YOLOv8+swin_transfomer

news2024/11/30 10:44:48

测试环境:cuda11.3  pytorch1.11 rtx3090  wsl2 ubuntu20.04

本科在读,中九以上老师或者课题组捞捞我,孩子想读书,求课题组师兄内推qaq

踩了很多坑,网上很多博主的代码根本跑不通,自己去github仓库复现修改的

网上博主的代码日常出现cpu,gpu混合,或许是人家分布式训练了,哈哈哈

下面上干货吧,宝子们点个关注,点个赞,没有废话
————————————————
首先上yaml文件,诚意满满,我是做的分割,做检测就修改最后那个检测头就好了

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8-seg instance segmentation model. For Usage examples see https://docs.ultralytics.com/tasks/segment

# Parameters
nc: 1  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-seg.yaml' will call yolov8-seg.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]
  s: [0.33, 0.50, 1024]
  m: [0.67, 0.75, 768]
  l: [1.00, 1.00, 512]
  x: [1.00, 1.25, 512]

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 9, C3STR, [512]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C3STR, [1024]]
  - [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, Segment, [nc, 32, 256]]  # Segment(P3, P4, P5)

然后在nn/modules/block.py最下面加入


class SwinTransformerBlock(nn.Module):
    def __init__(self, c1, c2, num_heads, num_layers, window_size=8):
        super().__init__()
        self.conv = None
        if c1 != c2:
            self.conv = Conv(c1, c2)

        # remove input_resolution
        self.blocks = nn.Sequential(*[SwinTransformerLayer(dim=c2, num_heads=num_heads, window_size=window_size,
                                 shift_size=0 if (i % 2 == 0) else window_size // 2) for i in range(num_layers)])

    def forward(self, x):
        if self.conv is not None:
            x = self.conv(x)
        x = self.blocks(x)
        return x
class WindowAttention(nn.Module):

    def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):

        super().__init__()
        self.dim = dim
        self.window_size = window_size  # Wh, Ww
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5

        # define a parameter table of relative position bias
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))  # 2*Wh-1 * 2*Ww-1, nH

        # get pair-wise relative position index for each token inside the window
        coords_h = torch.arange(self.window_size[0])
        coords_w = torch.arange(self.window_size[1])
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
        coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
        relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0
        relative_coords[:, :, 1] += self.window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
        relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
        self.register_buffer("relative_position_index", relative_position_index)

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        nn.init.normal_(self.relative_position_bias_table, std=.02)
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, mask=None):

        B_, N, C = x.shape
        qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))

        relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
            self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)  # Wh*Ww,Wh*Ww,nH
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
        attn = attn + relative_position_bias.unsqueeze(0)

        if mask is not None:
            nW = mask.shape[0]
            attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, N, N)
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        # print(attn.dtype, v.dtype)
        try:
            x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        except:
            #print(attn.dtype, v.dtype)
            x = (attn.half() @ v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

class Mlp(nn.Module):

    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x

class SwinTransformerLayer(nn.Module):

    def __init__(self, dim, num_heads, window_size=8, shift_size=0,
                 mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
                 act_layer=nn.SiLU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.window_size = window_size
        self.shift_size = shift_size
        self.mlp_ratio = mlp_ratio
        # if min(self.input_resolution) <= self.window_size:
        #     # if window size is larger than input resolution, we don't partition windows
        #     self.shift_size = 0
        #     self.window_size = min(self.input_resolution)
        assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"

        self.norm1 = norm_layer(dim)
        self.attn = WindowAttention(
            dim, window_size=(self.window_size, self.window_size), num_heads=num_heads,
            qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def create_mask(self, H, W):
        # calculate attention mask for SW-MSA
        img_mask = torch.zeros((1, H, W, 1))  # 1 H W 1
        h_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        w_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        cnt = 0
        for h in h_slices:
            for w in w_slices:
                img_mask[:, h, w, :] = cnt
                cnt += 1

        def window_partition(x, window_size):
            """
            Args:
                x: (B, H, W, C)
                window_size (int): window size

