【算法思想】排序

news2024/11/24 1:16:04

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。
img

  • 推荐:kuan 的首页,持续学习,不断总结,共同进步,活到老学到老
  • 导航
    • 檀越剑指大厂系列:全面总结 java 核心技术点,如集合,jvm,并发编程 redis,kafka,Spring,微服务,Netty 等
    • 常用开发工具系列:罗列常用的开发工具,如 IDEA,Mac,Alfred,electerm,Git,typora,apifox 等
    • 数据库系列:详细总结了常用数据库 mysql 技术点,以及工作中遇到的 mysql 问题等
    • 懒人运维系列:总结好用的命令,解放双手不香吗?能用一个命令完成绝不用两个操作
    • 数据结构与算法系列:总结数据结构和算法,不同类型针对性训练,提升编程思维,剑指大厂

非常期待和您一起在这个小小的网络世界里共同探索、学习和成长。💝💝💝 ✨✨ 欢迎订阅本专栏 ✨✨

博客目录

    • 一.基于比较的排序算法
      • 1.常见排序算法
      • 2.稳定 vs 不稳定
      • 3.冒泡排序
      • 4.选择排序
      • 5.堆排序
      • 6.插入排序
      • 7.希尔排序
      • 8.归并排序
      • 9.归并+插入
      • 10.快速排序
    • 二.非比较排序算法
      • 1.非比较排序
      • 2.计数排序
      • 3.桶排序
      • 4.基数排序
    • 三.Java 中的排序
      • 1.JDK 7~13 中的排序实现
      • 2.JDK 14~20 中的排序实现
    • 四.练习题目
      • 1.力扣题目分析说明
      • 2.根据另一个数组次序排序 - 力扣 1122 题
      • 3.按出现频率排序 - 力扣 1636
      • 4.最大间距 - 力扣 164
      • 5.排序数组-力扣 912 题

一.基于比较的排序算法

1.常见排序算法

基于比较排序的算法是一类常见的排序算法,它们通过比较元素之间的大小来确定它们的相对顺序。以下是一些常见的基于比较排序算法:

  1. 冒泡排序(Bubble Sort):冒泡排序重复地比较相邻的两个元素,如果它们的顺序不正确就交换它们,直到整个数组都有序。

  2. 选择排序(Selection Sort):选择排序在每一轮中选择未排序部分中的最小元素,并将其放到已排序部分的末尾。

  3. 插入排序(Insertion Sort):插入排序将元素逐个从未排序部分插入到已排序部分的适当位置,以构建有序数组。

  4. 快速排序(Quick Sort):快速排序通过选择一个元素作为基准,将数组分为两个子数组,然后递归地对子数组进行排序。

  5. 归并排序(Merge Sort):归并排序将数组分为两个子数组,然后递归地对子数组进行排序,并将它们合并以生成有序数组。

  6. 堆排序(Heap Sort):堆排序使用堆数据结构来维护数组的有序性,通过不断调整堆来排序数组。

  7. 希尔排序(Shell Sort):希尔排序是一种改进的插入排序,它通过比较相隔一定间隔的元素来进行排序,然后逐渐减小间隔直到为 1。

  8. 奇偶排序(Odd-Even Sort):奇偶排序是一种并行排序算法,它比较和交换奇数和偶数索引位置上的元素,直到数组有序。

  9. 梳排序(Comb Sort):梳排序是一种改进的冒泡排序,它通过一个称为“间隙”的增量来减小逆序对的数量,然后逐渐缩小间隙。

这些算法在不同情况下有不同的性能表现,包括最坏情况时间复杂度、平均情况时间复杂度和空间复杂度等方面的差异。选择排序和冒泡排序通常性能较差,而快速排序、归并排序和堆排序通常性能较好。根据数据集的特点和性能需求,可以选择适当的排序算法。

算法最好最坏平均空间稳定思想注意事项
冒泡O(n)O( n 2 n^2 n2)O( n 2 n^2 n2)O(1)Y比较最好情况需要额外判断
选择O( n 2 n^2 n2)O( n 2 n^2 n2)O( n 2 n^2 n2)O(1)N比较交换次数一般少于冒泡
O( n l o g n nlogn nlogn)O( n l o g n nlogn nlogn)O( n l o g n nlogn nlogn)O(1)N选择堆排序的辅助性较强,理解前先理解堆的数据结构
插入O(n)O( n 2 n^2 n2)O( n 2 n^2 n2)O(1)Y比较插入排序对于近乎有序的数据处理速度比较快,复杂度有所下降,可以提前结束
希尔O(nlogn)O( n 2 n^2 n2)O( n l o g n nlogn nlogn)O(1)N插入gap 序列的构造有多种方式,不同方式处理的数据复杂度可能不同
归并O( n l o g n nlogn nlogn)O( n l o g n nlogn nlogn)O( n l o g n nlogn nlogn)O(n)Y分治需要额外的 O(n)的存储空间
快速O( n l o g n nlogn nlogn)O( n 2 n^2 n2)O( n l o g n nlogn nlogn)O(logn)N分治快排可能存在最坏情况,需要把枢轴值选取得尽量随机化来缓解最坏情况下的时间复杂度

2.稳定 vs 不稳定

image-20230921140326549

3.冒泡排序

要点

  • 每轮冒泡不断地比较相邻的两个元素,如果它们是逆序的,则交换它们的位置
  • 下一轮冒泡,可以调整未排序的右边界,减少不必要比较

以数组 3、2、1 的冒泡排序为例,第一轮冒泡

image-20230504153631958

第二轮冒泡

image-20230504154044402

未排序区域内就剩一个元素,结束

image-20230504154213239

优化手段:每次循环时,若能确定更合适的右边界,则可以减少冒泡轮数

以数组 3、2、1、4、5 为例,第一轮结束后记录的 x,即为右边界

image-20230504161136854

非递归版代码

public class BubbleSort {

    private static void bubble(int[] a) {
        int j = a.length - 1;
        while (true) {
            int x = 0;
            for (int i = 0; i < j; i++) {
                if (a[i] > a[i + 1]) {
                    int t = a[i];
                    a[i] = a[i + 1];
                    a[i + 1] = t;
                    x = i;
                }
            }
            j = x;
            if (j == 0) {
                break;
            }
        }
    }

    public static void main(String[] args) {
        int[] a = {6, 5, 4, 3, 2, 1};
        System.out.println(Arrays.toString(a));
        bubble(a);
        System.out.println(Arrays.toString(a));
    }
}

4.选择排序

要点

  • 每一轮选择,找出最大(最小)的元素,并把它交换到合适的位置

以下面的数组选择最大值为例

image-20230507112728513

非递归实现

public class SelectionSort {
    public static void sort(int[] a) {
        // 1. 选择轮数 a.length - 1
        // 2. 交换的索引位置(right) 初始 a.length - 1, 每次递减
        for (int right = a.length - 1; right > 0 ; right--) {
            int max = right;
            for (int i = 0; i < right; i++) {
                if (a[i] > a[max]) {
                    max = i;
                }
            }
            if(max != right) {
                swap(a, max, right);
            }
        }
    }

    private static void swap(int[] a, int i, int j) {
        int t = a[i];
        a[i] = a[j];
        a[j] = t;
    }

    public static void main(String[] args) {
        int[] a = {6, 5, 4, 3, 2, 1};
        System.out.println(Arrays.toString(a));
        sort(a);
        System.out.println(Arrays.toString(a));
    }
}

