算法与数据结构-字符串匹配算法

news2024/12/28 3:38:45

文章目录

  • 主串和模式串
  • BF 算法
  • RK 算法
  • BM算法
    • 1. 坏字符规则
    • 2. 好后缀规则


主串和模式串

在开始讲解这个算法之前,我先定义两个概念,方便我后面讲解。它们分别是主串和模式串。这俩概念很好理解,我举个例子你就懂了。

比方说,我们在字符串 A 中查找字符串 B,那字符串 A 就是主串,字符串 B 就是模式串。我们把主串的长度记作 n,模式串的长度记作 m。因为我们是在主串中查找模式串,所以 n>m。


BF 算法

BF 算法中的 BF 是 Brute Force 的缩写,中文叫作暴力匹配算法,也叫朴素匹配算法。从名字可以看出,这种算法的字符串匹配方式很“暴力”,当然也就会比较简单、好懂,但相应的性能也不高。

作为最简单、最暴力的字符串匹配算法,BF 算法的思想可以用一句话来概括,那就是,我们在主串中,检查起始位置分别是 0、1、2…n-m 且长度为 m 的 n-m+1 个子串,看有没有跟模式串匹配的。我举一个例子给你看看,你应该可以理解得更清楚。
在这里插入图片描述
从上面的算法思想和例子,我们可以看出,在极端情况下,比如主串是“aaaaa…aaaaaa”(省略号表示有很多重复的字符 a),模式串是“aaaaab”。我们每次都比对 m 个字符,要比对 n-m+1 次,所以,这种算法的最坏情况时间复杂度是 O(n*m)。

尽管理论上,BF 算法的时间复杂度很高,是 O(n*m),但在实际的开发中,它却是一个比较常用的字符串匹配算法。为什么这么说呢?原因有两点。

第一,实际的软件开发中,大部分情况下,模式串和主串的长度都不会太长。而且每次模式串与主串中的子串匹配的时候,当中途遇到不能匹配的字符的时候,就可以就停止了,不需要把 m 个字符都比对一下。所以,尽管理论上的最坏情况时间复杂度是 O(n*m),但是,统计意义上,大部分情况下,算法执行效率要比这个高很多。

第二,朴素字符串匹配算法思想简单,代码实现也非常简单。简单意味着不容易出错,如果有 bug 也容易暴露和修复。在工程中,在满足性能要求的前提下,简单是首选。这也是我们常说的KISS(Keep it Simple and Stupid)设计原则。

所以,在实际的软件开发中,绝大部分情况下,朴素的字符串匹配算法就够用了。


RK 算法

RK 算法的全称叫 Rabin-Karp 算法,是由它的两位发明者 Rabin 和 Karp 的名字来命名的。这个算法理解起来也不是很难。我个人觉得,它其实就是刚刚讲的 BF 算法的升级版。

我在讲 BF 算法的时候讲过,如果模式串长度为 m,主串长度为 n,那在主串中,就会有 n-m+1 个长度为 m 的子串,我们只需要暴力地对比这 n-m+1 个子串与模式串,就可以找出主串与模式串匹配的子串。

但是,每次检查主串与子串是否匹配,需要依次比对每个字符,所以 BF 算法的时间复杂度就比较高,是 O(n*m)。我们对朴素的字符串匹配算法稍加改造,引入哈希算法,时间复杂度立刻就会降低。

RK 算法的思路是这样的:我们通过哈希算法对主串中的 n-m+1 个子串分别求哈希值,然后逐个与模式串的哈希值比较大小。如果某个子串的哈希值与模式串相等,那就说明对应的子串和模式串匹配了(这里先不考虑哈希冲突的问题,后面我们会讲到)。因为哈希值是一个数字,数字之间比较是否相等是非常快速的,所以模式串和子串比较的效率就提高了。
在这里插入图片描述
不过,通过哈希算法计算子串的哈希值的时候,我们需要遍历子串中的每个字符。尽管模式串与子串比较的效率提高了,但是,算法整体的效率并没有提高。有没有方法可以提高哈希算法计算子串哈希值的效率呢?

