规定,在计算机内部保存 M 时,默认这个数的第一位总是 1 ,因此可以被舍去,只保存后面的
xxxxxx 部分。比如保存 1.01 的时
候,只保存 01 ,等到读取的时候,再把第一位的 1 加上去。这样做的目的,是节省 1 位有效数字。以 32
浮点数为例,留给 M 只有 23 位,
将第一位的 1 舍去以后,等于可以保存 24 位有效数字。
至于指数 E ,情况就比较复杂。
首先, E 为一个无符号整数( unsigned int
这意味着,如果 E 8 位,它的取值范围为 0~255 ;如果 E 11 位,它的取值范围为 0~2047 。但是,我们
知道,科学计数法中的 E 是可以出
现负数的,所以 IEEE 754 规定,存入内存时 E 的真实值必须再加上一个中间数,对于 8 位的 E ,这个中间数
127 ;对于 11 位的 E ,这个中间
数是 1023 。比如, 2^10 E 10 ,所以保存成 32 位浮点数时,必须保存成 10+127=137 ,即
10001001
然后,指数 E 从内存中取出还可以再分成三种情况:
E不全为0或不全为1
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将
有效数字M前加上第一位的1。
比如:
0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则1.0*2^(-1),其阶码为-1+127=126,表示为
01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进
制表示形式为:
                0 01111110 00000000000000000000000
E 全为 0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,
有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于
0的很小的数字。
  E 全为 1
这时,如果有效数字 M 全为 0 ,表示 ± 无穷大(正负取决于符号位 s );
好了,关于浮点数的表示规则,就说到这里。
解释前面的题目:
下面,让我们回到一开始的问题:为什么 0x00000009 还原成浮点数,就成了 0.000000
首先,将 0x00000009 拆分,得到第一位符号位 s=0 ,后面 8 位的指数 E=00000000 ,最后 23 位的有效数字M=000 0000 0000 0000 0000 1001。
9->0000 0000 0000 0000 0000 0000 0000 1001

由于指数E全为0,所以符合上一节的第二种情况。因此,浮点数V就写成:

V=(-1)^0 × 0.00000000000000000001001×2^(-126)=1.001×2^(-146)

显然,V是一个很小的接近于0的正数,所以用十进制小数表示就是0.000000

再看例题的第二部分。
请问浮点数 9.0 ,如何用二进制表示?还原成十进制又是多少?
首先,浮点数 9.0等于二进制的1001.0,即1.001×2^3
9.0-> 1001.0->(-1)^01.0012^3 ->s=0,M=1.001,E=3+127=130

那么,第一位的符号位s=0,有效数字M等于001后面再加200,凑满23位,指数E等于3+127=130, 即10000010。 所以,写成二进制形式,应该是s+E+M,即 这个32位的二进制数,还原成十进制,正是 1091567616

📕小测试:

 🖊 1.下面程序输出什么?
#include <stdio.h>
int main()
{
	char a = -1;
	signed char b = -1;
	unsigned char c = -1;
	printf("a=%d,b=%d,c=%d", a, b, c);
	return 0;
}

 🖊 2.下面程序输出什么?
#include <stdio.h>
int main()
{
    char a = -128;
    printf("%u\n",a);
    return 0;
}

 🖊 3.下面程序输出什么?

#include <stdio.h>
int main()
{
	char a = 128;
	printf("%u\n", a);
	return 0;
}

 🖊 4.下面程序输出什么?
#include <stdio.h>

int main()
{
	int i = -20;
	unsigned int j = 10;
	printf("%d\n", i + j);

	return 0;
}

 🖊 5.下面程序输出什么?
#include <stdio.h>

int main()
{
	unsigned int i;
	for (i = 9; i >= 0; i--)
	{
		printf("%u\n", i);
	}
	return 0;
}

 🖊 6.下面程序输出什么?
#include <stdio.h>
int main()
{
	char a[1000];
	int i;
	for (i = 0; i < 1000; i++)
	{
		a[i] = -1 - i;
	}
	printf("%d", strlen(a));
	return 0;
}

 🖊 7.下面程序输出什么?
#include <stdio.h>
unsigned char i = 0;
int main()
{
	for (i = 0; i <= 255; i++)
	{
		printf("hello world\n");
	}
	return 0;
}