5.堆排序

要点:

  • 建立大顶堆
  • 每次将堆顶元素(最大值)交换到末尾,调整堆顶元素,让它重新符合大顶堆特性

建堆

image-20230508080820117

交换,下潜调整

image-20230508080912944

image-20230508080959301

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

image-20230508081315265

代码

public class HeapSort {
    public static void sort(int[] a) {
        heapify(a, a.length);
        for (int right = a.length - 1; right > 0; right--) {
            swap(a, 0, right);
            down(a, 0, right);
        }
    }

    // 建堆 O(n)
    private static void heapify(int[] array, int size) {
        for (int i = size / 2 - 1; i >= 0; i--) {
            down(array, i, size);
        }
    }

    // 下潜
    // leetcode 上数组排序题目用堆排序求解,非递归实现比递归实现大约快 6ms
    private static void down(int[] array, int parent, int size) {
        while (true) {
            int left = parent * 2 + 1;
            int right = left + 1;
            int max = parent;
            if (left < size && array[left] > array[max]) {
                max = left;
            }
            if (right < size && array[right] > array[max]) {
                max = right;
            }
            if (max == parent) { // 没找到更大的孩子
                break;
            }
            swap(array, max, parent);
            parent = max;
        }
    }

    // 交换
    private static void swap(int[] a, int i, int j) {
        int t = a[i];
        a[i] = a[j];
        a[j] = t;
    }

    public static void main(String[] args) {
        int[] a = {2, 3, 1, 7, 6, 4, 5};
        System.out.println(Arrays.toString(a));
        sort(a);
        System.out.println(Arrays.toString(a));
    }
}

6.插入排序

要点

  • 将数组分为两部分 [0 … low-1] [low … a.length-1]
    • 左边 [0 … low-1] 是已排序部分
    • 右边 [low … a.length-1] 是未排序部分
  • 每次从未排序区域取出 low 位置的元素, 插入到已排序区域

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

image-20230513150907333

代码

public class InsertionSort {

    public static void sort(int[] a) {
        for (int low = 1; low < a.length; low++) {
            // 将 low 位置的元素插入至 [0..low-1] 的已排序区域
            int t = a[low];
            int i = low - 1; // 已排序区域指针

            while (i >= 0 && t < a[i]) { // 没有找到插入位置
                a[i + 1] = a[i]; // 空出插入位置
                i--;
            }

            // 找到插入位置
            if (i != low - 1) {
                a[i + 1] = t;
            }
        }
    }

    public static void main(String[] args) {
        int[] a = {9, 3, 7, 2, 5, 8, 1, 4};
        System.out.println(Arrays.toString(a));
        sort(a);
        System.out.println(Arrays.toString(a));
    }
}

7.希尔排序

要点

  • 简单的说,就是分组实现插入,每组元素间隙称为 gap
  • 每轮排序后 gap 逐渐变小,直至 gap 为 1 完成排序
  • 对插入排序的优化,让元素更快速地交换到最终位置

下图演示了 gap = 4,gap = 2,gap = 1 的三轮排序前后比较

image-20230508182439075

代码

public class ShellSort {
    public static void sort(int[] a) {
        for (int gap = a.length>>1; gap >0 ; gap=gap>>1) {
            for (int low = gap; low < a.length; low ++) {
                // 将 low 位置的元素插入至 [0..low-1] 的已排序区域
                int t = a[low];
                int i = low - gap; // 已排序区域指针

                while (i >= 0 && t < a[i]) { // 没有找到插入位置
                    a[i + gap] = a[i]; // 空出插入位置
                    i -= gap;
                }

                // 找到插入位置
                if (i != low - gap) {
                    a[i + gap] = t;
                }
            }
        }
    }

    public static void main(String[] args) {
        int[] a = {9, 3, 7, 2, 5, 8, 1, 4};
        System.out.println(Arrays.toString(a));
        sort(a);
		System.out.println(Arrays.toString(a));
    }
}

8.归并排序

要点

  • 分 - 每次从中间切一刀,处理的数据少一半
  • 治 - 当数据仅剩一个时可以认为有序
  • 合 - 两个有序的结果,可以进行合并排序(参见数组练习 E01. 合并有序数组)

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

代码

public class MergeSortTopDown {

    /*
        a1 原始数组
        i~iEnd 第一个有序范围
        j~jEnd 第二个有序范围
        a2 临时数组
     */
    public static void merge(int[] a1, int i, int iEnd, int j, int jEnd, int[] a2) {
        int k = i;
        while (i <= iEnd && j <= jEnd) {
            if (a1[i] < a1[j]) {
                a2[k] = a1[i];
                i++;
            } else {
                a2[k] = a1[j];
                j++;
            }
            k++;
        }
        if (i > iEnd) {
            System.arraycopy(a1, j, a2, k, jEnd - j + 1);
        }
        if (j > jEnd) {
            System.arraycopy(a1, i, a2, k, iEnd - i + 1);
        }
    }

    public static void sort(int[] a1) {
        int[] a2 = new int[a1.length];
        split(a1, 0, a1.length - 1, a2);
    }

    private static void split(int[] a1, int left, int right, int[] a2) {
        int[] array = Arrays.copyOfRange(a1, left, right + 1);
//        System.out.println(Arrays.toString(array));
        // 2. 治
        if (left == right) {
            return;
        }
        // 1. 分
        int m = (left + right) >>> 1;
        split(a1, left, m, a2);                 // left = 0 m = 0  9
        split(a1, m + 1, right, a2);       // m+1 = 1 right = 1  3
        // 3. 合
        merge(a1, left, m, m + 1, right, a2);
        System.arraycopy(a2, left, a1, left, right - left + 1);
    }

    public static void main(String[] args) {
        int[] a = {9, 3, 7, 2, 8, 5, 1, 4};
        System.out.println(Arrays.toString(a));
        sort(a);
        System.out.println(Arrays.toString(a));
    }
}

