FPGA 图像缩放 千兆网 UDP 网络视频传输,基于B50610 PHY实现,提供工程和QT上位机源码加技术支持

news2024/11/24 13:50:47

目录

  • 1、前言
    • 版本更新说明
    • 免责声明
  • 2、相关方案推荐
    • UDP视频传输--无缩放
    • FPGA图像缩放方案
    • 我这里已有的以太网方案
  • 3、设计思路框架
    • 视频源选择
    • IT6802解码芯片配置及采集
    • 动态彩条
    • 跨时钟FIFO
    • 图像缩放模块详解
      • 设计框图
      • 代码框图
      • 2种插值算法的整合与选择
    • UDP协议栈
    • UDP视频数据组包
    • UDP协议栈数据发送
    • UDP协议栈数据缓冲
    • IP地址、端口号的修改
    • Tri Mode Ethernet MAC介绍以及移植注意事项
    • B50610 PHY
    • QT上位机和源码
  • 4、vivado工程详解
  • 5、工程移植说明
    • vivado版本不一致处理
    • FPGA型号不一致处理
    • 其他注意事项
  • 6、上板调试验证并演示
    • 准备工作
    • ping一下
    • 静态演示
    • 动态演示
  • 7、福利:工程源码获取

1、前言

没玩过UDP协议栈都不好意思说自己玩儿过FPGA,这是CSDN某大佬说过的一句话,鄙人深信不疑。。。
UDP协议栈在实际项目中应用广泛,特别是在医疗和军工行业,目前市面上的图像拼接方案主要有Xilinx官方推出的Video Mixer方案和自己手撕代码的自定义方案;Xilinx官方推出的Video Mixer方案直接调用IP,通过SDK配置即可实现,但他的使能难度较高,且对FPGA资源要求也很高,不太适合小规模FPGA,在zynq和K7以上平台倒是很使用,如果对Video Mixer方案感兴趣,可以参考我之前的博客,博客地址:
点击直接前往

本文使用Xilinx的Kintex7 FPGA基于B50610网络PHY芯片实现千兆网UDP视频传输(视频缩放后再传输),视频源有两种,分别对应开发者手里有没有摄像头的情况,一种是使用板载的HDMI输入接口(笔记本电脑输入模拟HDMI输入源);另一种是如果你的手里没有摄像头,或者你的开发板没HDMI输入接口,则可使用代码内部生成的动态彩条模拟摄像头视频,视频源的选择通过代码顶层的`define宏定义进行,上电默认选择HDMI输入接口作为视频输入源;FPGA采集视频后,首先使用纯verilog实现的图像缩放模块对视频进行缩小操作,即从输入的1920x1080分辨率缩小为1280x720,因为我们的QT上位机目前只支持1280x720,所以才需要缩放;使用FDMA将视频缓存到DDR3中,然后将视频读出,根据与QT上位机的通信协议将视频进行UDP数据组包,然后使用我们的UDP协议栈对视频进行UDP数据封装,再将数据送入Tri Mode Ethernet MAC IP,输出给开发板板载的B50610网络PHY,然后UDP视频通过开发板板载的RJ45网口经网线传输给电脑主机,电脑端用我们提供的QT上位机采集图像并显示;提供vivado2019.1版本的FPGA工程源码和QT上位机及其源码;

本博客详细描述了FPGA基于B50610网络PHY芯片实现千兆网UDP视频传输的设计方案,工程代码可综合编译上板调试,可直接项目移植,适用于在校学生、研究生项目开发,也适用于在职工程师做学习提升,可应用于医疗、军工等行业的高速接口或图像处理领域;
提供完整的、跑通的工程源码和技术支持;
工程源码和技术支持的获取方式放在了文章末尾,请耐心看到最后;