这就需要哈希算法设计的非常有技巧了。我们假设要匹配的字符串的字符集中只包含 K 个字符,我们可以用一个 K 进制数来表示一个子串,这个 K 进制数转化成十进制数,作为子串的哈希值。表述起来有点抽象,我举了一个例子,看完你应该就能懂了。

比如要处理的字符串只包含 a~z 这 26 个小写字母,那我们就用二十六进制来表示一个字符串。我们把 a~z 这 26 个字符映射到 0~25 这 26 个数字,a 就表示 0,b 就表示 1,以此类推,z 表示 25。

在十进制的表示法中,一个数字的值是通过下面的方式计算出来的。对应到二十六进制,一个包含 a 到 z 这 26 个字符的字符串,计算哈希的时候,我们只需要把进位从 10 改成 26 就可以。

在这里插入图片描述
这个哈希算法你应该看懂了吧?现在,为了方便解释,在下面的讲解中,我假设字符串中只包含 a~z 这 26 个小写字符,我们用二十六进制来表示一个字符串,对应的哈希值就是二十六进制数转化成十进制的结果。

这种哈希算法有一个特点,在主串中,相邻两个子串的哈希值的计算公式有一定关系。我这有个例子,你先找一下规律,再来看我后面的讲解。

在这里插入图片描述
从这里例子中,我们很容易就能得出这样的规律:相邻两个子串 s[i-1]和 s[i](i 表示子串在主串中的起始位置,子串的长度都为 m),对应的哈希值计算公式有交集,也就是说,我们可以使用 s[i-1]的哈希值很快的计算出 s[i]的哈希值。如果用公式表示的话,就是下面这个样子:
在这里插入图片描述
不过,这里有一个小细节需要注意,那就是 26(m-1) 这部分的计算,我们可以通过查表的方法来提高效率。我们事先计算好 260、261、262……26(m-1),并且存储在一个长度为 m 的数组中,公式中的“次方”就对应数组的下标。当我们需要计算 26 的 x 次方的时候,就可以从数组的下标为 x 的位置取值,直接使用,省去了计算的时间。
在这里插入图片描述
我们开头的时候提过,RK 算法的效率要比 BF 算法高,现在,我们就来分析一下,RK 算法的时间复杂度到底是多少呢?

整个 RK 算法包含两部分,计算子串哈希值和模式串哈希值与子串哈希值之间的比较。第一部分,我们前面也分析了,可以通过设计特殊的哈希算法,只需要扫描一遍主串就能计算出所有子串的哈希值了,所以这部分的时间复杂度是 O(n)。

模式串哈希值与每个子串哈希值之间的比较的时间复杂度是 O(1),总共需要比较 n-m+1 个子串的哈希值,所以,这部分的时间复杂度也是 O(n)。所以,RK 算法整体的时间复杂度就是 O(n)。

这里还有一个问题就是,模式串很长,相应的主串中的子串也会很长,通过上面的哈希算法计算得到的哈希值就可能很大,如果超过了计算机中整型数据可以表示的范围,那该如何解决呢?

刚刚我们设计的哈希算法是没有散列冲突的,也就是说,一个字符串与一个二十六进制数一一对应,不同的字符串的哈希值肯定不一样。因为我们是基于进制来表示一个字符串的,你可以类比成十进制、十六进制来思考一下。实际上,我们为了能将哈希值落在整型数据范围内,可以牺牲一下,允许哈希冲突。这个时候哈希算法该如何设计呢?

