python基于轻量级卷积神经网络模型GhostNet开发构建养殖场景下生猪行为识别系统

news2025/1/2 2:39:05

养殖业的数字化和智能化是一个综合应用了互联网、物联网、人工智能、大数据、云计算、区块链等数字技术的过程,旨在提高养殖效率、提升产品质量以及促进产业升级。在这个过程中,养殖生猪的数字化智能化可以识别并管理猪的行为。通过数字化智能化系统,可以在猪的不同生长阶段,对其体重、饮食、运动量、繁殖能力、疾病状况等各项指标进行数据分析和监测,进而实现科学喂养和疾病预防。智能化养殖不仅提高了养殖效率,也有利于提高生猪的健康水平,对疾病的预防和治疗都有积极作用,最终能提升畜禽产品的品质和农户企业的实际收益。

国内很多厂商在养猪行业里其实很早就开始布局了,基于人工智能数字化技术手段来为传统养猪行业赋能,来提升养殖效率是比较有应用前景的赛道。本文的核心思想其实是借鉴了前面课堂行为识别模型的想法,想要基于生猪养殖数据来开发构建生猪行为识别模型,基于自动化的智能化的识别计算服务可以基于识别计算结果来做出响应,这些是可以考虑后期落地应用的点不是本文的内容。

首先来看下实例效果图:

接下来我们来看下具体的数据集:

共包含猪15种主要行为,以及其他类型的行为,共有16种行为类型。

简单看下实例数据:

【打架】

【睡觉】

【玩玩具】

【进食】

GhostNet主要从深度神经网络中特征图的冗余性角度出发,以低成本高效益的方式模拟传统卷积操作的效果。GhostNet模型中的Ghost模块是传统卷积层的一个替代方案。该模块通过使用少量的传统卷积来生成部分特征图,然后对这些特征图进行简单的线性变化(作者称这种操作为廉价的线性变换),从而得到所需数量的特征图。这种操作增加了特征图的冗余性,从而在保证对输入数据全面理解的同时降低了模型的计算成本。

优点:

效率高:通过使用少量的传统卷积操作以及廉价的线性变换操作,GhostNet在保证较高识别性能的同时降低了模型的计算成本,提高了模型的运行效率。
扩展性强:由于GhostNet模型中的Ghost模块可以灵活地调整生成特征图的数量,因此该模型可以方便地扩展到其他深度神经网络结构中,具有很强的适应性。
缺点:

理论基础尚不完备:虽然GhostNet模型在基准测试中表现出色,但其理论基础尚不完备,对于其有效性以及适用范围的深入研究仍有待进一步开展。
缺乏足够的可视化支持:对于模型内部的运行机制以及特征图的具体生成过程,目前还没有详细的可视化支持,这使得模型的理解仍有待进一步加深。

在前面很多项目开发中我们使用到的轻量级的CNN模型大都是MobileNet系列的,这里我们使用的是GhostNet模型,同样是一款性能出众的模型,核心实现如下所示:

class GhostNet(nn.Module):
    def __init__(self, cfgs, num_classes=1000, width_mult=1.0):
        super(GhostNet, self).__init__()
        self.cfgs = cfgs
        output_channel = _make_divisible(16 * width_mult, 4)
        layers = [
            nn.Sequential(
                nn.Conv2d(3, output_channel, 3, 2, 1, bias=False),
                nn.BatchNorm2d(output_channel),
                nn.ReLU(inplace=True),
            )
        ]
        input_channel = output_channel
        block = GhostBottleneck
        for k, exp_size, c, use_se, s in self.cfgs:
            output_channel = _make_divisible(c * width_mult, 4)
            hidden_channel = _make_divisible(exp_size * width_mult, 4)
            layers.append(
                block(input_channel, hidden_channel, output_channel, k, s, use_se)
            )
            input_channel = output_channel
        self.features = nn.Sequential(*layers)
        output_channel = _make_divisible(exp_size * width_mult, 4)
        self.squeeze = nn.Sequential(
            nn.Conv2d(input_channel, output_channel, 1, 1, 0, bias=False),
            nn.BatchNorm2d(output_channel),
            nn.ReLU(inplace=True),
            nn.AdaptiveAvgPool2d((1, 1)),
        )
        input_channel = output_channel
        output_channel = 1280
        self.classifier = nn.Sequential(
            nn.Linear(input_channel, output_channel, bias=False),
            nn.BatchNorm1d(output_channel),
            nn.ReLU(inplace=True),
            nn.Dropout(0.2),
            nn.Linear(output_channel, num_classes),
        )
        self._initialize_weights()