非递归实现

public class MergeSortBottomUp {

    /*
        a1 原始数组
        i~iEnd 第一个有序范围
        j~jEnd 第二个有序范围
        a2 临时数组
     */
    public static void merge(int[] a1, int i, int iEnd, int j, int jEnd, int[] a2) {
        int k = i;
        while (i <= iEnd && j <= jEnd) {
            if (a1[i] < a1[j]) {
                a2[k] = a1[i];
                i++;
            } else {
                a2[k] = a1[j];
                j++;
            }
            k++;
        }
        if (i > iEnd) {
            System.arraycopy(a1, j, a2, k, jEnd - j + 1);
        }
        if (j > jEnd) {
            System.arraycopy(a1, i, a2, k, iEnd - i + 1);
        }
    }

    public static void sort(int[] a1) {
        int n = a1.length;
        int[] a2 = new int[n];
        for (int width = 1; width < n; width *= 2) {
            for (int i = 0; i < n; i += 2 * width) {
                int m = Integer.min(i + width - 1, n - 1);
                int j = Integer.min(i + 2 * width - 1, n - 1);
                System.out.println(i + " " + m + " " + j);
                merge(a1, i, m, m + 1, j, a2);
            }
            System.arraycopy(a2, 0, a1, 0, n);
        }
    }

    public static void main(String[] args) {
        int[] a = {9, 3, 7, 2, 8, 5, 1, 4};
        System.out.println(Arrays.toString(a));
        sort(a);
        System.out.println(Arrays.toString(a));
    }
}

9.归并+插入

  • 小数据量且有序度高时,插入排序效果高
  • 大数据量用归并效果好
  • 可以结合二者
public class MergeInsertionSort {

    public static void insertion(int[] a, int left, int right) {
        for (int low = left + 1; low <= right; low++) {
            int t = a[low];
            int i = low - 1;
            while (i >= left && t < a[i]) {
                a[i + 1] = a[i];
                i--;
            }
            if (i != low - 1) {
                a[i + 1] = t;
            }
        }
    }

    /*
        a1 原始数组
        i~iEnd 第一个有序范围
        j~jEnd 第二个有序范围
        a2 临时数组
     */
    public static void merge(int[] a1, int i, int iEnd, int j, int jEnd, int[] a2) {
        int k = i;
        while (i <= iEnd && j <= jEnd) {
            if (a1[i] < a1[j]) {
                a2[k] = a1[i];
                i++;
            } else {
                a2[k] = a1[j];
                j++;
            }
            k++;
        }
        if (i > iEnd) {
            System.arraycopy(a1, j, a2, k, jEnd - j + 1);
        }
        if (j > jEnd) {
            System.arraycopy(a1, i, a2, k, iEnd - i + 1);
        }
    }

    public static void sort(int[] a1) {
        int[] a2 = new int[a1.length];
        split(a1, 0, a1.length - 1, a2);
    }

    private static void split(int[] a1, int left, int right, int[] a2) {
//        int[] array = Arrays.copyOfRange(a1, left, right + 1);
//        System.out.println(Arrays.toString(array));

        // 2. 治
        if (right == left) {
            return;
        }
        if (right - left <= 32) {
            insertion(a1, left, right);
            System.out.println("insert..." + left + " " + right +" "+Arrays.toString(a1));
            return;
        }
        // 1. 分
        int m = (left + right) >>> 1;
        split(a1, left, m, a2);                 // left = 0 m = 0  9
        split(a1, m + 1, right, a2);       // m+1 = 1 right = 1  3
        System.out.println(left + " " + right + " "+Arrays.toString(a1));
        // 3. 合
        merge(a1, left, m, m + 1, right, a2);
        System.arraycopy(a2, left, a1, left, right - left + 1);
    }

    public static void main(String[] args) {
        int[] a = {9, 3, 7, 2, 8, 5, 1, 4};
        System.out.println(Arrays.toString(a));
        sort(a);
        System.out.println(Arrays.toString(a));
    }
}

10.快速排序

单边循环(lomuto 分区)要点

  • 选择最右侧元素作为基准点
  • j 找比基准点小的,i 找比基准点大的,一旦找到,二者进行交换
    • 交换时机:j 找到小的,且与 i 不相等
    • i 找到 >= 基准点元素后,不应自增
  • 最后基准点与 i 交换,i 即为基准点最终索引

例:

i 和 j 都从左边出发向右查找,i 找到比基准点 4 大的 5,j 找到比基准点小的 2,停下来交换

image-20230513145045085

i 找到了比基准点大的 5,j 找到比基准点小的 3,停下来交换

image-20230513145259217

j 到达 right 处结束,right 与 i 交换,一轮分区结束

image-20230513145454772

代码

public class QuickSortLomuto {

    public static void sort(int[] a) {
        quick(a, 0, a.length - 1);
    }

    private static void quick(int[] a, int left, int right) {
        if (left >= right) {
            return;
        }
        int p = partition(a, left, right); // p代表基准点元素索引
        quick(a, left, p - 1);
        quick(a, p + 1, right);
    }

    private static int partition(int[] a, int left, int right) {
        int pv = a[right]; // 基准点元素值
        int i = left;
        int j = left;
        while (j < right) {
            if (a[j] < pv) { // j 找到比基准点小的了, 没找到大的
                if (i != j) {
                    swap(a, i, j);
                }
                i++;
            }
            j++;
        }
        swap(a, i, right);
        return i;
    }

    private static void swap(int[] a, int i, int j) {
        int t = a[i];
        a[i] = a[j];
        a[j] = t;
    }

    public static void main(String[] args) {
        int[] a = {5, 3, 7, 2, 9, 8, 1, 4};
        System.out.println(Arrays.toString(a));
        sort(a);
        System.out.println(Arrays.toString(a));
    }
}

双边循环要点

  • 选择最左侧元素作为基准点
  • j 找比基准点小的,i 找比基准点大的,一旦找到,二者进行交换
    • i 从左向右
    • j 从右向左
  • 最后基准点与 i 交换,i 即为基准点最终索引

例:

i 找到比基准点大的 5 停下来,j 找到比基准点小的 1 停下来(包含等于),二者交换

image-20230513145918612

i 找到 8,j 找到 3,二者交换,i 找到 7,j 找到 2,二者交换

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

i == j,退出循环,基准点与 i 交换

image-20230513150351115

代码

public class QuickSortHoare {

    public static void sort(int[] a) {
        quick(a, 0, a.length - 1);
    }

    private static void quick(int[] a, int left, int right) {
        if (left >= right) {
            return;
        }
        int p = partition(a, left, right);
        quick(a, left, p - 1);
        quick(a, p + 1, right);
    }

    private static int partition(int[] a, int left, int right) {
        int i = left;
        int j = right;
        int pv = a[left];
        while (i < j) {
            while (i < j && a[j] > pv) {
                j--;
            }
            while (i < j && pv >= a[i]) {
                i++;
            }
            swap(a, i, j);
        }
        swap(a, left, j);
        return j;
    }

    private static void swap(int[] a, int i, int j) {
        int t = a[i];
        a[i] = a[j];
        a[j] = t;
    }

    public static void main(String[] args) {
        int[] a = {9, 3, 7, 2, 8, 5, 1, 4};
        System.out.println(Arrays.toString(a));
        sort(a);
        System.out.println(Arrays.toString(a));
    }
}

随机基准点:

使用随机数作为基准点,避免万一最大值或最小值作为基准点导致的分区不均衡

image-20230513152038090

改进代码

int idx = ThreadLocalRandom.current().nextInt(right - left + 1) + left;
swap(a, idx, left);

处理重复值:

如果重复值较多,则原来算法中的分区效果也不好,如下图中左侧所示,需要想办法改为右侧的分区效果

image-20230513151851103

改进代码

public class QuickSortHandleDuplicate {

    public static void sort(int[] a) {
        quick(a, 0, a.length - 1);
    }

    private static void quick(int[] a, int left, int right) {
        if (left >= right) {
            return;
        }
        int p = partition(a, left, right);
        quick(a, left, p - 1);
        quick(a, p + 1, right);
    }

    /*
        循环内
            i 从 left + 1 开始,从左向右找大的或相等的
            j 从 right 开始,从右向左找小的或相等的
            交换,i++ j--

        循环外 j 和 基准点交换,j 即为分区位置
     */
    private static int partition(int[] a, int left, int right) {
        int idx = ThreadLocalRandom.current().nextInt(right - left + 1) + left;
        swap(a, left, idx);
        int pv = a[left];
        int i = left + 1;
        int j = right;
        while (i <= j) {
            // i 从左向右找大的或者相等的
            while (i <= j && a[i] < pv) {
                i++;
            }
            // j 从右向左找小的或者相等的
            while (i <= j && a[j] > pv) {
                j--;
            }
            if (i <= j) {
                swap(a, i, j);
                i++;
                j--;
            }
        }
        swap(a, j, left);
        return j;
    }

    private static void swap(int[] a, int i, int j) {
        int t = a[i];
        a[i] = a[j];
        a[j] = t;
    }

    public static void main(String[] args) {
//        int[] a = {4, 2, 1, 3, 2, 4}; // 最外层循环 = 要加
//        int[] a = {2, 1, 3, 2}; // 内层循环 = 要加
        int[] a = {2, 1, 3, 2}; // 内层if要加
        System.out.println(Arrays.toString(a));
        sort(a);
        System.out.println(Arrays.toString(a));
    }
}
  • 核心思想是

    • 改进前,i 只找大于的,j 会找小于等于的。一个不找等于、一个找等于,势必导致等于的值分布不平衡
    • 改进后,二者都会找等于的交换,等于的值会平衡分布在基准点两边
  • 细节:

    • 因为一开始 i 就可能等于 j,因此外层循环需要加等于条件保证至少进入一次,让 j 能减到正确位置
    • 内层 while 循环中 i <= j 的 = 也不能去掉,因为 i == j 时也要做一次与基准点的判断,好让 i 及 j 正确
    • i == j 时,也要做一次 i++ 和 j-- 使下次循环二者不等才能退出
    • 因为最后退出循环时 i 会大于 j,因此最终与基准点交换的是 j
  • 内层两个 while 循环的先后顺序不再重要

二.非比较排序算法

1.非比较排序

非比较排序算法时间复杂度空间复杂度稳定性
计数排序O(n+k)O(n+k)稳定
桶排序O(n+k)O(n+k)稳定
基数排序O(d*(n+k))O(n+k)稳定

其中

  • n 是数组长度
  • k 是桶长度
  • d 是基数位数

2.计数排序

方法 1(简化后的计数排序)

public static void sort(int[] a) {
    int min = a[0];
    int max = a[0];
    for (int i : a) {
        if (i > max) {
            max = i;
        } else if (i < min) {
            min = i;
        }
    }
    int[] counting = new int[max - min + 1];
    for (int i : a) {
        counting[i - min]++;
    }
    int k = 0;
    for (int i = 0; i < counting.length; i++) {
        while (counting[i] > 0) {
            a[k] = i + min;
            counting[i]--;
            k++;
        }
    }
}

针对 byte [],因为数据范围已知,省去了求最大、最小值的过程,java 中对 char[]、short[]、byte[] 的排序都可能采用 counting 排序

public static void sort(byte[] a) {
    int[] counting = new int[256];
    for (int i : a) {
        counting[i & 0xFF]++;
    }
    int k = a.length-1;
    for (int i = 128 + 256; k >= 0; ) {
        while (counting[--i & 0xFF] ==0);
        int v = i & 0xFF;
        int c = counting[i & 0xFF];
        for (int j = 0; j < c; j++) {
            a[k] = (byte) v;
            k--;
        }
    }
}

稳定计数排序

public static void sort2(int[] a) {
    int min = a[0];
    int max = a[0];
    for (int i : a) {
        if (i > max) {
            max = i;
        } else if (i < min) {
            min = i;
        }
    }
    int[] counting = new int[max - min + 1];
    for (int i : a) {
        counting[i - min]++;
    }
    for (int i = 1; i < counting.length; i++) {
        counting[i] = counting[i] + counting[i - 1];
    }
    int[] b = new int[a.length];
    for (int i = a.length - 1; i >= 0; i--) {
        int j = a[i] - min;
        counting[j]--;
        b[counting[j]] = a[i];
    }
    System.arraycopy(b, 0, a, 0, a.length);
}

3.桶排序

初步实现

public class BucketSort {
    public static void main(String[] args) {
        int[] ages = {20, 18, 66, 25, 67, 30}; // 假设人类年龄 1~99 那么分为10个桶
        System.out.println(Arrays.toString(ages));
        sort(ages);
        System.out.println(Arrays.toString(ages));
    }

    public static void sort(int[] a) {
        DynamicArray[] buckets = new DynamicArray[10];
        for (int i = 0; i < buckets.length; i++) {
            buckets[i] = new DynamicArray();
        }
        for (int v : a) {
            DynamicArray bucket = buckets[v / 10];
            bucket.addLast(v);
        }
        for (DynamicArray bucket : buckets) {
            System.out.println(Arrays.toString(bucket.array()));
        }
        int k = 0;
        for (DynamicArray bucket : buckets) {
            int[] array = bucket.array();
            InsertionSort.sort(array);
            for (int v : array) {
                a[k++] = v;
            }
        }
    }
}

通用

public class BucketSortGeneric {
    public static void main(String[] args) {
        int[] ages = {20, 10, 28, 66, 25, 31, 67, 30, 70}; // 假设人类年龄 1~99
        System.out.println(Arrays.toString(ages));
        sort(ages, 20);
        System.out.println(Arrays.toString(ages));
    }

    public static void sort(int[] a, int range) {
        int max = a[0];
        int min = a[0];
        for (int i = 1; i < a.length; i++) {
            if (a[i] > max) {
                max = a[i];
            }
            if (a[i] < min) {
                min = a[i];
            }
        }
        // 1. 准备桶
        DynamicArray[] buckets = new DynamicArray[(max - min) / range + 1];
        System.out.println(buckets.length);
        for (int i = 0; i < buckets.length; i++) {
            buckets[i] = new DynamicArray();
        }
        // 2. 放入年龄数据
        for (int age : a) {
            buckets[(age - min) / range].addLast(age);
        }
        int k = 0;
        for (DynamicArray bucket : buckets) {
            // 3. 排序桶内元素
            int[] array = bucket.array();
            InsertionSort.sort(array);
            System.out.println(Arrays.toString(array));
            // 4. 把每个桶排序好的内容,依次放入原始数组
            for (int v : array) {
                a[k++] = v;
            }
        }
    }
}