哈希算法的设计方法有很多,我举一个例子说明一下。假设字符串中只包含 a~z 这 26 个英文字母,那我们每个字母对应一个数字,比如 a 对应 1,b 对应 2,以此类推,z 对应 26。我们可以把字符串中每个字母对应的数字相加,最后得到的和作为哈希值。这种哈希算法产生的哈希值的数据范围就相对要小很多了。

不过,你也应该发现,这种哈希算法的哈希冲突概率也是挺高的。当然,我只是举了一个最简单的设计方法,还有很多更加优化的方法,比如将每一个字母从小到大对应一个素数,而不是 1,2,3……这样的自然数,这样冲突的概率就会降低一些。

那现在新的问题来了。之前我们只需要比较一下模式串和子串的哈希值,如果两个值相等,那这个子串就一定可以匹配模式串。但是,当存在哈希冲突的时候,有可能存在这样的情况,子串和模式串的哈希值虽然是相同的,但是两者本身并不匹配。

实际上,解决方法很简单。当我们发现一个子串的哈希值跟模式串的哈希值相等的时候,我们只需要再对比一下子串和模式串本身就好了。当然,如果子串的哈希值与模式串的哈希值不相等,那对应的子串和模式串肯定也是不匹配的,就不需要比对子串和模式串本身了

所以,哈希算法的冲突概率要相对控制得低一些,如果存在大量冲突,就会导致 RK 算法的时间复杂度退化,效率下降。极端情况下,如果存在大量的冲突,每次都要再对比子串和模式串本身,那时间复杂度就会退化成 O(n*m)。但也不要太悲观,一般情况下,冲突不会很多,RK 算法的效率还是比 BF 算法高的。

BM算法

我们把模式串和主串的匹配过程,看作模式串在主串中不停地往后滑动。当遇到不匹配的字符时,BF 算法和 RK 算法的做法是,模式串往后滑动一位,然后从模式串的第一个字符开始重新匹配。我举个例子解释一下,你可以看我画的这幅图。

在这里插入图片描述
在这个例子里,主串中的 c,在模式串中是不存在的,所以,模式串向后滑动的时候,只要 c 与模式串没有重合,肯定无法匹配。所以,我们可以一次性把模式串往后多滑动几位,把模式串移动到 c 的后面。

在这里插入图片描述
BM 算法包含两部分,分别是坏字符规则(bad character rule)和好后缀规则(good suffix shift)。我们下面依次来看,这两个规则分别都是怎么工作的。

1. 坏字符规则

前面两节讲的算法,在匹配的过程中,我们都是按模式串的下标从小到大的顺序,依次与主串中的字符进行匹配的。这种匹配顺序比较符合我们的思维习惯,而 BM 算法的匹配顺序比较特别,它是按照模式串下标从大到小的顺序,倒着匹配的。我画了一张图,你可以看下。
在这里插入图片描述
在这里插入图片描述
从模式串的末尾往前倒着匹配,当发现某个字符没法匹配的时候,我们把这个没有匹配的字符叫作坏字符(主串中的字符)。
在这里插入图片描述
我们拿坏字符 c 在模式串中查找,发现模式串中并不存在这个字符,也就是说,字符 c 与模式串中的任何字符都不可能匹配。这个时候,我们可以将模式串直接往后滑动三位,将模式串滑动到 c 后面的位置,再从模式串的末尾字符开始比较。
在这里插入图片描述
这个时候,我们发现,模式串中最后一个字符 d,还是无法跟主串中的 a 匹配,这个时候,还能将模式串往后滑动三位吗?答案是不行的。因为这个时候,坏字符 a 在模式串中是存在的,模式串中下标是 0 的位置也是字符 a。这种情况下,我们可以将模式串往后滑动两位,让两个 a 上下对齐,然后再从模式串的末尾字符开始,重新匹配。
在这里插入图片描述
第一次不匹配的时候,我们滑动了三位,第二次不匹配的时候,我们将模式串后移两位,那具体滑动多少位,到底有没有规律呢?