    def forward(self, x, need_fea=False):
        if need_fea:
            features, features_fc = self.forward_features(x, need_fea)
            x = self.classifier(features_fc)
            return features, features_fc, x
        else:
            x = self.forward_features(x)
            x = self.classifier(x)
            return x

    def forward_features(self, x, need_fea=False):
        if need_fea:
            input_size = x.size(2)
            scale = [4, 8, 16, 32]
            features = [None, None, None, None]
            for idx, layer in enumerate(self.features):
                x = layer(x)
                if input_size // x.size(2) in scale:
                    features[scale.index(input_size // x.size(2))] = x
            x = self.squeeze(x)
            return features, x.view(x.size(0), -1)
        else:
            x = self.features(x)
            x = self.squeeze(x)
            return x.view(x.size(0), -1)

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

    def cam_layer(self):
        return self.features[-1]

这是华为研究员提出来的非常能打的模型 ,感兴趣的话可以自行去了解官方的研究工作,地址在这里。如下所示:

当然了开源社区里面也有很多对应的项目,可以选择适合自己的就行了。

默认8:2的数据划分比例设置,默认200次epoch的迭代计算,结果详情如下所示:

【准确率曲线】
 

【loss曲线】 

【混淆矩阵】

当然了整体项目的开发也可以直接使用或者参考前文《眼疾识别》的方式。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1044053.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

分布式微服务架构中的关键技术解析

分布式微服务架构是构建现代应用的理想选择,它将复杂系统拆分成小而自治的服务,每个服务都能独立开发、测试和部署。在实际的开发过程中,如何实现高效的分布式微服务架构呢?下面笔者根据自己多年的实战经验,浅谈实战过…

Linux shell编程学习笔记3:查询系统中已安装可以使用的shell

〇、更新记录 20230926 编写 一、前言 目前可以在Linux系统上运行的shell有许多种:sh、bash、cshell、tcsh、zsh……但是对一台具体的系统来说,未必包括上面列的所有这些shell,很可能包括其中两三个。 那么我们如何查询系统中已经安装有哪…

阿里巴巴Java开发编程规约(整理详细版)

目录 前言 1.编程规约 1.1 命名风格 1.2 常量定义 1.3 代码格式 1.4 OOP 规约 1.5 日期时间 1.6 集合处理 1.7 并发处理 1.8 控制语句 1.9 注释规约 1.10 前后端规约 1.11 其他 前言 规约依次分为【重要】、【建议】、【参考】,整理开发规范的目的在于写出更加…

Linux内核学习笔记

这个跟考试一毛钱关系没有 纯个人爱好 考试党划走 Linux 8086映像 3.1Intel 8086寄存器 INTEL处理器通常有十六个寄存器 他们之间可以相互做运算 3.2 8086的内存访问 内存的数据交换 内存和寄存器通过16根地址线建立数据的交换,数据线的宽度和寄存器的宽度相等 注…

最新ChatGPT网站系统源码+支持GPT4.0+支持AI绘画Midjourney绘画+支持国内全AI模型

一、SparkAI创作系统 SparkAi系统是基于很火的GPT提问进行开发的Ai智能问答系统。本期针对源码系统整体测试下来非常完美,可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如何搭建部署AI创作ChatGPT系统?小编这里写一个详细图文教程吧&a…

博客无限滚动加载(html、css、js)实现

介绍 这是一个简单实现了类似博客瀑布流加载功能的页面&#xff0c;使用html、css、js实现。简单易懂&#xff0c;值得学习借鉴。&#x1f44d; 演示地址&#xff1a;https://i_dog.gitee.io/easy-web-projects/infinite_scroll_blog/index.html 代码 index.html <!DOCT…

Visual Code 开发web 的hello world

我以前做过&#xff0c;后来忘了怎么做了&#xff0c;所以还是要做个记录。 本文介绍visual code 开发web 的hello world 参考&#xff1a; Exercise - Set up the structure of your web app - Training | Microsoft Learn 打开Visual Code &#xff0c; 打开目录Open fol…

skywalking源码本地编译运行经验总结

前言 最近工作原因在弄skywalking&#xff0c;为了进一步熟悉拉了代码下来准备debug&#xff0c;但是编译启动项目我就费了老大劲了&#xff0c;所以准备写这篇&#xff0c;帮兄弟们少踩点坑。 正确步骤 既然是用开源的东西&#xff0c;那么最好就是按照人家的方式使用&…

算法-位运算-数字范围按位与

算法-位运算-数字范围按位与 1 题目概述 1.1 题目出处 https://leetcode.cn/problems/bitwise-and-of-numbers-range/description/?envTypestudy-plan-v2&envIdtop-interview-150 1.2 题目描述 2 逐个按位与运算 2.1 思路 最简单的就是直接挨个做与运算&#xff0c;…