4.基数排序

public class RadixSort {
    public static void radixSort(String[] a, int length) {
        ArrayList<String>[] buckets = new ArrayList[128];
        for (int i = 0; i < buckets.length; i++) {
            buckets[i] = new ArrayList<>();
        }
        for (int i = length - 1; i >= 0 ; i--) {
            for (String s : a) {
                buckets[s.charAt(i)].add(s);
            }
            int k = 0;
            for (ArrayList<String> bucket : buckets) {
                for (String s : bucket) {
                    a[k++] = s;
                }
                bucket.clear();
            }
        }
    }

    public static void main(String[] args) {
        /*String[] phoneNumbers = new String[10];
        phoneNumbers[0] = "13812345678";
        phoneNumbers[1] = "13912345678";
        phoneNumbers[2] = "13612345678";
        phoneNumbers[3] = "13712345678";
        phoneNumbers[4] = "13512345678";
        phoneNumbers[5] = "13412345678";
        phoneNumbers[6] = "15012345678";
        phoneNumbers[7] = "15112345678";
        phoneNumbers[8] = "15212345678";
        phoneNumbers[9] = "15712345678";*/

        String[] phoneNumbers = new String[10];
        phoneNumbers[0] = "138";
        phoneNumbers[1] = "139";
        phoneNumbers[2] = "136";
        phoneNumbers[3] = "137";
        phoneNumbers[4] = "135";
        phoneNumbers[5] = "134";
        phoneNumbers[6] = "150";
        phoneNumbers[7] = "151";
        phoneNumbers[8] = "152";
        phoneNumbers[9] = "157";
        RadixSort.radixSort(phoneNumbers, 3);
        for (String phoneNumber : phoneNumbers) {
            System.out.println(phoneNumber);
        }
    }
}

基数排序是稳定排序,因此先排个位、再排十位,十位的排序不会打乱个位取值相等的元素顺序

三.Java 中的排序

Arrays.sort

1.JDK 7~13 中的排序实现

排序目标条件采用算法
int[] long[] float[] double[]size < 47混合插入排序 (pair)
size < 286双基准点快排
有序度高归并排序
有序度低双基准点快排
byte[]size > 29计数排序
size <= 29插入排序
char[] short[]size > 3200计数排序
size < 47插入排序
size < 286双基准点快排
有序度高归并排序
有序度低双基准点快排
Object[]-Djava.util.Arrays.useLegacyMergeSort=true传统归并排序
TimSort

2.JDK 14~20 中的排序实现

排序目标条件采用算法
int[] long[] float[] double[]size < 65 并不是最左侧混合插入排序 (pin)
size < 44 并位于最左侧插入排序
递归次数超过 384堆排序
对于整个数组或非最左侧 size > 4096,有序度高归并排序
有序度低双基准点快排
byte[]size > 64计数排序
size <= 64插入排序
char[] short[]size > 1750计数排序
size < 44插入排序
递归次数超过 384计数排序
不是上面情况双基准点快排
Object[]-Djava.util.Arrays.useLegacyMergeSort=true传统归并排序
TimSort
  • 其中 TimSort 是用归并+二分插入排序的混合排序算法
  • 值得注意的是从 JDK 8 开始支持 Arrays.parallelSort 并行排序
  • 根据最新的提交记录来看 JDK 21 可能会引入基数排序等优化

四.练习题目

1.力扣题目分析说明

题目编号题目标题排序算法类型
1122数组的相对排序计数排序
1636按照频率将数组升序排序计数排序
164最大间距基数排序、桶排序
315计算右侧小于当前元素的个数基数排序
347前 K 个高频元素桶排序
题目编号题目标题排序算法类型
75颜色分类三向切分快速排序
215数组中的第 K 个最大元素堆排序
493翻转对归并排序
493翻转对树状数组
524通过删除字母匹配到字典里最长单词循环排序
977有序数组的平方双指针法

2.根据另一个数组次序排序 - 力扣 1122 题

给你两个数组,arr1arr2arr2 中的元素各不相同,arr2 中的每个元素都出现在 arr1 中。

arr1 中的元素进行排序,使 arr1 中项的相对顺序和 arr2 中的相对顺序相同。未在 arr2 中出现过的元素需要按照升序放在 arr1 的末尾。

输入:arr1 = [2,3,1,3,2,4,6,7,9,2,19], arr2 = [2,1,4,3,9,6]
输出:[2,2,2,1,4,3,3,9,6,7,19]
/*
    前提
    1. 元素值均 >= 0
    2. arr2 内元素唯一,且长度 <= 1000
 */
public class E01Leetcode1122 {
    public int[] relativeSortArray(int[] arr1, int[] arr2) {
        int[] count = new int[1001];
        for (int i : arr1) {
            count[i]++;
        }
        int[] result = new int[arr1.length];
        int k = 0;
        for (int i : arr2) {
            while (count[i] > 0) {
                result[k++] = i;
                count[i]--;
            }
        }
        for (int i = 0; i < count.length; i++) {
            while (count[i] > 0) {
                result[k++] = i;
                count[i]--;
            }
        }
        return result;
    }
}

3.按出现频率排序 - 力扣 1636

给你一个整数数组 nums ,请你将数组按照每个值的频率 升序 排序。如果有多个值的频率相同,请你按照数值本身将它们 降序 排序。

请你返回排序后的数组。

输入:nums = [1,1,2,2,2,3]
输出:[3,1,1,2,2,2]
解释:'3' 频率为 1,'1' 频率为 2,'2' 频率为 3 。
public class E02Leetcode1636 {
    public int[] frequencySort(int[] nums) {
        int[] count = new int[201];
        for (int i : nums) {
            count[i + 100]++;
        }

        return Arrays.stream(nums).boxed().sorted((a, b) -> {
            int fa = count[a + 100];
            int fb = count[b + 100];
            if (fa == fb) {
                return Integer.compare(b, a);
            } else {
                return fa - fb;
            }
        }).mapToInt(Integer::intValue).toArray();
    }
}

4.最大间距 - 力扣 164

解法 1:桶排序 - 超过内存限制

public class E03Leetcode164_1 {
    public int maximumGap(int[] nums) {
        int n = nums.length;
        if (n < 2) {
            return 0;
        }

        sort(nums, 1);

        int ret = 0;
        for (int i = 1; i < n; i++) {
            ret = Math.max(ret, nums[i] - nums[i - 1]);
        }
        return ret;
    }

    public static void sort(int[] a, int range) {
        int max = a[0];
        int min = a[0];
        for (int i = 1; i < a.length; i++) {
            if (a[i] > max) {
                max = a[i];
            }
            if (a[i] < min) {
                min = a[i];
            }
        }
        // 1. 准备桶
        DynamicArray[] buckets = new DynamicArray[(max - min) / range + 1];
        for (int i = 0; i < buckets.length; i++) {
            buckets[i] = new DynamicArray();
        }
        // 2. 放入数据
        for (int age : a) {
            buckets[(age - min) / range].addLast(age);
        }
        int k = 0;
        for (DynamicArray bucket : buckets) {
            // 3. 排序桶内元素
            int[] array = bucket.array();
            InsertionSort.sort(array);
            // 4. 把每个桶排序好的内容,依次放入原始数组
            for (int v : array) {
                a[k++] = v;
            }
        }
    }

    public static void main(String[] args) {
        int[] nums = {13, 26, 16, 11};
        int r = new E03Leetcode164_1().maximumGap(nums);
        System.out.println(r);
    }
}