当发生不匹配的时候,我们把坏字符对应的模式串中的字符下标记作 si。如果坏字符在模式串中存在,我们把这个坏字符在模式串中的下标记作 xi。如果不存在,我们把 xi 记作 -1。那模式串往后移动的位数就等于 si-xi。(注意,我这里说的下标,都是字符在模式串的下标)
在这里插入图片描述
这里我要特别说明一点,如果坏字符在模式串里多处出现,那我们在计算 xi 的时候,选择最靠后的那个,因为这样不会让模式串滑动过多,导致本来可能匹配的情况被滑动略过。

利用坏字符规则,BM 算法在最好情况下的时间复杂度非常低,是 O(n/m)。比如,主串是 aaabaaabaaabaaab,模式串是 aaaa。每次比对,模式串都可以直接后移四位,所以,匹配具有类似特点的模式串和主串的时候,BM 算法非常高效。

不过,单纯使用坏字符规则还是不够的。因为根据 si-xi 计算出来的移动位数,有可能是负数,比如主串是 aaaaaaaaaaaaaaaa,模式串是 baaa。不但不会向后滑动模式串,还有可能倒退。所以,BM 算法还需要用到“好后缀规则”。

2. 好后缀规则

好后缀规则实际上跟坏字符规则的思路很类似。你看我下面这幅图。当模式串滑动到图中的位置的时候,模式串和主串有 2 个字符是匹配的,倒数第 3 个字符发生了不匹配的情况。
在这里插入图片描述
这个时候该如何滑动模式串呢?当然,我们还可以利用坏字符规则来计算模式串的滑动位数,不过,我们也可以使用好后缀处理规则。两种规则到底如何选择,我稍后会讲。抛开这个问题,现在我们来看,好后缀规则是怎么工作的?

我们把已经匹配的 bc 叫作好后缀,记作{u}。我们拿它在模式串中查找,如果找到了另一个跟{u}相匹配的子串{u*},那我们就将模式串滑动到子串{u*}与主串中{u}对齐的位置。

在这里插入图片描述
如果在模式串中找不到另一个等于{u}的子串,我们就直接将模式串,滑动到主串中{u}的后面,因为之前的任何一次往后滑动,都没有匹配主串中{u}的情况。

在这里插入图片描述
不过,当模式串中不存在等于{u}的子串时,我们直接将模式串滑动到主串{u}的后面。这样做是否有点太过头呢?我们来看下面这个例子。这里面 bc 是好后缀,尽管在模式串中没有另外一个相匹配的子串{u*},但是如果我们将模式串移动到好后缀的后面,如图所示,那就会错过模式串和主串可以匹配的情况。

在这里插入图片描述
如果好后缀在模式串中不存在可匹配的子串,那在我们一步一步往后滑动模式串的过程中,只要主串中的{u}与模式串有重合,那肯定就无法完全匹配。但是当模式串滑动到前缀与主串中{u}的后缀有部分重合的时候,并且重合的部分相等的时候,就有可能会存在完全匹配的情况。
在这里插入图片描述
所以,针对这种情况,我们不仅要看好后缀在模式串中,是否有另一个匹配的子串,我们还要考察好后缀的后缀子串,是否存在跟模式串的前缀子串匹配的。

所谓某个字符串 s 的后缀子串,就是最后一个字符跟 s 对齐的子串,比如 abc 的后缀子串就包括 c, bc。所谓前缀子串,就是起始字符跟 s 对齐的子串,比如 abc 的前缀子串有 a,ab。我们从好后缀的后缀子串中,找一个最长的并且能跟模式串的前缀子串匹配的,假设是{v},然后将模式串滑动到如图所示的位置。

在这里插入图片描述
坏字符和好后缀的基本原理都讲完了,我现在回答一下前面那个问题。当模式串和主串中的某个字符不匹配的时候,如何选择用好后缀规则还是坏字符规则,来计算模式串往后滑动的位数?