华为云智能化组装式交付方案 ——金融级PaaS业务洞察及Web3实践的卓越贡献

伴随信息技术与金融业务加速的融合&#xff0c;企业应用服务平台&#xff08;PaaS&#xff09;已从幕后走向台前&#xff0c;成为推动行业数字化转型的关键力量。此背景下&#xff0c;华为云PaaS智能化组装式交付方案闪耀全场&#xff0c;在近日结束的华为全联接大会 2023上倍受…

DTDX991A 61430001-UW 自由IOT引入人工智能功能

DTDX991A 61430001-UW 自由IOT引入人工智能功能 人工智能功能可以在不利的机器和过程条件发生灾难性后果之前通知用户和其他系统。 这个被广泛采用的软件平台的最新版本还包括一个强大的自助视频库。这使用户能够在闲暇时浏览所有的特性和功能&#xff0c;同时促进整个工厂用…

redis系列之——高可用(主从、哨兵)

redis系列之——高可用&#xff08;主从、哨兵、集群&#xff09; 所谓的高可用&#xff0c;也叫HA&#xff08;High Availability&#xff09;&#xff0c;是分布式系统架构设计中必须考虑的因素之一&#xff0c;它通常是指&#xff0c;通过设计减少系统不能提供服务的时间。…

【RV1103】RTL8723bs (SD卡形状模块)驱动开发

文章目录 前言硬件分析Luckfox Pico的SD卡接口硬件原理图LicheePi zero WiFiBT模块总结 正文Kernel WiFi驱动支持Kernel 设备树支持修改一&#xff1a;修改二&#xff1a; SDK全局配置支持 wifi全局编译脚本支持编译逻辑拷贝rtl8723bs的固件到文件系统的固定目录里面去 上电后手…

网络安全人才发展史

1958年&#xff0c;我国第一台电子数字计算机诞生 1994年&#xff0c;互联网正式进入中国 网络安全工程师从此诞生 在6到14岁的懵懂孩童阶段&#xff0c;他们开始逐渐了解这个世界&#xff0c;接触网络生活。他们对于未知的世界充满了好奇但又对诸多危险因素没有正确判断能力。…

Java8实战-总结36

Java8实战-总结36 重构、测试和调试调试查看栈跟踪使用日志调试 小结 重构、测试和调试 调试 调试有问题的代码时&#xff0c;程序员的兵器库里有两大老式武器&#xff0c;分别是&#xff1a; 查看栈跟踪输出日志 查看栈跟踪 程序突然停止运行&#xff08;比如突然抛出一个…

Win10 cmd如何试用tar命令压缩和解压文件夹

环境&#xff1a; Win10 专业版 Microsoft Windows [版本 10.0.19041.208] 问题描述&#xff1a; Win10 cmd如何试用tar命令压缩和解压文件夹 C:\Users\Administrator>tar --help tar(bsdtar): manipulate archive files First option must be a mode specifier:-c Cre…

ElementUI之首页导航+左侧菜单->mockjs,总线

mockjs总线 1.mockjs 什么是Mock.js 前后端分离开发开发过程当中&#xff0c;经常会遇到以下几个尴尬的场景&#xff1a; - 老大&#xff0c;接口文档还没输出&#xff0c;我的好多活干不下去啊&#xff01; - 后端小哥&#xff0c;接口写好了没&#xff0c;我要测试啊&#x…

知识图谱(6)基于KG构建问答系统

问答系统概述 问答系统是人类从机器中获取数据与知识的主要形式&#xff0c;问答系统包括NLP的多种应用&#xff1a;语义理解&#xff0c;知识图谱&#xff0c;推理&#xff0c;文本生成。问答系统是检验机器智能的一种方式&#xff08;图灵测试&#xff09;。 图灵测试&#…

C++ 继承详解

目录 C 继承介绍 继承中的特点 public 继承 protected 继承 private 继承 在类里面不写是什么类型&#xff0c;默认是 private 的 如果继承时不显示声明是 private&#xff0c;protected&#xff0c;public 继承&#xff0c;则默认是 private 继承&#xff0c;在 struct …

【每日一题】递枕头

文章目录 Tag题目来源题目解读解题思路方法一&#xff1a;模拟方法二&#xff1a; O ( 1 ) O(1) O(1) 解法 写在最后 Tag 【模拟】【 O ( 1 ) O(1) O(1) 公式】【2023-09-26】 题目来源 2582. 递枕头 题目解读 编号从 1 到 n 的 n 个人站成一排传递枕头。最初&#xff0c;排…