版本更新说明

此版本为第2版,根据读者的建议,对第1版工程做了如下改进和更新:
1:增加了输入视频动态彩条的选择,有的读者说他手里没有OV5640摄像头,或者摄像头原理图和我的不一致,导致在移植过程中困难很大,基于此,增加了动态彩条,它由FPGA内部产生,不需要外接摄像头就可以使用,使用方法在后文有说明,本例程板载的是HDMI输入接口,没有该接口的朋友可以选择使用动态彩条;
2:优化了FDMA,之前的FDMA内AXI4的数据读写突发长度为256,导致在低端FPGA上带宽不够,从而图像质量不佳,基于此,将FDMA内AXI4的数据读写突发长度改为128;
3:优化了UDP协议栈及其数据缓冲FIFO组的代码,并在博文里增加了这一部分的代码说明;
4:增加了Tri Mode Ethernet MAC IP核的使用、更新、修改等说明,以单独文档形式放在了资料包中;
5:优化了整体代码架构,使得之前看起来杂乱无章的代码变得清爽简洁;

免责声明

本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。

2、相关方案推荐

UDP视频传输–无缩放

我这里有与本博客相似的UDP视频传输方案,但他的输入视频没有进行缩放操作,而是直接缓存后送UDP协议栈输出,博客链接如下:直接点击前往

FPGA图像缩放方案

本博客使用到的图像缩放方案,是我之前发布过的一篇博文的内容,对该图像缩放部分感兴趣的可以参考,博客链接如下:直接点击前往

我这里已有的以太网方案

目前我这里有大量UDP协议的工程源码,包括UDP数据回环,视频传输,AD采集传输等,也有TCP协议的工程,还有RDMA的NIC 10G 25G 100G网卡工程源码,对网络通信有需求的兄弟可以去看看:直接点击前往
其中千兆TCP协议的工程博客如下:
直接点击前往

3、设计思路框架

FPGA工程设计框图如下:
在这里插入图片描述

视频源选择

视频源有两种,分别对应开发者手里有没有摄像头的情况,一种是使用板载的HDMI输入接口;另一种是如果你的手里没有摄像头,或者你的开发板没HDMI输入接口,则可使用代码内部生成的动态彩条模拟摄像头视频,视频源的选择通过代码顶层的宏定义进行,上电默认选择HDMI输入接口作为视频输入源;
视频源的选择通过代码顶层的`define宏定义进行;如下:
在这里插入图片描述
选择逻辑代码部分如下:
在这里插入图片描述
选择逻辑如下:
当(注释) define COLOR_IN时,输入源视频是动态彩条;
当(不注释) define COLOR_IN时,输入源视频是HDMI输入;

IT6802解码芯片配置及采集

IT6802解码芯片需要i2c配置才能使用,关于IT6802解码芯片的配置和使用,请参考我往期的博客,博客地址:点击直接前往
IT6802解码芯片配置及采集这两部分均用verilog代码模块实现,代码位置如下:
在这里插入图片描述
代码中配置为1920x1080分辨率;

动态彩条

动态彩条可配置为不同分辨率的视频,视频的边框宽度,动态移动方块的大小,移动速度等都可以参数化配置,我这里配置为辨率1920x1080,动态彩条模块代码位置和顶层接口和例化如下:
在这里插入图片描述
在这里插入图片描述

跨时钟FIFO

跨时钟FIFO的作用是为了解决跨时钟域的问题,当视频不进行缩放时不存在视频跨时钟域问题,但当视频缩小或放大时就存在此问题,用FIFO缓冲可以使图像缩放模块每次读到的都是有效的输入数据,注意,原视频的输入时序在这里就已经被打乱了;

图像缩放模块详解

因为我们的QT上位机目前只支持1280x720,所以才需要缩放,即从输入的1920x1080分辨率缩小为1280x720;用笔记本电脑模拟HDMI视频输入源;

设计框图

本设计将常用的双线性插值和邻域插值算法融合为一个代码中,通过输入参数选择某一种算法;代码使用纯verilog实现,没有任何ip,可在Xilinx、Intel、国产FPGA间任意移植;代码以ram和fifo为核心进行数据缓存和插值实现,设计架构如下:
在这里插入图片描述
视频输入时序要求如下:
在这里插入图片描述
输入像素数据在dInValid和nextDin同时为高时方可改变;
视频输出时序要求如下:
在这里插入图片描述
输出像素数据在dOutValid 和nextdOut同时为高时才能输出;