            Returns:
                windows: (num_windows*B, window_size, window_size, C)
            """
            B, H, W, C = x.shape
            x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
            windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
            return windows

        def window_reverse(windows, window_size, H, W):
            """
            Args:
                windows: (num_windows*B, window_size, window_size, C)
                window_size (int): Window size
                H (int): Height of image
                W (int): Width of image

            Returns:
                x: (B, H, W, C)
            """
            B = int(windows.shape[0] / (H * W / window_size / window_size))
            x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
            x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
            return x

        mask_windows = window_partition(img_mask, self.window_size)  # nW, window_size, window_size, 1
        mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
        attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
        attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))

        return attn_mask

    def forward(self, x):
        # reshape x[b c h w] to x[b l c]
        _, _, H_, W_ = x.shape

        Padding = False
        if min(H_, W_) < self.window_size or H_ % self.window_size!=0 or W_ % self.window_size!=0:
            Padding = True
            # print(f'img_size {min(H_, W_)} is less than (or not divided by) window_size {self.window_size}, Padding.')
            pad_r = (self.window_size - W_ % self.window_size) % self.window_size
            pad_b = (self.window_size - H_ % self.window_size) % self.window_size
            x = F.pad(x, (0, pad_r, 0, pad_b))

        # print('2', x.shape)
        B, C, H, W = x.shape
        L = H * W
        x = x.permute(0, 2, 3, 1).contiguous().view(B, L, C)  # b, L, c

        # create mask from init to forward
        if self.shift_size > 0:
            attn_mask = self.create_mask(H, W).to(x.device)
        else:
            attn_mask = None

        shortcut = x
        x = self.norm1(x)
        x = x.view(B, H, W, C)

        # cyclic shift
        if self.shift_size > 0:
            shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
        else:
            shifted_x = x

        def window_partition(x, window_size):
            """
            Args:
                x: (B, H, W, C)
                window_size (int): window size

            Returns:
                windows: (num_windows*B, window_size, window_size, C)
            """
            B, H, W, C = x.shape
            x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
            windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
            return windows

        def window_reverse(windows, window_size, H, W):
            """
            Args:
                windows: (num_windows*B, window_size, window_size, C)
                window_size (int): Window size
                H (int): Height of image
                W (int): Width of image

            Returns:
                x: (B, H, W, C)
            """
            B = int(windows.shape[0] / (H * W / window_size / window_size))
            x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
            x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
            return x

        # partition windows
        x_windows = window_partition(shifted_x, self.window_size)  # nW*B, window_size, window_size, C
        x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # nW*B, window_size*window_size, C

        # W-MSA/SW-MSA
        attn_windows = self.attn(x_windows, mask=attn_mask)  # nW*B, window_size*window_size, C

        # merge windows
        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
        shifted_x = window_reverse(attn_windows, self.window_size, H, W)  # B H' W' C

        # reverse cyclic shift
        if self.shift_size > 0:
            x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
        else:
            x = shifted_x
        x = x.view(B, H * W, C)

        # FFN
        x = shortcut + self.drop_path(x)
        x = x + self.drop_path(self.mlp(self.norm2(x)))

        x = x.permute(0, 2, 1).contiguous().view(-1, C, H, W)  # b c h w

        if Padding:
            x = x[:, :, :H_, :W_]  # reverse padding

        return x

class C3STR(C3):
    # C3 module with SwinTransformerBlock()
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        super().__init__(c1, c2, n, shortcut, g, e)
        c_ = int(c2 * e)
        num_heads = c_ // 32
        self.m = SwinTransformerBlock(c_, c_, num_heads, n)

然后是在目录的init.py里面把这个模块注册进去,参考我的另一篇博客的后半部分

YOLOv8+swin_transfomerv2_不会写代码!!的博客-CSDN博客

task.py需要修改两处

        n = n_ = max(round(n * depth), 1) if n > 1 else n  # depth gain
        if m in (Classify, Conv, ConvTranspose, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, Focus,
                 BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x, RepC3
                 ,CBAM , GAM_Attention ,ResBlock_CBAM,GCT,C3STR,SwinV2_CSPB):
            args = [c1, c2, *args[1:]]
            if m in (BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, C3x, RepC3,C3STR):
                args.insert(2, n)  # number of repeats
                n = 1