🙋‍答案:

1.o(*^▽^*)┛
2.o(*^▽^*)┛
3.o(*^▽^*)┛
4.o(*^▽^*)┛
5. o(*^▽^*)┛
6.o(*^▽^*)┛
7.o(*^▽^*)┛

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1051945.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux下C语言操作网卡的几个代码实例?特别实用

前面写了一篇关于网络相关的文章&#xff1a;如何获取当前可用网口。 《简简单单教你如何用C语言列举当前所有网口&#xff01;》 那么如何使用C语言直接操作网口&#xff1f; 比如读写IP地址、读写MAC地址等。 一、原理 主要通过系统用socket()、ioctl()、实现 int sock…

基于arduino的土壤湿度检测

1.总体设计框图 本浇花系统总体上分为硬件和软件两大组成部分。硬件部分包括Arduino UNO开发板、温湿度传感器、通信模块、浇水执行系统和液晶显示等。软件部分包括Android客户端。系统结构如图1所示 本浇花系统总体上分为硬件和软件两大组成部分。硬件部分包括Arduino UN…

LeetCode算法题---第2天

注:大佬解答来自LetCode官方题解 80.删除有序数组的重复项Ⅱ 1.题目 2.个人解答 var removeDuplicates function (nums) {let res [];for (let index 0; index < nums.length; index) {let num 0;if (res.includes(nums[index])) {for (let i 0; i < res.length; …

Python2020年06月Python二级 -- 编程题解析

题目一 数字转汉字 用户输入一个1~9&#xff08;包含1和9&#xff09;之间的任一数字&#xff0c;程序输出对应的汉字。 如输入2&#xff0c;程序输出“二”。可重复查询。 答案: 方法一 list1[一,二,三,四,五,六,七,八,九] while True:n int(input(请输入1~9之间任意一个数字…

Windows 安装CMake

CMake 简介 CMake是一个开源的、跨平台的自动化构建系統&#xff0c;用來管理软件构建的过程。 其用途主要包括&#xff1a; 1. 跨平台编译&#xff1a;CMake支援Windows&#xff0c;Mac OS&#xff0c;Linux等多种操作系統&#xff0c;且支援多数主流编译器如GCC&#xff0…

如何在 Elasticsearch 中使用 Openai Embedding 进行语义搜索

随着强大的 GPT 模型的出现&#xff0c;文本的语义提取得到了改进。 在本文中&#xff0c;我们将使用嵌入向量在文档中进行搜索&#xff0c;而不是使用关键字进行老式搜索。 什么是嵌入 - embedding&#xff1f; 在深度学习术语中&#xff0c;嵌入是文本或图像等内容的数字表示…

centos 7.9同时安装JDK1.8和openjdk11两个版本

1.使用的原因 在服务器上&#xff0c;有些情况因为有一些系统比较老&#xff0c;所以需要使用JDK8版本&#xff0c;但随着时间的发展&#xff0c;新的软件出来&#xff0c;一般都会使用比较新的JDK版本。所以就出现了我们标题的需求&#xff0c;一个系统内同时安装两个不同的版…

Bartende:Mac菜单栏图标管理软件

Bartender 是一款可以帮助用户更好地管理和组织菜单栏图标的 macOS 软件。它允许用户隐藏和重新排列菜单栏图标&#xff0c;从而减少混乱和杂乱。 以下是 Bartender 的主要特点&#xff1a; 菜单栏图标隐藏&#xff1a;Bartender 允许用户隐藏菜单栏图标&#xff0c;只在需要时…

【Vue】数据监视输入绑定

hello&#xff0c;我是小索奇&#xff0c;精心制作的Vue系列持续发放&#xff0c;涵盖大量的经验和示例&#xff0c;如有需要&#xff0c;可以收藏哈 本章给大家讲解的是数据监视&#xff0c;前面的章节已经更新完毕&#xff0c;后面的章节持续输出&#xff0c;有任何问题都可以…

孤举者难起,众行者易趋,openGauss 5.1.0版本正式发布!