代码框图

代码使用纯verilog实现,没有任何ip,可在Xilinx、Intel、国产FPGA间任意移植;
图像缩放的实现方式很多,最简单的莫过于Xilinx的HLS方式实现,用opencv的库,以c++语言几行代码即可完成,关于HLS实现图像缩放请参考我之前写的文章HLS实现图像缩放
网上也有其他图像缩放例程代码,但大多使用了IP,导致在其他FPGA器件上移植变得困难,通用性不好;相比之下,本设计代码就具有通用性;代码架构如图;
在这里插入图片描述
其中顶层接口部分如下:
在这里插入图片描述

2种插值算法的整合与选择

本设计将常用的双线性插值和邻域插值算法融合为一个代码中,通过输入参数选择某一种算法;
具体选择参数如下:

input  wire i_scaler_type //0-->bilinear;1-->neighbor

通过输入i_scaler_type 的值即可选择;

输入0选择双线性插值算法;
输入1选择邻域插值算法;

关于这两种算法的数学差异,请参考我之前写的文章HLS实现图像缩放

UDP协议栈

本UDP协议栈方案需配合Xilinx的Tri Mode Ethernet MAC三速网IP一起使用,使用UDP协议栈网表文件,虽看不见源码但可正常实现UDP通信,该协议栈目前并不开源,只提供网表文件,但不影响使用,该协议栈带有用户接口,使得用户无需关心复杂的UDP协议而只需关心简单的用户接口时序即可操作UDP收发,非常简单;
协议栈架构如下:
在这里插入图片描述
协议栈性能表现如下:
1:支持 UDP 接收校验和检验功能,暂不支持 UDP 发送校验和生成;
2:支持 IP 首部校验和的生成和校验,同时支持 ICMP 协议中的 PING 功能,可接收并响应同一个子网内部设备的 PING 请求;
3:可自动发起或响应同一个子网内设备的 ARP 请求,ARP 收发完全自适应。ARP 表可保存同一个子网内部256 个 IP 和 MAC 地址对;
4:支持 ARP 超时机制,可检测所需发送数据包的目的 IP 地址是否可达;
5:协议栈发送带宽利用率可达 93%,高发送带宽下,内部仲裁机制保证 PING 和 ARP 功能不受任何影响;
6:发送过程不会造成丢包;
7:提供64bit位宽AXI4-Stream形式的MAC接口,可与Xilinx官方的千兆以太网IP核Tri Mode Ethernet MAC,以及万兆以太网 IP 核 10 Gigabit Ethernet Subsystem、10 Gigabit Ethernet MAC 配合使用;
有了此协议栈,我们无需关心复杂的UDP协议的实现了,直接调用接口即可使用。。。
本UDP协议栈用户接口发送时序如下:
在这里插入图片描述
本UDP协议栈用户接口接收时序如下:
在这里插入图片描述

UDP视频数据组包

实现UDP视频数据的组包,UDP数据发送必须与QT上位机的接受程序一致,上位机定义的UDP帧格式包括帧头个UDP数据,帧头定义如下:
在这里插入图片描述
FPGA端的UDP数据组包代码必须与上图的数据帧格式对应,否则QT无法解析,代码中定义了数据组包状态机以及数据帧,如下:
在这里插入图片描述
另外,由于UDP发送是64位数据位宽,而图像像素数据是24bit位宽,所以必须将UDP数据重新组合,以保证像素数据的对齐,这部分是整个工程的难点,也是所有FPGA做UDP数据传输的难点;

UDP协议栈数据发送

UDP协议栈具有发送和接收功能,但这里仅用到了发送,此部分代码架构如下:
在这里插入图片描述
UDP协议栈代码组我已经做好,用户可直接拿去使用;