解法 2:基数排序

public class E03Leetcode164 {
    public int maximumGap(int[] a) {
        if (a.length < 2) {
            return 0;
        }

        // 计算最大值
        int max = a[0];
        for (int i = 1; i < a.length; i++) {
            max = Math.max(a[i], max);
        }

        // 准备10个桶
        ArrayList<Integer>[] buckets = new ArrayList[10];
        for (int i = 0; i < buckets.length; i++) {
            buckets[i] = new ArrayList<>();
        }

        // 没超过最大值
        long exp = 1;
        while (max >= exp) {
            for (int j : a) {
                buckets[(j / (int) exp) % 10].add(j);
            }
            int k = 0;
            for (ArrayList<Integer> bucket : buckets) {
                for (Integer i : bucket) {
                    a[k++] = i;
                }
                bucket.clear();
            }
            exp *= 10;
        }

        // 求最大间距
        int r = 0;
        for (int i = 1; i < a.length; i++) {
            r = Math.max(r, a[i] - a[i - 1]);
        }
        return r;
    }

    public static void main(String[] args) {
        int[] nums = {3, 6, 16, 1};
        int r = new E03Leetcode164().maximumGap(nums);
        System.out.println(r);
    }
}

解法 3:桶排序 - 合理化桶个数

public class E03Leetcode164_3 {
    public int maximumGap(int[] nums) {
        // 1. 处理特殊情况
        if (nums.length < 2) {
            return 0;
        }
        // 2. 桶排序
        int max = nums[0];
        int min = nums[0];
        for (int i1 = 1; i1 < nums.length; i1++) {
            if (nums[i1] > max) {
                max = nums[i1];
            }
            if (nums[i1] < min) {
                min = nums[i1];
            }
        }
        // 2.1 准备桶
        /*
            计算桶个数                   期望桶个数
            (max - min) / range + 1 = nums.length
            (max - min) / (nums.length - 1) = range
         */
        int range = Math.max((max - min) / (nums.length - 1), 1);
        DynamicArray[] buckets = new DynamicArray[(max - min) / range + 1];
        for (int i1 = 0; i1 < buckets.length; i1++) {
            buckets[i1] = new DynamicArray();
        }
        // 2.2 放入数据
        for (int age : nums) {
            buckets[(age - min) / range].addLast(age);
        }
        int k = 0;
        for (DynamicArray bucket : buckets) {
            // 2.3 排序桶内元素
            int[] array = bucket.array();
            InsertionSort.sort(array);
            System.out.println(Arrays.toString(array));
            // 2.4 把每个桶排序好的内容,依次放入原始数组
            for (int v : array) {
                nums[k++] = v;
            }
        }
        // 3. 寻找最大差值
        int r = 0;
        for (int i = 1; i < nums.length; i++) {
            r = Math.max(r, nums[i] - nums[i - 1]);
        }
        return r;
    }

    public static void main(String[] args) {
//        int[] nums = {1, 10000000};
//        int[] nums = {9, 1, 3, 5};
//        int[] nums = {1, 1, 1, 1};
//        int[] nums = {1, 1, 1, 1, 1, 5, 5, 5, 5, 5};
        int[] nums = {15252, 16764, 27963, 7817, 26155, 20757, 3478, 22602, 20404, 6739, 16790, 10588, 16521, 6644, 20880, 15632, 27078, 25463, 20124, 15728, 30042, 16604, 17223, 4388, 23646, 32683, 23688, 12439, 30630, 3895, 7926, 22101, 32406, 21540, 31799, 3768, 26679, 21799, 23740};
        int r = new E03Leetcode164_3().maximumGap(nums);
        System.out.println(r);
    }
}

解法 4:在解法 3 的基础上,只保留桶内最大最小值

public class E03Leetcode164_4 {
    public int maximumGap(int[] nums) {
        // 1. 处理特殊情况
        if (nums.length < 2) {
            return 0;
        }
        // 2. 桶排序
        // 桶个数 (max - min) / range + 1  期望桶个数 nums.length + 1
        // range = (max - min) / nums.length
        int max = nums[0];
        int min = nums[0];
        for (int i = 1; i < nums.length; i++) {
            if (nums[i] > max) {
                max = nums[i];
            }
            if (nums[i] < min) {
                min = nums[i];
            }
        }
        if (max == min) {
            return 0;
        }
        int range = Math.max(1, (max - min) / nums.length);
        int size = (max - min) / range + 1;
        Pair[] buckets = new Pair[size];
        // 2. 放入数据
        for (int i : nums) {
            int idx = (i - min) / range;
            if (buckets[idx] == null) {
                buckets[idx] = new Pair();
            }
            buckets[idx].add(i);
        }

        System.out.println(Arrays.toString(buckets));
        // 3. 寻找最大差值
        int r = 0;
        int lastMax = buckets[0].max;
        for (int i = 1; i < buckets.length; i++) {
            Pair pair = buckets[i];
            if (pair != null) {
                r = Math.max(r, pair.min - lastMax);
                lastMax = pair.max;
            }
        }
        return r;
    }

    static class Pair {
        int max = 0;
        int min = 1000_000_000;

        public void add(int v) {
            max = Math.max(max, v);
            min = Math.min(min, v);
        }

        @Override
        public String toString() {
            return "[" + min + "," + max + "]";
        }
    }

    public static void main(String[] args) {
        int[] nums = {9, 1, 6, 5};
//        int[] nums = {1, 10000000};
//        int[] nums = {1, 1, 1, 1};
//        int[] nums = {1, 1, 1, 1, 1, 5, 5, 5, 5, 5};
//        int[] nums = {15252, 16764, 27963, 7817, 26155, 20757, 3478, 22602, 20404, 6739, 16790, 10588, 16521, 6644, 20880, 15632, 27078, 25463, 20124, 15728, 30042, 16604, 17223, 4388, 23646, 32683, 23688, 12439, 30630, 3895, 7926, 22101, 32406, 21540, 31799, 3768, 26679, 21799, 23740};
        int r = new E03Leetcode164_4().maximumGap(nums);
        System.out.println(r);
    }
}

5.排序数组-力扣 912 题

给你一个整数数组 nums,请你将该数组升序排列。

输入:nums = [5,2,3,1]
输出:[1,2,3,5]
  • 冒泡排序 超时
  • 选择排序 超时
  • 插入排序 超时
  • 堆排序 通过
  • 希尔排序 通过
  • 归并排序(递归-合并-插入) 通过
  • 归并排序(递归-合并) 通过
  • 归并排序(迭代-合并) 通过
  • 单边快排 超时
  • 双边快排 超时
  • 双边快排+随机基准位 通过
  • 双边快排+随机基准位+等值处理 通过