我们可以分别计算好后缀和坏字符往后滑动的位数,然后取两个数中最大的,作为模式串往后滑动的位数。这种处理方法还可以避免我们前面提到的,根据坏字符规则,计算得到的往后滑动的位数,有可能是负数的情况。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1044186.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

HTTP代理SSL连接:保障网络安全的重要协议

HTTP代理SSL连接是一种网络安全协议,它结合了HTTP代理和SSL/TLS协议,用于在客户端和服务器之间建立加密通信通道。HTTP代理SSL连接可以保护数据在传输过程中不被窃听、篡改或伪造,从而确保数据的完整性、保密性和可靠性。在本文中&#xff0c…

selenium使用已经获取的cookies登录网站报错unable to set cookie的处理方式

用selenium半手动登录github获取其登录cookies后,保存到一个文件gtb_cookies.txt中。 然后用selenium使用这个cookies文件,免登录上github。但是报错如下:selenium.common.exceptions.UnableToSetCookieException: Message: unable to set co…

如何实现服务器时间同步

为什么要做时间同步 在进行系统测试的时候,服务器时间同步很重要。例如web应用服务器与数据库服务器的时间同步,有一个定时任务,它的执行,如果服务器直接时间不通过,可能造成执行周期出现混乱。 ntp实现服务器时间同…

服务断路器_Resilience4j介绍

什么是Hystrix 我们耳熟能详的就是Netflix Hystrix,这个断路器是SpringCloud中最早支持的一种容错方案,现在这个断路器已经处于维护状态,已经不再更新了,你仍然可以使用这个断路器,但是呢,我不建议你去使用&#xff0…

静态链接与动态链接

目录 静态链接 地址空间分配 静态链接的详细过程 静态链接库 动态链接 位置无关代码 延迟绑定机制 本篇会重点介绍静态链接,动态链接,延迟绑定机制 问:两个或者多个不同的目标文件是如何组成一个可执行文件的呢? 答:这就…

【计算机网络】 基于UDP的简单通讯(客户端)

文章目录 客户端流程代码实现添加头文件以及库依赖加载库创建套接字发送接收数据关闭套接字、卸载库 测试 客户端 流程 客户端跟服务端差不多,也要先加载库,在加载库之后也要创建套接字,但是客户端一定是没有绑定ip地址的,之后是…

【Java 基础篇】Java 注解详解

在 Java 编程中,注解(Annotation)是一种元数据,它提供了关于程序代码的额外信息。注解不直接影响程序的执行,但可以在运行时提供有关程序的信息,或者让编译器执行额外的检查。 本文将详细介绍 Java 注解的…

Mac电脑剪切键Command-X键失灵

在Mac上,Command-X键的剪切功能失效可能是由于键盘快捷键设置出现错误或者剪切的目标文件处于只读状态。 可以尝试以下方法进行解决: 1.检查键盘快捷键设置:转到Apple菜单 > 系统偏好设置 > 辅助功能 > 键盘 > 快捷键&#xff0c…

Pytorch梯度累积实现

前言 主要用于解决显卡内存不足的问题。 梯度累积可以使用单卡实现增大batchsize的效果 梯度累积原理 按顺序执行Mini-Batch,同时对梯度进行累积,累积的结果在最后一个Mini-Batch计算后求平均更新模型变量。 a c c u m u l a t e d ∑ i 0 N g r a…

nat综合实验

路漫漫其修远兮,吾将上下而求索。 实验目的如图 实验思路:配置内网,再配置外网,再做nat clien1配置 clien2配置 pc3配置 lsw1配置 sysname lsw1 # vlan batch 10 20 30 # interface MEth0/0/1 # interface Eth-Trunk1port link-type trunkp…

【Linux】IO操作

IO 典型 IO 模型阻塞 IO非阻塞 IO信号驱动 IO异步 IO常见问题 多路转接模型select 模型poll 模型epoll 模型 典型 IO 模型 IO 操作指的就是数据的输入输出操作;IO 过程可以分为两个步骤:等待 IO 就绪、数据拷贝 阻塞 IO 发起 IO 操作,若当…