UDP协议栈数据缓冲

这里对代码中用到的数据缓冲FIFO组做如下解释:
由于 UDP IP 协议栈的 AXI-Stream 数据接口位宽为 64bit,而 Tri Mode Ethernet MAC 的 AXI-Stream数据接口位宽为 8bit。因此,要将 UDP IP 协议栈与 Tri Mode Ethernet MAC 之间通过 AXI-Stream 接口互联,需要进行时钟域和数据位宽的转换。实现方案如下图所示:
在这里插入图片描述
收发路径(本设计只用到了发送)都使用了2个AXI-Stream DATA FIFO,通过其中1个FIFO实现异步时钟域的转换,1个FIFO实
现数据缓冲和同步Packet mode功能;由于千兆速率下Tri Mode Ethernet MAC的AXI-Stream数据接口同步时钟信号为125MHz,此时,UDP协议栈64bit的AXI-Stream数据接口同步时钟信号应该为125MHz/(64/8)=15.625MHz,因此,异步
AXI-Stream DATA FIFO两端的时钟分别为125MHz(8bit),15.625MHz(64bit);UDP IP协议栈的AXI-Stream接口经过FIFO时钟域转换后,还需要进行数据数据位宽转换,数据位宽的转换通过AXI4-Stream Data Width Converter完成,在接收路径中,进行 8bit 到 64bit 的转换;在发送路径中,进行 64bit 到 8bit 的转换;

IP地址、端口号的修改

UDP协议栈留出了IP地址、端口号的修改端口供用户自由修改,位置如下:
在这里插入图片描述

Tri Mode Ethernet MAC介绍以及移植注意事项

本设计调用了Xilinx官方IP:Tri Mode Ethernet MAC,其在代码中的位置如下:
在这里插入图片描述
可以看到其中泰处于被锁定状态,这是我们故意为之,目的是根据不同的PHY延时参数而修改其内部代码和内部时序约束代码,由于本设计使用的网络PHY为B50610,所以这里重点介绍使用B50610时Tri Mode Ethernet MAC的修改和移植事项,当你需要工程移植,或者你的vivado版本与我的不一致时,Tri Mode Ethernet MAC都需要在vivado中进行升级,但由于该IP已被我们人为锁定,所以升级和修改需要一些高端操作,关于操作方法,我专门写了一篇文档,已附在资料包里,如下:
在这里插入图片描述

B50610 PHY

本设计开发板使用的网络PHY为B50610,工作在延时模式下,原理图引出了MDIO,但代码中不需要MDIO配置,通过上下拉电阻即可使B50610工作于延时模式,该PHY最高支持千兆,且能在10M/100M/1000M之间自动协商,但本设计在Tri Mode Ethernet MAC端固定为1000M;在资料包中,我们提供B50610的原理图;
在这里插入图片描述

QT上位机和源码

我们提供和UDP通信协议相匹配的QT抓图显示上位机及其源代码,目录如下:
在这里插入图片描述
我们的QT目前仅支持1280x720分辨率的视频抓图显示,但同时预留了1080P接口,对QT开发感兴趣的朋友可以尝试修改代码以适应1080P,因为QT在这里只是验证工具,不是本工程的重点,所以不再过多赘述,详情请参考资料包的QT源码,位置如下:
在这里插入图片描述

4、vivado工程详解

开发板FPGA型号:Xilinx–Kintex7–xc7k325tffg676-2;
开发环境:Vivado2019.1;
输入:HDMI或动态彩条,分辨率1920x1080;
输出:千兆UDP协议栈,B50610 PHY,RJ45网口;
工程作用:千兆UDP网络视频传输;
工程BD如下:
在这里插入图片描述
工程代码架构如下:
在这里插入图片描述
工程的资源消耗和功耗如下:
在这里插入图片描述

5、工程移植说明

vivado版本不一致处理

1:如果你的vivado版本与本工程vivado版本一致,则直接打开工程;
2:如果你的vivado版本低于本工程vivado版本,则需要打开工程后,点击文件–>另存为;但此方法并不保险,最保险的方法是将你的vivado版本升级到本工程vivado的版本或者更高版本;
在这里插入图片描述
3:如果你的vivado版本高于本工程vivado版本,解决如下:
在这里插入图片描述
打开工程后会发现IP都被锁住了,如下:
在这里插入图片描述
此时需要升级IP,操作如下:
在这里插入图片描述
在这里插入图片描述

FPGA型号不一致处理

如果你的FPGA型号与我的不一致,则需要更改FPGA型号,操作如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
更改FPGA型号后还需要升级IP,升级IP的方法前面已经讲述了;