&#x1f4e2;&#x1f4e2;&#x1f4e2;&#x1f4e3;&#x1f4e3;&#x1f4e3; 哈喽&#xff01;大家好&#xff0c;我是【IT邦德】&#xff0c;江湖人称jeames007&#xff0c;10余年DBA及大数据工作经验 一位上进心十足的【大数据领域博主】&#xff01;&#x1f61c;&am…

基于SSM的教师办公管理的设计与实现(有报告)。Javaee项目。

演示视频&#xff1a; 基于SSM的教师办公管理的设计与实现&#xff08;有报告&#xff09;。Javaee项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&#xff0c;通过Spring S…

Selenium Webdriver自动化测试框架

最近正在编写selenium webdriver自动化框架&#xff0c;经过几天的努力&#xff0c;目前基本已经实现了一套即能满足数据驱动、又能满足Web关键字驱动的自动化框架&#xff08;主要基于 antjenkinstestngselenium webdriverjxl实现&#xff09;。通过这次的自动化框架开发&…

[CISCN2019 华北赛区 Day2 Web1]Hack World 布尔注入

正确的值 错误的值 我们首先fuzz一下 发现空格被过滤了 我们首先测试 (1)(1) (1)(2) 确定了是布尔注入了 我们写一下查询语句 (select(ascii(mid(flag,1,1))>1)from(flag))(select(ascii(mid(flag,1,1))102)from(flag)) 确定了f 开头 我们开始写脚本 import string …

喜获殊荣!迅镭激光获评“2023年苏州市质量奖”!

近日&#xff0c;苏州市质量奖评定委员会公示2023年苏州市质量奖评定结果&#xff0c;经过层层严格评审&#xff0c;迅镭激光从众多企业中脱颖而出&#xff0c;成功获评“苏州市质量奖”称号! 苏州市质量奖是苏州市政府设立&#xff0c;授予在经营质量上表现优秀的苏州企业的专…

交换机之间配置手动|静态链路聚合

两台交换机&#xff0c;配置链路聚合&#xff1a; 1、禁止自动协商速率&#xff0c;配置固定速率 int G0/0/1 undo negotiation auto speed 100int G0/0/2 undo negotiation auto speed 100 2、配置eth-trunk int eth-trunk 1 mode manual | lacp-staticint G0/0/1 eth-trun…

notion + nextjs搭建博客

SaaS可以通过博客来获得SEO流量&#xff0c;之前我自己在nextjs上&#xff0c;基于MarkDown Cloudfare来构建博客&#xff0c;很快我就了解到更优雅的方案&#xff1a;notion nextjs搭建博客&#xff0c;之前搭建了过&#xff0c;没有记录&#xff0c;这次刚好又要弄&#xf…

Yolov8-pose关键点检测:模型轻量化创新 | OREPA结合c2f,节省70%的显存!训练速度提高2倍! | CVPR2022

💡💡💡本文解决什么问题:浙大&阿里提出在线卷积重新参数化OREPA,节省70%的显存!训练速度提高2倍! OREPA | GFLOPs从9.6降低至8.2, mAP50从0.921提升至0.931 Yolov8-Pose关键点检测专栏介绍:https://blog.csdn.net/m0_63774211/category_12398833.html ✨✨…

平台登录页面实现(一)

文章目录 一、实现用户名、密码、登录按钮、记住用户表单1、全局css代码定义在asserts/css/global.css 二、用户名、密码、记住用户的双向绑定三、没有用户&#xff0c;点击注册功能实现四、实现输入用户名、密码、点击登录按钮进行登录操作五、实现表单项校验六、提交表单预验…

[python 刷题] 153 Find Minimum in Rotated Sorted Array

[python 刷题] 153 Find Minimum in Rotated Sorted Array 题目&#xff1a; Suppose an array of length n sorted in ascending order is rotated between 1 and n times. For example, the array nums [0,1,2,4,5,6,7] might become: [4,5,6,7,0,1,2] if it was rotated 4…

年度顶级赛事来袭:2023 CCF大数据与计算智能大赛首批赛题上线!

久等了&#xff01; 大数据与人工智能领域年度顶级盛事——2023 CCF大数据与计算智能大赛——首批赛题已上线&#xff0c;大赛火力全开&#xff0c;只等你来挑战&#xff01; 大赛介绍 CCF大数据与计算智能大赛&#xff08;CCF Big Data & Computing Intelligence Contes…