【面试高高手】 —— Java基础(36题)

文章目录 1. 八大基本数据类型分类2. 重写和重载的区别3. int和integer区别4. Java的关键字5. 什么是自动装箱和拆箱?6. 什么是Java的多态性?7. 接口和抽象类的区别?8. Java中如何处理异常?9. Java中的final关键字有什么作用&…

iview 的table表格组件使单元格可编辑和输入

表格的列定义中&#xff0c;在需要编辑的字段下使用render函数 template表格组件 <Table border :data"data" :columns"tableColumns" :loading"loading"></Table>data中定义table对象 table: {tableColumns: [{title: 商品序号,k…

服务断路器_Resilience4j的断路器

断路器&#xff08;CircuitBreaker&#xff09;相对于前面几个熔断机制更复杂&#xff0c;CircuitBreaker通常存在三种状态&#xff08;CLOSE、OPEN、HALF_OPEN&#xff09;&#xff0c;并通过一个时间或数量窗口来记录当前的请求成功率或慢速率&#xff0c;从而根据这些指标来…

【JVM】第三篇 JVM对象创建与内存分配机制深度剖析

目录 一. JVM对象创建过程详解1. 类加载检查2. 分配内存2.1 如何划分内存?2.2 并发问题 3. 初始化4. 设置对象头5. 执行<init>方法 二. 对象头和指针压缩详解三. JVM对象内存分配详解四.逃逸分析 & 栈上分配 & 标量替换详解1. 逃逸分析 & 栈上分配2. 标量替…

用纹理图集优化3D场景性能【Texture Atlas】

推荐&#xff1a;用 NSDT编辑器 快速搭建可编程3D场景 在 Unity 中开发移动应用程序时&#xff0c;确保一切都得到优化始终至关重要。 最大化帧速率使我们能够专注于优化脚本、烘焙灯光、修改对象等。 当我们将移动应用程序带入虚拟现实时&#xff0c;这一点变得更加重要。 虽…

嵌入式Linux应用开发-文件 IO

嵌入式Linux应用开发-文件 IO 第四章 文件 IO4.1 文件从哪来&#xff1f;4.2 怎么访问文件&#xff1f;4.2.1 通用的 IO 模型&#xff1a;open/read/write/lseek/close4.2.2 不是通用的函数&#xff1a;ioctl/mmap 4.3 怎么知道这些函数的用法&#xff1f;4.4 系统调用函数怎么…

基于微信小程序的健身小助手打卡预约教学系统(源码+lw+部署文档+讲解等)

文章目录 前言系统主要功能&#xff1a;用户的功能设计为&#xff1a;管理员的功能设计为&#xff1a;健身房的功能设计为&#xff1a;具体实现截图论文参考详细视频演示为什么选择我自己的网站自己的小程序&#xff08;小蔡coding&#xff09;有保障的售后福利 代码参考源码获…

QFrame类学习笔记

1、QFrame的作用 QFrame类继承于QWidget类&#xff0c;被QAbstractScrollArea, QLabel, QLCDNumber, QSplitter, QStackedWidget, and QToolBox等类继承。 QFrame作为许多基础控件的基类&#xff0c;提供许多成员方法给子类&#xff0c;实现子类的框架样式的设计。框架样式主要…

Android 13 定制化开发--开启相机或麦克风时,去掉状态栏上的绿色图标

Android 12 或更高版本的设备上&#xff0c;当应用使用麦克风或相机时&#xff0c;图标会出现在状态栏中。如果应用处于沉浸模式&#xff0c;图标会出现在屏幕的右上角。用户可以打开“快捷设置”&#xff0c;并选择图标以查看哪些应用当前正在使用麦克风或摄像头。图 1 显示了…