其他注意事项

1:由于每个板子的DDR不一定完全一样,所以MIG IP需要根据你自己的原理图进行配置,甚至可以直接删掉我这里原工程的MIG并重新添加IP,重新配置;
2:根据你自己的原理图修改引脚约束,在xdc文件中修改即可;
3:纯FPGA移植到Zynq需要在工程中添加zynq软核;

6、上板调试验证并演示

准备工作

首先连接开发板和电脑,开发板端连接后如下图:
在这里插入图片描述
然后将你的电脑IP地址改为和代码里规定的IP一致,当然,代码里的IP是可以任意设置的,但代码里的IP修改后,电脑端的IP也要跟着改,我的设置如下:
在这里插入图片描述

ping一下

在开始测试前,我们先ping一下,测试UDP是否连通,如下:
在这里插入图片描述

静态演示

HDMI输入1920x1080缩小到1280x720后UDP网络传输QT上位机显示如下:
在这里插入图片描述
动态彩条1920x1080缩小到1280x720后UDP网络传输QT上位机显示如下:
在这里插入图片描述

动态演示

动态视频演示如下:

FPGA-UDP-视频缩放传输-K7-16比9

7、福利:工程源码获取

福利:工程代码的获取
代码太大,无法邮箱发送,以某度网盘链接方式发送,
资料获取方式:私,或者文章末尾的V名片。
网盘资料如下:
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1033975.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Spring | 异常处理最佳实践

引言 在快速迭代和持续交付的今天,软件的健壮性、可靠性和用户体验已经成为区别成功与否的关键因素。特别是在Spring框架中,由于其广泛的应用和丰富的功能,如何优雅地处理异常就显得尤为重要。本文旨在探讨在Spring中如何更加高效、准确和优…

【设计模式】组合模式

文章目录 1.组合模式定义2.组合模式的结构2.1. 安全式组合模式的结构2.2.透明式组合模式的结构 3.组合模式实战案例3.1.场景说明3.2.关系类图3.3.代码实现 4.组合模式优缺点5.组合模式适用场景6.组合模式总结 主页传送门:💁 传送 1.组合模式定义 组合模式…

Spring面试题8:面试官:说一说Spring的BeanFactory

该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:说一说Spring的BeanFactory Spring的BeanFactory是Spring框架的核心容器,负责管理和创建Bean对象。它是一个工厂类,用于实例化、配置和管理Bean的…

忽视日志吃大亏,手把手教你玩转 SpringBoot 日志

一、日志重要吗 程序中的日志重要吗? 在回答这个问题前,笔者先说个事例: ❝ 笔者印象尤深的就是去年某个同事,收到了客户反馈的紧急bug。尽管申请到了日志文件,但因为很多关键步骤没有打印日志,导致排查进…

基于springboot+vue的车辆管理系统

博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容:毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 项目介绍…

专业排版软件InDesign 2023下载 InDesign mac中文功能

InDesign 2023 mac是一款专业排版软件,适用于Windows和macOS平台。它可以帮助用户创建、设计和排版各种印刷品和数字出版物,如杂志、书籍、报纸、广告、海报、手册、电子书等。 InDesign 2023 mac软件特点 多种页面布局:支持多种页面布局&…

名义实际GDP-各地区-原始和结果(2000-2022年)

一、数据介绍 数据名称:名义、实际GDP-各地区-原始和结果 数据年份:2000-2022年 计算公式:实际GDP 名义GDP / GDP折算指数 数据基期:2000年 数据整理:自主整理 二、数据用途 数据用途 文献依据 经济发展水平 …

如何在.NET电子表格应用程序中创建流程图

前言 流程图是一种常用的图形化工具,用于展示过程中事件、决策和操作的顺序和关系。它通过使用不同形状的图标和箭头线条,将任务和步骤按照特定的顺序连接起来,以便清晰地表示一个过程的执行流程。 在企业环境中,高管和经理利用…

区间重叠问题

区间未重叠数量计算: class Solution {public int findMinArrowShots(int[][] points) {//需要用第一种比较器?第二种会报错,在涉及数的大小边界的时候Arrays.sort(points,(a, b) -> Integer.compare(a[0], b[0]));//(a, b) -> Intege…