堆排序

public static void sort(int[] a) {
    buildHeap(a);
    //排序
    for (int i = a.length - 1; i >= 0; i--) {
        swap(a, 0, i);
        down(a, 0, i);
    }
}

/**
 * 建堆
 *
 * @param a
 */
private static void buildHeap(int[] a) {
    for (int i = a.length / 2 - 1; i >= 0; i--) {
        down(a, i, a.length);
    }
}

/**
 * 下潜方法
 *
 * @param a      原数组
 * @param parent 父节点
 * @param size   长度
 */
private static void down(int[] a, int parent, int size) {
    while (true) {
        int left = parent * 2 + 1;
        int right = left + 1;
        int max = parent;
        if (left < size && a[left] > a[max]) {
            max = left;
        }
        if (right < size && a[right] > a[max]) {
            max = right;
        }
        if (max == parent) {
            break;
        }
        swap(a, max, parent);
        parent = max;
    }
}

/**
 * 交换位置
 *
 * @param a
 * @param right
 * @param max
 */
private static void swap(int[] a, int right, int max) {
    int t = a[max];
    a[max] = a[right];
    a[right] = t;
}

希尔排序:

public static void sort(int[] a) {
    for (int gap = a.length >> 1; gap > 0; gap = gap >> 1) {
        //插入排序
        for (int low = gap; low < a.length; low++) {
            int t = a[low];
            int i = low - gap;
            while (i >= 0 && t < a[i]) {
                a[i + gap] = a[i];
                i -= gap;
            }
            if (i != low - gap) {
                a[i + gap] = t;
            }
        }
    }
}

归并排序:

public class Sort_06_MergeInsertionSort_01 {

    /**
     * 归并排序思想:先分割
     *
     * @param a1
     */
    public static void sort(int[] a1) {
        int[] a2 = new int[a1.length];
        split(a1, 0, a1.length - 1, a2);
    }

    private static void split(int[] a1, int left, int right, int[] a2) {
        // 2. 治
        if (right - left <= 32) {
            // 插入排序
            insertion(a1, left, right);
            return;
        }
        // 1. 分
        int m = (left + right) >>> 1;
        split(a1, left, m, a2);
        split(a1, m + 1, right, a2);
        // 3. 合
        merge(a1, left, m, m + 1, right, a2);
        //把a2中的元素复制回a1
        System.arraycopy(a2, left, a1, left, right - left + 1);
    }

    public static void merge(int[] a1, int i, int iEnd, int j, int jEnd, int[] a2) {
        int k = i;
        while (i <= iEnd && j <= jEnd) {
            if (a1[i] < a1[j]) {
                a2[k] = a1[i];
                i++;
            } else {
                a2[k] = a1[j];
                j++;
            }
            k++;
        }
        if (i > iEnd) {
            System.arraycopy(a1, j, a2, k, jEnd - j + 1);
        }
        if (j > jEnd) {
            System.arraycopy(a1, i, a2, k, iEnd - i + 1);
        }
    }

    public static void insertion(int[] a, int left, int right) {
        for (int low = left + 1; low <= right; low++) {
            int t = a[low];
            int i = low - 1;
            // 自右向左找插入位置,如果比待插入元素大,则不断右移,空出插入位置
            while (i >= left && t < a[i]) {
                a[i + 1] = a[i];
                i--;
            }
            // 找到插入位置
            if (i != low - 1) {
                a[i + 1] = t;
            }
        }
    }


    public static void main(String[] args) {
        int[] a = {9, 3, 7, 2, 8, 5, 1, 4};
        System.out.println(Arrays.toString(a));
        sort(a);
        System.out.println(Arrays.toString(a));
    }
}

双边快排

public class Sort_07_02_QuickSortHoare_07 {
    /**
     * 双边快排
     *
     * @param a
     */
    public static void sort(int[] a) {
        quick(a, 0, a.length - 1);
    }

    /**
     * 快排
     *
     * @param a
     * @param left
     * @param right
     */
    private static void quick(int[] a, int left, int right) {
        if (left >= right) {
            return;
        }
        int mid = partition(a, left, right);
        quick(a, left, mid - 1);
        quick(a, mid + 1, right);
    }

    private static int partition(int[] a, int left, int right) {
        //添加left随机
        final int index = ThreadLocalRandom.current().nextInt(right - left + 1) + left;
        swap(a, left, index);
        int pv = a[left];
        int i = left + 1;
        int j = right;//j找小的
        while (i <= j) {
            while (i <= j && a[j] > pv) {
                j--;
            }
            while (i <= j && a[i] < pv) {
                i++;
            }
            if (i <= j) {
                swap(a, i, j);
                i++;
                j--;
            }
        }
        swap(a, left, j);
        return j;
    }

    /**
     * 交换位置
     *
     * @param a
     * @param right
     * @param max
     */
    private static void swap(int[] a, int right, int max) {
        int t = a[max];
        a[max] = a[right];
        a[right] = t;
    }

    public static void main(String[] args) {
        int[] a = {6, 5, 4, 3, 2, 1};
        System.out.println(Arrays.toString(a));
        sort(a);
        System.out.println(Arrays.toString(a));
    }
}

觉得有用的话点个赞 👍🏻 呗。
❤️❤️❤️本人水平有限,如有纰漏,欢迎各位大佬评论批评指正!😄😄😄

💘💘💘如果觉得这篇文对你有帮助的话,也请给个点赞、收藏下吧,非常感谢!👍 👍 👍

🔥🔥🔥Stay Hungry Stay Foolish 道阻且长,行则将至,让我们一起加油吧!🌙🌙🌙

img

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1034146.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Spring面试题12:Spring中IOC的优缺点是什么?IOC依赖注入方式有哪些

该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:Spring中IOC的优缺点是什么? IOC(Inversion of Control,控制反转)是Spring框架的一个重要特性,它实现了对象的创建和依赖关系的管理的反转。…

Activiti7工作流 一【工作流介绍、什么是Activiti7?、Activiti7环境、集成Activiti7、流程引擎API】

文章目录 Activiti7工作流一、工作流介绍1.1 概念1.2 适用行业1.3 应用领域1.4 传统实现方式1.5 什么是工作流引擎 二、什么是Activiti7&#xff1f;2.1 概述2.2 Activiti7内部核心机制2.3 BPMN2.4 Activiti如何使用2.4.1 整合Activiti2.4.2 业务流程建模2.4.3 部署业务流程2.4…

小说界的卷王巴尔扎克,咖啡续命拼命搞钱

巴尔扎克每天工作18小时&#xff0c;咖啡续命&#xff0c;活活累死。 巴尔扎克高产似母猪&#xff0c;写了90多部小说。 巴尔扎克很肤浅&#xff0c;除了写小说&#xff0c;就是搞钱&#xff0c;却一直是贫穷的状态。 一、卷王 1799年&#xff0c;奥诺雷德巴尔扎克出生在法国…