有问题私信

结构图如下,可以对模块排列组合涨点

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1051861.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

PHP免登录积分商城系统/动力商城/积分商城兑换系统源码Tinkphp

介绍&#xff1a; PHP免登录积分商城系统/动力商城/积分商城兑换系统源码Tinkphp&#xff0c;这个免登录积分商城系统是一种新型的电子商务模式&#xff0c;它通过省去麻烦的注册步骤&#xff0c;让用户能够很快又方便去积分兑换。这种商城系统具有UI干净整洁大方、运行顺畅的…

正点原子嵌入式linux驱动开发——STM32MP1启动详解

STM32单片机是直接将程序下载到内部 Flash中&#xff0c;上电以后直接运行内部 Flash中的程序。 STM32MP157内部没有供用户使用的 Flash&#xff0c;系统都是存放在外部 Flash里面的&#xff0c;比如 EMMC、NAND等&#xff0c;因此 STM32MP157上电以后需要从外部 Flash加载程序…

Mendix中的依赖管理:npm和Maven的应用

序言 在传统java开发项目中&#xff0c;我们可以利用maven来管理jar包依赖&#xff0c;但在mendix项目开发Custom Java Action时&#xff0c;由于目录结构有一些差异&#xff0c;我们需要自行配置。同样的&#xff0c;在mendix项目开发Custom JavaScript Action时&#xff0c;…

调度算法2-适用于交互式系统

一、时间片轮转调度算法(RR) 1.算法思想 Round-Robin 公平、轮流地为各个进程服务&#xff0c;让每个进程在一定时间间隔内都可得到响应 2.算法规则 按照各进程到达就绪队列的顺序&#xff0c;轮流让各个进程执行一个时间片 响应比(等待时间要求服务时间)/要求服务时间 3…

http请求报错:406 Not Acceptable的解决办法

目录 应用场景 基本概念 解决方法 方法一&#xff1a; 方法二&#xff1a; 方法三&#xff1a; 应用场景 接口在返回结果集的时候出现了406的报错&#xff0c;但是返回String类型不会报错&#xff0c;正常返回。 基本概念 406 Not Acceptable是一个HTTP响应状态码&…

Vue+ElementUI实现动态树和表格数据的分页模糊查询

目录 前言 一、动态树的实现 1.数据表 2.编写后端controller层 3.定义前端发送请求路径 4.前端左侧动态树的编写 4.1.发送请求获取数据 4.2.遍历左侧菜单 5.实现左侧菜单点击展示右边内容 5.1.定义组件 5.2.定义组件与路由的对应关系 5.3.渲染组件内容 5.4.通过动态…

Spring整合第三方框架

目录 Spring整合第三方框架 加载外部properties文件 自定义命名空间解析原理 自定义命名空间总结和案例需求 总结 案例 Spring整合第三方框架 加载外部properties文件 Spring整合第三方框架不像MyBatis那么简单了&#xff0c;例如Dubbo框架在与Spring框架整合时&#xf…

苹果CMS插件-苹果CMS全套插件免费

网站内容的生成和管理对于网站所有者和内容创作者来说是一个挑战。有一些强大的工具可以帮助您轻松地解决这些问题。苹果CMS插件自动采集插件、采集发布插件以及采集伪原创发布插件&#xff0c;是这些工具之一。它们不仅可以极大地节省您的时间和精力&#xff0c;还可以提高您网…

Python编码规范与代码优化

博主&#xff1a;命运之光 专栏&#xff1a;Python程序设计 Python编码规范 Python的程序由包、模块&#xff08;即一个Python文件&#xff09;、函数、类和语句组成 (1) 命名规则 变量名、包名、模块名通常采用小写字母开头&#xff0c;如果名称中包含多个单词&#xff0c;一…