【算法思想-排序】根据另一个数组次序排序 - 力扣 1122 题

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kuan 的首页,持续学…

员工执行力差,80%是领导的问题

作者| Mr.K 编辑| Emma 来源| 技术领导力(ID:jishulingdaoli) 读者小T是大厂P7,今年跳到一家行业独角兽公司,做项目经理。没想到,半年后他的领导Y总,在考核中给他的绩效打了D,主要原因是小T“项目按时完成…

大模型分布式训练策略:ZeRO、FSDP

文章目录 一、ZeRO(零冗余优化器)1.1 背景1.2 深度学习内存消耗分析1.3 主要方法1.3.1 ZeRO-DP优化模型状态内存1.3.2 ZeRO-R优化残余状态内存 1.4 总结1.5 官方视频:ZeRO & Fastest BERT,提高 DeepSpeed 深度学习训练的规模和…

ROS 基础教程

欢迎访问我的博客首页。 ROS 基础教程 1.urdf 文件1.1 在 Rviz 中显示 urdf1.1.1 定义 urdf1.1.2 在 Rviz 中查看 urdf 1.2 在 Gazebo 中显示 urdf1.2.1 定义 urdf1.2.2 在 Gazebo 中查看 urdf 2.建图-仿真2.1 模型 1.urdf 文件 假设我们的工作空间是 ws_ros。我们自己实现的包…

10路LED驱动器和GPIO控制器禾润HTR3310

供电范围:2.5V~5.5V 10个多功能IO,支持LED驱动或GPIO(电流源调光) LED模式下具有256阶线性调光 任意IO可配置为独立的输入或输出 中断功能,8μs防抖,低电平有效 标准I2C接口,4个I2C器件地址…

AB包的依赖关系

1、什么是依赖关系 有时候一个模型所需要的东西可能在不同的包里面,例如蓝色立方体的模型和材质在不同的包(mode和head)里,这时需要加载两个包才能让这个球正常显示 2、如何获取依赖关系并加载 //加载AB包 AssetBundle ab Asse…

a single dex file (# methods: 67938 > 65536)

问题 项目不大&#xff0c;但是导入的包比较多&#xff0c;导致方法数量超过了一定数量 Cannot fit requested classes in a single dex file (# methods: 67938 > 65536) Android 5.0之前的版本&#xff08;API level < 21&#xff09;使用Dalvik runtime来执行代码&a…

服务器搭建(TCP套接字)-epoll版(服务端)

epoll 是一种在 Linux 系统上用于高效事件驱动编程的 I/O 多路复用机制。它相比于传统的 select 和 poll 函数具有更好的性能和扩展性。 epoll 的主要特点和原理&#xff1a; 1、事件驱动&#xff1a;epoll 是基于事件驱动的模型&#xff0c;它通过监听事件来触发相应的回调函…

七分钟,数据转换器get到了

全文阅读时间 | 预计七分钟 KING BASE 开源 OR 闭源&#xff1f; 在瞬息多变的软件市场上&#xff0c;开源还是闭源是一个恒久不变的话题。开源软件得益于基础架构和基本功能的全面开放&#xff0c;开发者能自由使用和二次开发&#xff0c;但使用前提是需要投入大量成本对软件进…

centos 7.9系统安装向日葵

1.下载地址 向日葵远程控制app官方下载 - 贝锐向日葵官网 2.下载依赖 yum install -y libappindicator-gtk3 安装好依赖之后&#xff0c;然后再安装向日葵软件 3.安装软件 sudo rpm -ivh 文件名.rpm 4.安装成功之后的位置

【Android Framework系列】第16章 存储访问框架 (SAF)

1 概述 Android 4.4&#xff08;API 级别 19&#xff09;引入了存储访问框架 (Storage Access Framework)。SAF让用户能够在其所有首选文档存储提供程序中方便地浏览并打开文档、图像以及其他文件。 用户可以通过易用的标准 UI&#xff0c;以统一方式在所有应用和提供程序中浏…