怎么快速提取图片中的文字信息?怎么使用OCR图片文字提取一键提取文字

图片里的文字如何提取?一些图片中的文字信息是我们需要的&#xff0c;但是一个个输入太麻烦了&#xff0c;怎么将图片上的文字提取出来?Initiator是一款易于使用的小型 macOS OCR&#xff08;光学字符识别&#xff09;应用程序&#xff0c;可提取和识别 Mac 计算机屏幕上的任…

自监督学习之对比学习:MoCo模型超级详解解读+总结

文章目录 一、MoCo简介1.1 整体思想1.2 动量1.3 正负样本如何选取 二、动态字典2.1 query和key2.2 字典特点 三、编码器的动量更新3.1 编码器的更新规则3.2 使用动量更新的原因 四、实验过程4.1 目标函数&#xff1a;infoNCE4.1.1 softmax4.1.2 交叉熵损失4.1.3 交叉熵损失函数…

【蓝桥杯选拔赛真题62】Scratch判断小球 少儿编程scratch图形化编程 蓝桥杯选拔赛真题解析

目录 scratch判断小球 一、题目要求 编程实现 二、案例分析 1、角色分析

BottomNavigationView3个以上图标不显示文字

问题 当BottomNavigationView设置的菜单中超过三个图标时&#xff0c;出现只有焦点聚集到图标时才会显示底部设置的文字描述&#xff0c;当没有焦点聚集则只显示图标&#xff0c;效果如下&#xff1a; 解决办法 设置labelVisibilityMode值 如果BottomNavigationItemView类并…

Jmeter——结合Allure展示测试报告

在平时用jmeter做测试时&#xff0c;生成报告的模板&#xff0c;不是特别好。大家应该也知道allure报告&#xff0c;页面美观。 先来看效果图&#xff0c;报告首页&#xff0c;如下所示&#xff1a; 报告详情信息&#xff0c;如下所示&#xff1a; 运行run.py文件&#xff0c;…

Java笔记:认识一下class文件

1.class文件概述 我们可任意打开一个Class文件&#xff08;使用Hex Editor等工具打开&#xff09;&#xff0c;内容如下&#xff08;内容是16进制&#xff09;&#xff1a; 十六进制转字符串&#xff1a;http://www.bejson.com/convert/ox2str/ 进制转换网址&#xff08;十六进…

谷歌浏览器jsonView插件安装与使用

1、打开 https://github.com &#xff1b; 2、搜索 jsonView 链接&#xff1a;https://gitee.com/wangl2020/chrome_JSONVue 3、选择需要的插件我是选这个&#xff1b; 4、点击【Download Zip】&#xff0c;插件下载完成&#xff0c;解压缩到相应目录&#xff08;D:\Downloa…

外贸电商独立站的选品和运营

第一步&#xff1a;选品 做出口跨境电商卖家&#xff0c;最难回答的问题就是我要卖什么产品&#xff1f;销量好的产品&#xff0c;竞争太激烈&#xff1b;价格很高的又卖不动&#xff1b;太小众的又担心客户不好开发&#xff0c;很纠结&#xff01; 的确&#xff0c;对于出口B2…

若依cloud -【 100 ~ 103 】

100 分布式日志介绍 | RuoYi 分布式日志就相当于把日志存储在不同的设备上面。比如若依项目中有ruoyi-modules-file、ruoyi-modules-gen、ruoyi-modules-job、ruoyi-modules-system四个应用&#xff0c;每个应用都部署在单独的一台机器里边&#xff0c;应用对应的日志的也单独存…

数据结构-----堆(完全二叉树)

目录 前言 一.堆 1.堆的概念 2.堆的存储方式 二.堆的操作方法 1.堆的结构体表示 2.数字交换接口函数 3.向上调整&#xff08;难点&#xff09; 4.向下调整&#xff08;难点&#xff09; 5.创建堆 6.堆的插入 7.判断空 8.堆的删除 9.获取堆的根(顶)元素 10.堆的遍历…

Linux中sudo命令的添加和操作

使用 sudo分配权限 &#xff08;1&#xff09;修改/etc/sudoers 文件分配文件 # chmod 740 /etc/sudoers # vi /etc/sudoers 找到这行&#xff1a;root ALL(ALL) ALL, 在这行下面添加 xxx ALL(ALL) ALL (这里的xxx就是你的普通用户&#xff0c;而ruice就是我的普通用户 ) 编…

nginx部署多个项目

前言 实现在一台服务器上使用nginx部署多个项目的方法 查看并修改nginx安装的默认配置文件 在 Linux 操作系统中&#xff0c;Nginx 在编译安装时默认的配置文件路径是 /usr/local/nginx/conf/nginx.conf。 如果是通过发行版的包管理器安装&#xff0c;则默认的配置文件路径可能…

Cesium加载海量点数据

目录 项目地址实现效果实现方法 项目地址 https://github.com/zhengjie9510/webgis-demo 实现效果 实现方法 const pointCollection viewer.scene.primitives.add(new Cesium.PointPrimitiveCollection({ blendOption: Cesium.BlendOption.OPAQUE })); for (let longitude …

dToF 和iToF傻傻分不清楚? pmd flexx2 见你所不能见

在现下数字化越来越成熟的时代,「3D感知」无疑在生活中成为了一种基础、甚至必须的需求:从人手至少一台的智能手机,到居家生活常见的扫地机器人,再到高科技或医疗产业会使用的无人机或工业机器人,如今高度科技化和便捷的世界,处处都需要比肉眼更加强大的立体视角来进行可…

如何搭建Linux环境

W...Y的主页 &#x1f60a; 代码仓库分享 &#x1f495; 当我们想要搭建一个Linux系统&#xff0c;我们应该怎么使用呢&#xff1f; 今天我就带领大家搭建Linux系统&#xff01;&#xff01;&#xff01; 目录 Linux环境安装 双系统&#xff08;不推荐&#xff09; poww…

计算机毕设 图像识别-人脸识别与疲劳检测 - python opencv

文章目录 0 前言1 课题背景2 Dlib人脸识别2.1 简介2.2 Dlib优点2.3 相关代码2.4 人脸数据库2.5 人脸录入加识别效果 3 疲劳检测算法3.1 眼睛检测算法3.2 打哈欠检测算法3.3 点头检测算法 4 PyQt54.1 简介4.2相关界面代码 5 最后 0 前言 &#x1f525; 这两年开始毕业设计和毕业…

14:00面试,14:06就出来了,问的问题过于变态了。。。

从小厂出来&#xff0c;没想到在另一家公司又寄了。 到这家公司开始上班&#xff0c;加班是每天必不可少的&#xff0c;看在钱给的比较多的份上&#xff0c;就不太计较了。没想到5月一纸通知&#xff0c;所有人不准加班&#xff0c;加班费不仅没有了&#xff0c;薪资还要降40%…