【Axure】Axure的常用功能

选择 分为相交选中和包含选中 相交选中&#xff1a;部分选中即是选中包含选中&#xff1a;全选才是选中 缩放 按住元件四角&#xff0c;等比例缩放 置顶和置底 所谓置于顶层就是不被后来的元件覆盖住&#xff0c;置于底层的意思则相反 组合、对齐、分布 组合&#xff1…

redis主从从,redis-7.0.13

redis主从从&#xff0c;redis-7.0.13 下载redis安装redis安装redis-7.0.13过程报错1、没有gcc&#xff0c;报错2、没有python3&#xff0c;报错3、[adlist.o] 错误 127 解决安装报错安装完成 部署redis 主从从结构redis主服务器配置redis启动redis登录redisredis默认是主 redi…

【CMU15-445 Part-13】Query Execution II

Part13-Query Execution II talk about how to execute with multiple workers TCO&#xff1a;Total Cost of Ownship Parallel VS. Distributed 区分数据库系统的并行执行和分布式数据库系统的分布式执行 数据库通过分散multiple resources 来改善数据库某些方面的性能 …

手动实现Transformer

Transformer和BERT可谓是LLM的基础模型&#xff0c;彻底搞懂极其必要。Transformer最初设想是作为文本翻译模型使用的&#xff0c;而BERT模型构建使用了Transformer的部分组件&#xff0c;如果理解了Transformer&#xff0c;则能很轻松地理解BERT。 一.Transformer模型架构 1…

css实现四角圆边框

摘要&#xff1a; 做大屏的项目时&#xff0c;遇到很多地方要用到不同尺寸的盒子需要圆角的效果&#xff0c;所以不可能要求ui弄那么多图片的&#xff0c;并且那么多图片加载速度很慢的&#xff0c;比较臃肿&#xff0c;大屏要求的就是流畅&#xff0c;所以这用css加载很快的&a…

基于Java的旅游管理系统设计与实现(源码+lw+部署文档+讲解等)

文章目录 前言具体实现截图论文参考详细视频演示为什么选择我自己的网站自己的小程序&#xff08;小蔡coding&#xff09;有保障的售后福利 代码参考源码获取 前言 &#x1f497;博主介绍&#xff1a;✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计划导师、全栈领域优质创作…

Linux系统下git相关使用

目录 git相关指令以及使用 什么是git Linux系统git功能的配置 关于码云的注册以及仓库的创建 git的相关指令 git clone 代码仓库地址 git add [文件名] git commit [文件名] -m "文件提交信息" git push git status 情况1&#xff1a;存在文件可以add 情况2&#xff…

KNN(下):数据分析 | 数据挖掘 | 十大算法之一

⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ &#x1f434;作者&#xff1a;秋无之地 &#x1f434;简介&#xff1a;CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作&#xff0c;主要擅长领域有&#xff1a;爬虫、后端、大数据…

025 - STM32学习笔记 - 液晶屏控制(二) - 代码实现

025- STM32学习笔记 - 液晶屏控制&#xff08;二&#xff09; - 代码实现 好久没更新学习笔记了&#xff0c;最近工作上的事情太多了&#xff0c;趁着国庆中秋&#xff0c;多更新一点看看。 上节学习了关于LTDC与DMA2D以及显示屏的相关知识点&#xff0c;这节开始实操&#xf…

[谷粒商城笔记]08、环境-linux安装docker

1.查看是否已安装docker列表 yum list installed | grep docker 如果没有结果&#xff0c;则说明没有安装docker&#xff0c;我们就可以直接安装了。 2.安装docker: yum -y install docker 如果不是root账号&#xff0c;使用 sudo 以管理员身份运行 sudo yum -y install …

CentOS 7 安装 MySQL5.7

CentOS 7 安装 MySQL5.7 安装wget&#xff1a; yum -y install wget进入/usr/local/下&#xff1a; cd /usr/local/新建mysqlrpm文件夹&#xff1a; mkdir mysqlrpm进入mysqlrpm文件夹下&#xff1a; cd /usr/local/mysqlrpm/下载mysql包安装源&#xff1a; wget http://…